Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
/* intrinsics.cc -- D language compiler intrinsics.
   Copyright (C) 2006-2020 Free Software Foundation, Inc.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"

#include "dmd/declaration.h"
#include "dmd/identifier.h"
#include "dmd/mangle.h"
#include "dmd/mangle.h"
#include "dmd/module.h"
#include "dmd/template.h"

#include "tm.h"
#include "function.h"
#include "tree.h"
#include "fold-const.h"
#include "stringpool.h"
#include "builtins.h"

#include "d-tree.h"


/* An internal struct used to hold information on D intrinsics.  */

struct intrinsic_decl
{
  /* The DECL_FUNCTION_CODE of this decl.  */
  intrinsic_code code;

  /* The name of the intrinsic.  */
  const char *name;

  /* The module where the intrinsic is located.  */
  const char *module;

  /* The mangled signature decoration of the intrinsic.  */
  const char *deco;

  /* True if the intrinsic is only handled in CTFE.  */
  bool ctfeonly;
};

static const intrinsic_decl intrinsic_decls[] =
{
#define DEF_D_INTRINSIC(CODE, ALIAS, NAME, MODULE, DECO, CTFE) \
    { INTRINSIC_ ## ALIAS, NAME, MODULE, DECO, CTFE },

#include "intrinsics.def"

#undef DEF_D_INTRINSIC
};

/* Checks if DECL is an intrinsic or run time library function that requires
   special processing.  Sets DECL_INTRINSIC_CODE so it can be identified
   later in maybe_expand_intrinsic.  */

void
maybe_set_intrinsic (FuncDeclaration *decl)
{
  if (!decl->ident || decl->builtin != BUILTINunknown)
    return;

  /* The builtin flag is updated only if we can evaluate the intrinsic
     at compile-time.  Such as the math or bitop intrinsics.  */
  decl->builtin = BUILTINno;

  /* Check if it's a compiler intrinsic.  We only require that any
     internally recognised intrinsics are declared in a module with
     an explicit module declaration.  */
  Module *m = decl->getModule ();

  if (!m || !m->md)
    return;

  TemplateInstance *ti = decl->isInstantiated ();
  TemplateDeclaration *td = ti ? ti->tempdecl->isTemplateDeclaration () : NULL;

  const char *tname = decl->ident->toChars ();
  const char *tmodule = m->md->toChars ();
  const char *tdeco = (td == NULL) ? decl->type->deco : NULL;

  /* Look through all D intrinsics.  */
  for (size_t i = 0; i < (int) INTRINSIC_LAST; i++)
    {
      if (!intrinsic_decls[i].name)
	continue;

      if (strcmp (intrinsic_decls[i].name, tname) != 0
	  || strcmp (intrinsic_decls[i].module, tmodule) != 0)
	continue;

      /* Instantiated functions would have the wrong type deco, get it from the
	 template member instead.  */
      if (tdeco == NULL)
	{
	  if (!td || !td->onemember)
	    return;

	  FuncDeclaration *fd = td->onemember->isFuncDeclaration ();
	  if (fd == NULL)
	    return;

	  OutBuffer buf;
	  mangleToBuffer (fd->type, &buf);
	  tdeco = buf.extractString ();
	}

      /* Matching the type deco may be a bit too strict, as it means that all
	 function attributes that end up in the signature must be kept aligned
	 between the compiler and library declaration.  */
      if (strcmp (intrinsic_decls[i].deco, tdeco) == 0)
	{
	  intrinsic_code code = intrinsic_decls[i].code;

	  if (decl->csym == NULL)
	    get_symbol_decl (decl);

	  /* If there is no function body, then the implementation is always
	     provided by the compiler.  */
	  if (!decl->fbody)
	    set_decl_built_in_function (decl->csym, BUILT_IN_FRONTEND, code);

	  /* Infer whether the intrinsic can be used for CTFE, let the
	     front-end know that it can be evaluated at compile-time.  */
	  switch (code)
	    {
	    case INTRINSIC_VA_ARG:
	    case INTRINSIC_C_VA_ARG:
	    case INTRINSIC_VASTART:
	    case INTRINSIC_ADDS:
	    case INTRINSIC_SUBS:
	    case INTRINSIC_MULS:
	    case INTRINSIC_NEGS:
	    case INTRINSIC_VLOAD:
	    case INTRINSIC_VSTORE:
	      break;

	    case INTRINSIC_POW:
	    {
	      /* Check that this overload of pow() is has an equivalent
		 built-in function.  It could be `int pow(int, int)'.  */
	      tree rettype = TREE_TYPE (TREE_TYPE (decl->csym));
	      if (mathfn_built_in (rettype, BUILT_IN_POW) != NULL_TREE)
		decl->builtin = BUILTINyes;
	      break;
	    }

	    default:
	      decl->builtin = BUILTINyes;
	      break;
	    }

	  /* The intrinsic was marked as CTFE-only.  */
	  if (intrinsic_decls[i].ctfeonly)
	    DECL_BUILT_IN_CTFE (decl->csym) = 1;

	  DECL_INTRINSIC_CODE (decl->csym) = code;
	  break;
	}
    }
}

/* Construct a function call to the built-in function CODE, N is the number of
   arguments, and the `...' parameters are the argument expressions.
   The original call expression is held in CALLEXP.  */

static tree
call_builtin_fn (tree callexp, built_in_function code, int n, ...)
{
  tree *argarray = XALLOCAVEC (tree, n);
  va_list ap;

  va_start (ap, n);
  for (int i = 0; i < n; i++)
    argarray[i] = va_arg (ap, tree);
  va_end (ap);

  tree exp = build_call_expr_loc_array (EXPR_LOCATION (callexp),
					builtin_decl_explicit (code),
					n, argarray);
  return convert (TREE_TYPE (callexp), fold (exp));
}

/* Expand a front-end instrinsic call to bsf().  This takes one argument,
   the signature to which can be either:

	int bsf (uint arg);
	int bsf (ulong arg);

   This scans all bits in the given argument starting with the first,
   returning the bit number of the first bit set.  The original call
   expression is held in CALLEXP.  */

static tree
expand_intrinsic_bsf (tree callexp)
{
  /* The bsr() intrinsic gets turned into __builtin_ctz(arg).
     The return value is supposed to be undefined if arg is zero.  */
  tree arg = CALL_EXPR_ARG (callexp, 0);
  int argsize = TYPE_PRECISION (TREE_TYPE (arg));

  /* Which variant of __builtin_ctz* should we call?  */
  built_in_function code = (argsize <= INT_TYPE_SIZE) ? BUILT_IN_CTZ
    : (argsize <= LONG_TYPE_SIZE) ? BUILT_IN_CTZL
    : (argsize <= LONG_LONG_TYPE_SIZE) ? BUILT_IN_CTZLL
    : END_BUILTINS;

  gcc_assert (code != END_BUILTINS);

  return call_builtin_fn (callexp, code, 1, arg);
}

/* Expand a front-end instrinsic call to bsr().  This takes one argument,
   the signature to which can be either:

	int bsr (uint arg);
	int bsr (ulong arg);

   This scans all bits in the given argument from the most significant bit
   to the least significant, returning the bit number of the first bit set.
   The original call expression is held in CALLEXP.  */

static tree
expand_intrinsic_bsr (tree callexp)
{
  /* The bsr() intrinsic gets turned into (size - 1) - __builtin_clz(arg).
     The return value is supposed to be undefined if arg is zero.  */
  tree arg = CALL_EXPR_ARG (callexp, 0);
  tree type = TREE_TYPE (arg);
  int argsize = TYPE_PRECISION (type);

  /* Which variant of __builtin_clz* should we call?  */
  built_in_function code = (argsize <= INT_TYPE_SIZE) ? BUILT_IN_CLZ
    : (argsize <= LONG_TYPE_SIZE) ? BUILT_IN_CLZL
    : (argsize <= LONG_LONG_TYPE_SIZE) ? BUILT_IN_CLZLL
    : END_BUILTINS;

  gcc_assert (code != END_BUILTINS);

  tree result = call_builtin_fn (callexp, code, 1, arg);

  /* Handle int -> long conversions.  */
  if (TREE_TYPE (result) != type)
    result = fold_convert (type, result);

  result = fold_build2 (MINUS_EXPR, type,
			build_integer_cst (argsize - 1, type), result);
  return fold_convert (TREE_TYPE (callexp), result);
}

/* Expand a front-end intrinsic call to INTRINSIC, which is either a call to
   bt(), btc(), btr(), or bts().  These intrinsics expect to take two arguments,
   the signature to which is:

	int bt (size_t* ptr, size_t bitnum);

   All intrinsics test if a bit is set and return the result of that condition.
   Variants of `bt' will then update that bit. `btc' compliments the bit, `bts'
   sets the bit, and `btr' resets the bit.  The original call expression is
   held in CALLEXP.  */

static tree
expand_intrinsic_bt (intrinsic_code intrinsic, tree callexp)
{
  tree ptr = CALL_EXPR_ARG (callexp, 0);
  tree bitnum = CALL_EXPR_ARG (callexp, 1);
  tree type = TREE_TYPE (TREE_TYPE (ptr));

  /* size_t bitsize = sizeof(*ptr) * BITS_PER_UNIT;  */
  tree bitsize = fold_convert (type, TYPE_SIZE (type));

  /* ptr[bitnum / bitsize]  */
  ptr = build_array_index (ptr, fold_build2 (TRUNC_DIV_EXPR, type,
					     bitnum, bitsize));
  ptr = indirect_ref (type, ptr);

  /* mask = 1 << (bitnum % bitsize);  */
  bitnum = fold_build2 (TRUNC_MOD_EXPR, type, bitnum, bitsize);
  bitnum = fold_build2 (LSHIFT_EXPR, type, size_one_node, bitnum);

  /* cond = ptr[bitnum / size] & mask;  */
  tree cond = fold_build2 (BIT_AND_EXPR, type, ptr, bitnum);

  /* cond ? -1 : 0;  */
  cond = build_condition (TREE_TYPE (callexp), d_truthvalue_conversion (cond),
			 integer_minus_one_node, integer_zero_node);

  /* Update the bit as needed, only testing the bit for bt().  */
  if (intrinsic == INTRINSIC_BT)
    return cond;

  tree_code code = (intrinsic == INTRINSIC_BTC) ? BIT_XOR_EXPR
    : (intrinsic == INTRINSIC_BTR) ? BIT_AND_EXPR
    : (intrinsic == INTRINSIC_BTS) ? BIT_IOR_EXPR
    : ERROR_MARK;
  gcc_assert (code != ERROR_MARK);

  /* ptr[bitnum / size] op= mask;  */
  if (intrinsic == INTRINSIC_BTR)
    bitnum = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (bitnum), bitnum);

  ptr = modify_expr (ptr, fold_build2 (code, TREE_TYPE (ptr), ptr, bitnum));

  /* Store the condition result in a temporary, and return expressions in
     correct order of evaluation.  */
  tree tmp = build_local_temp (TREE_TYPE (callexp));
  cond = modify_expr (tmp, cond);

  return compound_expr (cond, compound_expr (ptr, tmp));
}

/* Expand a front-end intrinsic call to bswap().  This takes one argument, the
   signature to which can be either:

	int bswap (uint arg);
	int bswap (ulong arg);

   This swaps all bytes in an N byte type end-to-end.  The original call
   expression is held in CALLEXP.  */

static tree
expand_intrinsic_bswap (tree callexp)
{
  tree arg = CALL_EXPR_ARG (callexp, 0);
  int argsize = TYPE_PRECISION (TREE_TYPE (arg));

  /* Which variant of __builtin_bswap* should we call?  */
  built_in_function code = (argsize == 32) ? BUILT_IN_BSWAP32
    : (argsize == 64) ? BUILT_IN_BSWAP64
    : END_BUILTINS;

  gcc_assert (code != END_BUILTINS);

  return call_builtin_fn (callexp, code, 1, arg);
}

/* Expand a front-end intrinsic call to popcnt().  This takes one argument, the
   signature to which can be either:

	int popcnt (uint arg);
	int popcnt (ulong arg);

   Calculates the number of set bits in an integer.  The original call
   expression is held in CALLEXP.  */

static tree
expand_intrinsic_popcnt (tree callexp)
{
  tree arg = CALL_EXPR_ARG (callexp, 0);
  int argsize = TYPE_PRECISION (TREE_TYPE (arg));

  /* Which variant of __builtin_popcount* should we call?  */
  built_in_function code = (argsize <= INT_TYPE_SIZE) ? BUILT_IN_POPCOUNT
    : (argsize <= LONG_TYPE_SIZE) ? BUILT_IN_POPCOUNTL
    : (argsize <= LONG_LONG_TYPE_SIZE) ? BUILT_IN_POPCOUNTLL
    : END_BUILTINS;

  gcc_assert (code != END_BUILTINS);

  return call_builtin_fn (callexp, code, 1, arg);
}

/* Expand a front-end intrinsic call to INTRINSIC, which is either a call to
   sqrt(), sqrtf(), sqrtl().  These intrinsics expect to take one argument,
   the signature to which can be either:

	float sqrt (float arg);
	double sqrt (double arg);
	real sqrt (real arg);

   This computes the square root of the given argument.  The original call
   expression is held in CALLEXP.  */

static tree
expand_intrinsic_sqrt (intrinsic_code intrinsic, tree callexp)
{
  tree arg = CALL_EXPR_ARG (callexp, 0);

  /* Which variant of __builtin_sqrt* should we call?  */
  built_in_function code = (intrinsic == INTRINSIC_SQRT) ? BUILT_IN_SQRT
    : (intrinsic == INTRINSIC_SQRTF) ? BUILT_IN_SQRTF
    : (intrinsic == INTRINSIC_SQRTL) ? BUILT_IN_SQRTL
    : END_BUILTINS;

  gcc_assert (code != END_BUILTINS);
  return call_builtin_fn (callexp, code, 1, arg);
}

/* Expand a front-end intrinsic call to copysign().  This takes two arguments,
   the signature to which can be either:

	float copysign (T to, float from);
	double copysign (T to, double from);
	real copysign (T to, real from);

   This computes a value composed of TO with the sign bit of FROM.  The original
   call expression is held in CALLEXP.  */

static tree
expand_intrinsic_copysign (tree callexp)
{
  tree to = CALL_EXPR_ARG (callexp, 0);
  tree from = CALL_EXPR_ARG (callexp, 1);
  tree type = TREE_TYPE (to);

  /* Convert parameters to the same type.  Prefer the first parameter unless it
     is an integral type.  */
  if (INTEGRAL_TYPE_P (type))
    {
      to = fold_convert (TREE_TYPE (from), to);
      type = TREE_TYPE (to);
    }
  else
    from = fold_convert (type, from);

  /* Which variant of __builtin_copysign* should we call?  */
  built_in_function code = (type == float_type_node) ? BUILT_IN_COPYSIGNF
    : (type == double_type_node) ? BUILT_IN_COPYSIGN
    : (type == long_double_type_node) ? BUILT_IN_COPYSIGNL
    : END_BUILTINS;

  gcc_assert (code != END_BUILTINS);

  return call_builtin_fn (callexp, code, 2, to, from);
}

/* Expand a front-end intrinsic call to pow().  This takes two arguments, the
   signature to which can be either:

	float pow (float base, T exponent);
	double pow (double base, T exponent);
	real pow (real base, T exponent);

   This computes the value of BASE raised to the power of EXPONENT.
   The original call expression is held in CALLEXP.  */

static tree
expand_intrinsic_pow (tree callexp)
{
  tree base = CALL_EXPR_ARG (callexp, 0);
  tree exponent = CALL_EXPR_ARG (callexp, 1);
  tree exptype = TREE_TYPE (exponent);

  /* Which variant of __builtin_pow* should we call?  */
  built_in_function code = SCALAR_FLOAT_TYPE_P (exptype) ? BUILT_IN_POW
    : INTEGRAL_TYPE_P (exptype) ? BUILT_IN_POWI
    : END_BUILTINS;
  gcc_assert (code != END_BUILTINS);

  tree builtin = mathfn_built_in (TREE_TYPE (base), code);
  gcc_assert (builtin != NULL_TREE);

  return call_builtin_fn (callexp, DECL_FUNCTION_CODE (builtin), 2,
			  base, exponent);
}

/* Expand a front-end intrinsic call to toPrec().  This takes one argument, the
   signature to which can be either:

	T toPrec(T)(float f);
	T toPrec(T)(double f);
	T toPrec(T)(real f);

    This rounds the argument F to the precision of the specified floating
    point type T.  The original call expression is held in CALLEXP.  */

static tree
expand_intrinsic_toprec (tree callexp)
{
  tree f = CALL_EXPR_ARG (callexp, 0);
  tree type = TREE_TYPE (callexp);

  return convert (type, f);
}

/* Expand a front-end intrinsic call to va_arg().  This takes either one or two
   arguments, the signature to which can be either:

	T va_arg(T) (ref va_list ap);
	void va_arg(T) (va_list ap, ref T parmn);

   This retrieves the next variadic parameter that is type T from the given
   va_list.  If also given, store the value into parmn, otherwise return it.
   The original call expression is held in CALLEXP.  */

static tree
expand_intrinsic_vaarg (tree callexp)
{
  tree ap = CALL_EXPR_ARG (callexp, 0);
  tree parmn = NULL_TREE;
  tree type;

  STRIP_NOPS (ap);

  if (call_expr_nargs (callexp) == 1)
    type = TREE_TYPE (callexp);
  else
    {
      parmn = CALL_EXPR_ARG (callexp, 1);
      STRIP_NOPS (parmn);

      /* The `ref' argument to va_arg is either an address or reference,
	 get the value of it.  */
      if (TREE_CODE (parmn) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (parmn)))
	parmn = build_deref (parmn);
      else
	{
	  gcc_assert (TREE_CODE (parmn) == ADDR_EXPR);
	  parmn = TREE_OPERAND (parmn, 0);
	}

      type = TREE_TYPE (parmn);
    }

  /* (T) VA_ARG_EXP<ap>;  */
  tree exp = build1 (VA_ARG_EXPR, type, ap);

  /* parmn = (T) VA_ARG_EXP<ap>;  */
  if (parmn != NULL_TREE)
    exp = modify_expr (parmn, exp);

  return exp;
}

/* Expand a front-end intrinsic call to va_start(), which takes two arguments,
   the signature to which is:

	void va_start(T) (out va_list ap, ref T parmn);

   This initializes the va_list type, where parmn should be the last named
   parameter.  The original call expression is held in CALLEXP.  */

static tree
expand_intrinsic_vastart (tree callexp)
{
  tree ap = CALL_EXPR_ARG (callexp, 0);
  tree parmn = CALL_EXPR_ARG (callexp, 1);

  STRIP_NOPS (ap);
  STRIP_NOPS (parmn);

  /* The va_list argument should already have its address taken.  The second
     argument, however, is inout and that needs to be fixed to prevent a
     warning.  Could be casting, so need to check type too?  */
  gcc_assert (TREE_CODE (ap) == ADDR_EXPR
	      || (TREE_CODE (ap) == PARM_DECL
		  && POINTER_TYPE_P (TREE_TYPE (ap))));

  /* Assuming nobody tries to change the return type.  */
  if (TREE_CODE (parmn) != PARM_DECL)
    {
      gcc_assert (TREE_CODE (parmn) == ADDR_EXPR);
      parmn = TREE_OPERAND (parmn, 0);
    }

  return call_builtin_fn (callexp, BUILT_IN_VA_START, 2, ap, parmn);
}

/* Expand a front-end instrinsic call to INTRINSIC, which is either a call to
   adds(), addu(), subs(), subu(), negs(), muls(), or mulu().  These intrinsics
   expect to take two or three arguments, the signature to which can be either:

	int adds (int x, int y, ref bool overflow);
	long adds (long x, long y, ref bool overflow);
	int negs (int x, ref bool overflow);
	long negs (long x, ref bool overflow);

   This performs an operation on two signed or unsigned integers, checking for
   overflow.  The overflow is sticky, meaning that a sequence of operations
   can be done and overflow need only be checked at the end.  The original call
   expression is held in CALLEXP.  */

static tree
expand_intrinsic_checkedint (intrinsic_code intrinsic, tree callexp)
{
  tree type = TREE_TYPE (callexp);
  tree x;
  tree y;
  tree overflow;

  /* The negs() intrinsic gets turned into SUB_OVERFLOW (0, y).  */
  if (intrinsic == INTRINSIC_NEGS)
    {
      x = fold_convert (type, integer_zero_node);
      y = CALL_EXPR_ARG (callexp, 0);
      overflow = CALL_EXPR_ARG (callexp, 1);
    }
  else
    {
      x = CALL_EXPR_ARG (callexp, 0);
      y = CALL_EXPR_ARG (callexp, 1);
      overflow = CALL_EXPR_ARG (callexp, 2);
    }

  /* Which variant of *_OVERFLOW should we generate?  */
  internal_fn icode = (intrinsic == INTRINSIC_ADDS) ? IFN_ADD_OVERFLOW
    : (intrinsic == INTRINSIC_SUBS) ? IFN_SUB_OVERFLOW
    : (intrinsic == INTRINSIC_MULS) ? IFN_MUL_OVERFLOW
    : (intrinsic == INTRINSIC_NEGS) ? IFN_SUB_OVERFLOW
    : IFN_LAST;
  gcc_assert (icode != IFN_LAST);

  tree result
    = build_call_expr_internal_loc (EXPR_LOCATION (callexp), icode,
				    build_complex_type (type), 2, x, y);

  STRIP_NOPS (overflow);
  overflow = build_deref (overflow);

  /* Assign returned result to overflow parameter, however if overflow is
     already true, maintain its value.  */
  type = TREE_TYPE (overflow);
  result = save_expr (result);

  tree exp = fold_build2 (BIT_IOR_EXPR, type, overflow,
			  fold_convert (type, imaginary_part (result)));
  exp = modify_expr (overflow, exp);

  /* Return the value of result.  */
  return compound_expr (exp, real_part (result));
}

/* Expand a front-end instrinsic call to volatileLoad().  This takes one
   argument, the signature to which can be either:

	ubyte volatileLoad (ubyte* ptr);
	ushort volatileLoad (ushort* ptr);
	uint volatileLoad (uint* ptr);
	ulong volatileLoad (ulong* ptr);

   This reads a value from the memory location indicated by ptr.  Calls to
   them are be guaranteed to not be removed (such as during DCE) or reordered
   in the same thread.  The original call expression is held in CALLEXP.  */

static tree
expand_volatile_load (tree callexp)
{
  tree ptr = CALL_EXPR_ARG (callexp, 0);
  tree ptrtype = TREE_TYPE (ptr);
  gcc_assert (POINTER_TYPE_P (ptrtype));

  /* (T) *(volatile T *) ptr;  */
  tree type = build_qualified_type (TREE_TYPE (ptrtype), TYPE_QUAL_VOLATILE);
  tree result = indirect_ref (type, ptr);
  TREE_THIS_VOLATILE (result) = 1;

  return result;
}

/* Expand a front-end instrinsic call to volatileStore().  This takes two
   arguments, the signature to which can be either:

	void volatileStore (ubyte* ptr, ubyte value);
	void volatileStore (ushort* ptr, ushort value);
	void volatileStore (uint* ptr, uint value);
	void volatileStore (ulong* ptr, ulong value);

   This writes a value to the memory location indicated by ptr.  Calls to
   them are be guaranteed to not be removed (such as during DCE) or reordered
   in the same thread.  The original call expression is held in CALLEXP.  */

static tree
expand_volatile_store (tree callexp)
{
  tree ptr = CALL_EXPR_ARG (callexp, 0);
  tree ptrtype = TREE_TYPE (ptr);
  gcc_assert (POINTER_TYPE_P (ptrtype));

  /* (T) *(volatile T *) ptr;  */
  tree type = build_qualified_type (TREE_TYPE (ptrtype), TYPE_QUAL_VOLATILE);
  tree result = indirect_ref (type, ptr);
  TREE_THIS_VOLATILE (result) = 1;

  /* (*(volatile T *) ptr) = value;  */
  tree value = CALL_EXPR_ARG (callexp, 1);
  return modify_expr (result, value);
}

/* If CALLEXP is for an intrinsic , expand and return inlined compiler
   generated instructions.  Most map directly to GCC builtins, others
   require a little extra work around them.  */

tree
maybe_expand_intrinsic (tree callexp)
{
  tree callee = CALL_EXPR_FN (callexp);

  if (TREE_CODE (callee) == ADDR_EXPR)
    callee = TREE_OPERAND (callee, 0);

  if (TREE_CODE (callee) != FUNCTION_DECL)
    return callexp;

  /* Don't expand CTFE-only intrinsics outside of semantic processing.  */
  if (DECL_BUILT_IN_CTFE (callee) && !doing_semantic_analysis_p)
    return callexp;

  intrinsic_code intrinsic = DECL_INTRINSIC_CODE (callee);
  built_in_function code;

  switch (intrinsic)
    {
    case INTRINSIC_NONE:
      return callexp;

    case INTRINSIC_BSF:
      return expand_intrinsic_bsf (callexp);

    case INTRINSIC_BSR:
      return expand_intrinsic_bsr (callexp);

    case INTRINSIC_BT:
    case INTRINSIC_BTC:
    case INTRINSIC_BTR:
    case INTRINSIC_BTS:
      return expand_intrinsic_bt (intrinsic, callexp);

    case INTRINSIC_BSWAP:
      return expand_intrinsic_bswap (callexp);

    case INTRINSIC_POPCNT:
      return expand_intrinsic_popcnt (callexp);

    case INTRINSIC_COS:
      return call_builtin_fn (callexp, BUILT_IN_COSL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_SIN:
      return call_builtin_fn (callexp, BUILT_IN_SINL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_RNDTOL:
      /* Not sure if llroundl stands as a good replacement for the
	 expected behavior of rndtol.  */
      return call_builtin_fn (callexp, BUILT_IN_LLROUNDL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_SQRT:
    case INTRINSIC_SQRTF:
    case INTRINSIC_SQRTL:
      return expand_intrinsic_sqrt (intrinsic, callexp);

    case INTRINSIC_LDEXP:
      return call_builtin_fn (callexp, BUILT_IN_LDEXPL, 2,
			      CALL_EXPR_ARG (callexp, 0),
			      CALL_EXPR_ARG (callexp, 1));

    case INTRINSIC_FABS:
      return call_builtin_fn (callexp, BUILT_IN_FABSL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_RINT:
      return call_builtin_fn (callexp, BUILT_IN_RINTL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_TAN:
      return call_builtin_fn (callexp, BUILT_IN_TANL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_ISNAN:
      return call_builtin_fn (callexp, BUILT_IN_ISNAN, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_ISINFINITY:
      return call_builtin_fn (callexp, BUILT_IN_ISINF, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_ISFINITE:
      return call_builtin_fn (callexp, BUILT_IN_ISFINITE, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_EXP:
      return call_builtin_fn (callexp, BUILT_IN_EXPL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_EXPM1:
      return call_builtin_fn (callexp, BUILT_IN_EXPM1L, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_EXP2:
      return call_builtin_fn (callexp, BUILT_IN_EXP2L, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_LOG:
      return call_builtin_fn (callexp, BUILT_IN_LOGL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_LOG2:
      return call_builtin_fn (callexp, BUILT_IN_LOG2L, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_LOG10:
      return call_builtin_fn (callexp, BUILT_IN_LOG10L, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_ROUND:
      return call_builtin_fn (callexp, BUILT_IN_ROUNDL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_FLOORF:
    case INTRINSIC_FLOOR:
    case INTRINSIC_FLOORL:
      code = (intrinsic == INTRINSIC_FLOOR) ? BUILT_IN_FLOOR
	: (intrinsic == INTRINSIC_FLOORF) ? BUILT_IN_FLOORF
	: BUILT_IN_FLOORL;
      return call_builtin_fn (callexp, code, 1, CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_CEILF:
    case INTRINSIC_CEIL:
    case INTRINSIC_CEILL:
      code = (intrinsic == INTRINSIC_CEIL) ? BUILT_IN_CEIL
	: (intrinsic == INTRINSIC_CEILF) ? BUILT_IN_CEILF
	: BUILT_IN_CEILL;
      return call_builtin_fn (callexp, code, 1, CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_TRUNC:
      return call_builtin_fn (callexp, BUILT_IN_TRUNCL, 1,
			      CALL_EXPR_ARG (callexp, 0));

    case INTRINSIC_FMIN:
      return call_builtin_fn (callexp, BUILT_IN_FMINL, 2,
			      CALL_EXPR_ARG (callexp, 0),
			      CALL_EXPR_ARG (callexp, 1));

    case INTRINSIC_FMAX:
      return call_builtin_fn (callexp, BUILT_IN_FMAXL, 2,
			      CALL_EXPR_ARG (callexp, 0),
			      CALL_EXPR_ARG (callexp, 1));

    case INTRINSIC_COPYSIGN:
      return expand_intrinsic_copysign (callexp);

    case INTRINSIC_POW:
      return expand_intrinsic_pow (callexp);

    case INTRINSIC_FMA:
      return call_builtin_fn (callexp, BUILT_IN_FMAL, 3,
			      CALL_EXPR_ARG (callexp, 0),
			      CALL_EXPR_ARG (callexp, 1),
			      CALL_EXPR_ARG (callexp, 2));

    case INTRINSIC_TOPREC:
      return expand_intrinsic_toprec (callexp);

    case INTRINSIC_VA_ARG:
    case INTRINSIC_C_VA_ARG:
      return expand_intrinsic_vaarg (callexp);

    case INTRINSIC_VASTART:
      return expand_intrinsic_vastart (callexp);

    case INTRINSIC_ADDS:
    case INTRINSIC_SUBS:
    case INTRINSIC_MULS:
    case INTRINSIC_NEGS:
      return expand_intrinsic_checkedint (intrinsic, callexp);

    case INTRINSIC_VLOAD:
      return expand_volatile_load (callexp);

    case INTRINSIC_VSTORE:
      return expand_volatile_store (callexp);

    default:
      gcc_unreachable ();
    }
}