Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
/* Subroutines for manipulating rtx's in semantically interesting ways.
   Copyright (C) 1987-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "tm_p.h"
#include "expmed.h"
#include "profile-count.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "stor-layout.h"
#include "langhooks.h"
#include "except.h"
#include "dojump.h"
#include "explow.h"
#include "expr.h"
#include "stringpool.h"
#include "common/common-target.h"
#include "output.h"

static rtx break_out_memory_refs (rtx);
static void anti_adjust_stack_and_probe_stack_clash (rtx);


/* Truncate and perhaps sign-extend C as appropriate for MODE.  */

HOST_WIDE_INT
trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
{
  /* Not scalar_int_mode because we also allow pointer bound modes.  */
  scalar_mode smode = as_a <scalar_mode> (mode);
  int width = GET_MODE_PRECISION (smode);

  /* You want to truncate to a _what_?  */
  gcc_assert (SCALAR_INT_MODE_P (mode));

  /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
  if (smode == BImode)
    return c & 1 ? STORE_FLAG_VALUE : 0;

  /* Sign-extend for the requested mode.  */

  if (width < HOST_BITS_PER_WIDE_INT)
    {
      HOST_WIDE_INT sign = 1;
      sign <<= width - 1;
      c &= (sign << 1) - 1;
      c ^= sign;
      c -= sign;
    }

  return c;
}

/* Likewise for polynomial values, using the sign-extended representation
   for each individual coefficient.  */

poly_int64
trunc_int_for_mode (poly_int64 x, machine_mode mode)
{
  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
    x.coeffs[i] = trunc_int_for_mode (x.coeffs[i], mode);
  return x;
}

/* Return an rtx for the sum of X and the integer C, given that X has
   mode MODE.  INPLACE is true if X can be modified inplace or false
   if it must be treated as immutable.  */

rtx
plus_constant (machine_mode mode, rtx x, poly_int64 c, bool inplace)
{
  RTX_CODE code;
  rtx y;
  rtx tem;
  int all_constant = 0;

  gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);

  if (known_eq (c, 0))
    return x;

 restart:

  code = GET_CODE (x);
  y = x;

  switch (code)
    {
    CASE_CONST_SCALAR_INT:
      return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
    case MEM:
      /* If this is a reference to the constant pool, try replacing it with
	 a reference to a new constant.  If the resulting address isn't
	 valid, don't return it because we have no way to validize it.  */
      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
	{
	  rtx cst = get_pool_constant (XEXP (x, 0));

	  if (GET_CODE (cst) == CONST_VECTOR
	      && GET_MODE_INNER (GET_MODE (cst)) == mode)
	    {
	      cst = gen_lowpart (mode, cst);
	      gcc_assert (cst);
	    }
	  else if (GET_MODE (cst) == VOIDmode
		   && get_pool_mode (XEXP (x, 0)) != mode)
	    break;
	  if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
	    {
	      tem = plus_constant (mode, cst, c);
	      tem = force_const_mem (GET_MODE (x), tem);
	      /* Targets may disallow some constants in the constant pool, thus
		 force_const_mem may return NULL_RTX.  */
	      if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
		return tem;
	    }
	}
      break;

    case CONST:
      /* If adding to something entirely constant, set a flag
	 so that we can add a CONST around the result.  */
      if (inplace && shared_const_p (x))
	inplace = false;
      x = XEXP (x, 0);
      all_constant = 1;
      goto restart;

    case SYMBOL_REF:
    case LABEL_REF:
      all_constant = 1;
      break;

    case PLUS:
      /* The interesting case is adding the integer to a sum.  Look
	 for constant term in the sum and combine with C.  For an
	 integer constant term or a constant term that is not an
	 explicit integer, we combine or group them together anyway.

	 We may not immediately return from the recursive call here, lest
	 all_constant gets lost.  */

      if (CONSTANT_P (XEXP (x, 1)))
	{
	  rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
	  if (term == const0_rtx)
	    x = XEXP (x, 0);
	  else if (inplace)
	    XEXP (x, 1) = term;
	  else
	    x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
	  c = 0;
	}
      else if (rtx *const_loc = find_constant_term_loc (&y))
	{
	  if (!inplace)
	    {
	      /* We need to be careful since X may be shared and we can't
		 modify it in place.  */
	      x = copy_rtx (x);
	      const_loc = find_constant_term_loc (&x);
	    }
	  *const_loc = plus_constant (mode, *const_loc, c, true);
	  c = 0;
	}
      break;

    default:
      if (CONST_POLY_INT_P (x))
	return immed_wide_int_const (const_poly_int_value (x) + c, mode);
      break;
    }

  if (maybe_ne (c, 0))
    x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));

  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
    return x;
  else if (all_constant)
    return gen_rtx_CONST (mode, x);
  else
    return x;
}

/* If X is a sum, return a new sum like X but lacking any constant terms.
   Add all the removed constant terms into *CONSTPTR.
   X itself is not altered.  The result != X if and only if
   it is not isomorphic to X.  */

rtx
eliminate_constant_term (rtx x, rtx *constptr)
{
  rtx x0, x1;
  rtx tem;

  if (GET_CODE (x) != PLUS)
    return x;

  /* First handle constants appearing at this level explicitly.  */
  if (CONST_INT_P (XEXP (x, 1))
      && (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
					   XEXP (x, 1))) != 0
      && CONST_INT_P (tem))
    {
      *constptr = tem;
      return eliminate_constant_term (XEXP (x, 0), constptr);
    }

  tem = const0_rtx;
  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
      && (tem = simplify_binary_operation (PLUS, GET_MODE (x),
					   *constptr, tem)) != 0
      && CONST_INT_P (tem))
    {
      *constptr = tem;
      return gen_rtx_PLUS (GET_MODE (x), x0, x1);
    }

  return x;
}


/* Return a copy of X in which all memory references
   and all constants that involve symbol refs
   have been replaced with new temporary registers.
   Also emit code to load the memory locations and constants
   into those registers.

   If X contains no such constants or memory references,
   X itself (not a copy) is returned.

   If a constant is found in the address that is not a legitimate constant
   in an insn, it is left alone in the hope that it might be valid in the
   address.

   X may contain no arithmetic except addition, subtraction and multiplication.
   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */

static rtx
break_out_memory_refs (rtx x)
{
  if (MEM_P (x)
      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
	  && GET_MODE (x) != VOIDmode))
    x = force_reg (GET_MODE (x), x);
  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
	   || GET_CODE (x) == MULT)
    {
      rtx op0 = break_out_memory_refs (XEXP (x, 0));
      rtx op1 = break_out_memory_refs (XEXP (x, 1));

      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
    }

  return x;
}

/* Given X, a memory address in address space AS' pointer mode, convert it to
   an address in the address space's address mode, or vice versa (TO_MODE says
   which way).  We take advantage of the fact that pointers are not allowed to
   overflow by commuting arithmetic operations over conversions so that address
   arithmetic insns can be used. IN_CONST is true if this conversion is inside
   a CONST. NO_EMIT is true if no insns should be emitted, and instead
   it should return NULL if it can't be simplified without emitting insns.  */

rtx
convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
				     rtx x, addr_space_t as ATTRIBUTE_UNUSED,
				     bool in_const ATTRIBUTE_UNUSED,
				     bool no_emit ATTRIBUTE_UNUSED)
{
#ifndef POINTERS_EXTEND_UNSIGNED
  gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
  return x;
#else /* defined(POINTERS_EXTEND_UNSIGNED) */
  scalar_int_mode pointer_mode, address_mode, from_mode;
  rtx temp;
  enum rtx_code code;

  /* If X already has the right mode, just return it.  */
  if (GET_MODE (x) == to_mode)
    return x;

  pointer_mode = targetm.addr_space.pointer_mode (as);
  address_mode = targetm.addr_space.address_mode (as);
  from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;

  /* Here we handle some special cases.  If none of them apply, fall through
     to the default case.  */
  switch (GET_CODE (x))
    {
    CASE_CONST_SCALAR_INT:
      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
	code = TRUNCATE;
      else if (POINTERS_EXTEND_UNSIGNED < 0)
	break;
      else if (POINTERS_EXTEND_UNSIGNED > 0)
	code = ZERO_EXTEND;
      else
	code = SIGN_EXTEND;
      temp = simplify_unary_operation (code, to_mode, x, from_mode);
      if (temp)
	return temp;
      break;

    case SUBREG:
      if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
	  && GET_MODE (SUBREG_REG (x)) == to_mode)
	return SUBREG_REG (x);
      break;

    case LABEL_REF:
      temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
      return temp;

    case SYMBOL_REF:
      temp = shallow_copy_rtx (x);
      PUT_MODE (temp, to_mode);
      return temp;

    case CONST:
      temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
						  true, no_emit);
      return temp ? gen_rtx_CONST (to_mode, temp) : temp;

    case PLUS:
    case MULT:
      /* For addition we can safely permute the conversion and addition
	 operation if one operand is a constant and converting the constant
	 does not change it or if one operand is a constant and we are
	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
	 We can always safely permute them if we are making the address
	 narrower. Inside a CONST RTL, this is safe for both pointers
	 zero or sign extended as pointers cannot wrap. */
      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
	  || (GET_CODE (x) == PLUS
	      && CONST_INT_P (XEXP (x, 1))
	      && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
		  || XEXP (x, 1) == convert_memory_address_addr_space_1
				     (to_mode, XEXP (x, 1), as, in_const,
				      no_emit)
                  || POINTERS_EXTEND_UNSIGNED < 0)))
	{
	  temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
						      as, in_const, no_emit);
	  return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
					 temp, XEXP (x, 1))
		       : temp);
	}
      break;

    default:
      break;
    }

  if (no_emit)
    return NULL_RTX;

  return convert_modes (to_mode, from_mode,
			x, POINTERS_EXTEND_UNSIGNED);
#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
}

/* Given X, a memory address in address space AS' pointer mode, convert it to
   an address in the address space's address mode, or vice versa (TO_MODE says
   which way).  We take advantage of the fact that pointers are not allowed to
   overflow by commuting arithmetic operations over conversions so that address
   arithmetic insns can be used.  */

rtx
convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
				   addr_space_t as)
{
  return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
}


/* Return something equivalent to X but valid as a memory address for something
   of mode MODE in the named address space AS.  When X is not itself valid,
   this works by copying X or subexpressions of it into registers.  */

rtx
memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
{
  rtx oldx = x;
  scalar_int_mode address_mode = targetm.addr_space.address_mode (as);

  x = convert_memory_address_addr_space (address_mode, x, as);

  /* By passing constant addresses through registers
     we get a chance to cse them.  */
  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
    x = force_reg (address_mode, x);

  /* We get better cse by rejecting indirect addressing at this stage.
     Let the combiner create indirect addresses where appropriate.
     For now, generate the code so that the subexpressions useful to share
     are visible.  But not if cse won't be done!  */
  else
    {
      if (! cse_not_expected && !REG_P (x))
	x = break_out_memory_refs (x);

      /* At this point, any valid address is accepted.  */
      if (memory_address_addr_space_p (mode, x, as))
	goto done;

      /* If it was valid before but breaking out memory refs invalidated it,
	 use it the old way.  */
      if (memory_address_addr_space_p (mode, oldx, as))
	{
	  x = oldx;
	  goto done;
	}

      /* Perform machine-dependent transformations on X
	 in certain cases.  This is not necessary since the code
	 below can handle all possible cases, but machine-dependent
	 transformations can make better code.  */
      {
	rtx orig_x = x;
	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
	  goto done;
      }

      /* PLUS and MULT can appear in special ways
	 as the result of attempts to make an address usable for indexing.
	 Usually they are dealt with by calling force_operand, below.
	 But a sum containing constant terms is special
	 if removing them makes the sum a valid address:
	 then we generate that address in a register
	 and index off of it.  We do this because it often makes
	 shorter code, and because the addresses thus generated
	 in registers often become common subexpressions.  */
      if (GET_CODE (x) == PLUS)
	{
	  rtx constant_term = const0_rtx;
	  rtx y = eliminate_constant_term (x, &constant_term);
	  if (constant_term == const0_rtx
	      || ! memory_address_addr_space_p (mode, y, as))
	    x = force_operand (x, NULL_RTX);
	  else
	    {
	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
	      if (! memory_address_addr_space_p (mode, y, as))
		x = force_operand (x, NULL_RTX);
	      else
		x = y;
	    }
	}

      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
	x = force_operand (x, NULL_RTX);

      /* If we have a register that's an invalid address,
	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
      else if (REG_P (x))
	x = copy_to_reg (x);

      /* Last resort: copy the value to a register, since
	 the register is a valid address.  */
      else
	x = force_reg (address_mode, x);
    }

 done:

  gcc_assert (memory_address_addr_space_p (mode, x, as));
  /* If we didn't change the address, we are done.  Otherwise, mark
     a reg as a pointer if we have REG or REG + CONST_INT.  */
  if (oldx == x)
    return x;
  else if (REG_P (x))
    mark_reg_pointer (x, BITS_PER_UNIT);
  else if (GET_CODE (x) == PLUS
	   && REG_P (XEXP (x, 0))
	   && CONST_INT_P (XEXP (x, 1)))
    mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);

  /* OLDX may have been the address on a temporary.  Update the address
     to indicate that X is now used.  */
  update_temp_slot_address (oldx, x);

  return x;
}

/* Convert a mem ref into one with a valid memory address.
   Pass through anything else unchanged.  */

rtx
validize_mem (rtx ref)
{
  if (!MEM_P (ref))
    return ref;
  ref = use_anchored_address (ref);
  if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
				   MEM_ADDR_SPACE (ref)))
    return ref;

  /* Don't alter REF itself, since that is probably a stack slot.  */
  return replace_equiv_address (ref, XEXP (ref, 0));
}

/* If X is a memory reference to a member of an object block, try rewriting
   it to use an anchor instead.  Return the new memory reference on success
   and the old one on failure.  */

rtx
use_anchored_address (rtx x)
{
  rtx base;
  HOST_WIDE_INT offset;
  machine_mode mode;

  if (!flag_section_anchors)
    return x;

  if (!MEM_P (x))
    return x;

  /* Split the address into a base and offset.  */
  base = XEXP (x, 0);
  offset = 0;
  if (GET_CODE (base) == CONST
      && GET_CODE (XEXP (base, 0)) == PLUS
      && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
    {
      offset += INTVAL (XEXP (XEXP (base, 0), 1));
      base = XEXP (XEXP (base, 0), 0);
    }

  /* Check whether BASE is suitable for anchors.  */
  if (GET_CODE (base) != SYMBOL_REF
      || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
      || SYMBOL_REF_ANCHOR_P (base)
      || SYMBOL_REF_BLOCK (base) == NULL
      || !targetm.use_anchors_for_symbol_p (base))
    return x;

  /* Decide where BASE is going to be.  */
  place_block_symbol (base);

  /* Get the anchor we need to use.  */
  offset += SYMBOL_REF_BLOCK_OFFSET (base);
  base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
			     SYMBOL_REF_TLS_MODEL (base));

  /* Work out the offset from the anchor.  */
  offset -= SYMBOL_REF_BLOCK_OFFSET (base);

  /* If we're going to run a CSE pass, force the anchor into a register.
     We will then be able to reuse registers for several accesses, if the
     target costs say that that's worthwhile.  */
  mode = GET_MODE (base);
  if (!cse_not_expected)
    base = force_reg (mode, base);

  return replace_equiv_address (x, plus_constant (mode, base, offset));
}

/* Copy the value or contents of X to a new temp reg and return that reg.  */

rtx
copy_to_reg (rtx x)
{
  rtx temp = gen_reg_rtx (GET_MODE (x));

  /* If not an operand, must be an address with PLUS and MULT so
     do the computation.  */
  if (! general_operand (x, VOIDmode))
    x = force_operand (x, temp);

  if (x != temp)
    emit_move_insn (temp, x);

  return temp;
}

/* Like copy_to_reg but always give the new register mode Pmode
   in case X is a constant.  */

rtx
copy_addr_to_reg (rtx x)
{
  return copy_to_mode_reg (Pmode, x);
}

/* Like copy_to_reg but always give the new register mode MODE
   in case X is a constant.  */

rtx
copy_to_mode_reg (machine_mode mode, rtx x)
{
  rtx temp = gen_reg_rtx (mode);

  /* If not an operand, must be an address with PLUS and MULT so
     do the computation.  */
  if (! general_operand (x, VOIDmode))
    x = force_operand (x, temp);

  gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
  if (x != temp)
    emit_move_insn (temp, x);
  return temp;
}

/* Load X into a register if it is not already one.
   Use mode MODE for the register.
   X should be valid for mode MODE, but it may be a constant which
   is valid for all integer modes; that's why caller must specify MODE.

   The caller must not alter the value in the register we return,
   since we mark it as a "constant" register.  */

rtx
force_reg (machine_mode mode, rtx x)
{
  rtx temp, set;
  rtx_insn *insn;

  if (REG_P (x))
    return x;

  if (general_operand (x, mode))
    {
      temp = gen_reg_rtx (mode);
      insn = emit_move_insn (temp, x);
    }
  else
    {
      temp = force_operand (x, NULL_RTX);
      if (REG_P (temp))
	insn = get_last_insn ();
      else
	{
	  rtx temp2 = gen_reg_rtx (mode);
	  insn = emit_move_insn (temp2, temp);
	  temp = temp2;
	}
    }

  /* Let optimizers know that TEMP's value never changes
     and that X can be substituted for it.  Don't get confused
     if INSN set something else (such as a SUBREG of TEMP).  */
  if (CONSTANT_P (x)
      && (set = single_set (insn)) != 0
      && SET_DEST (set) == temp
      && ! rtx_equal_p (x, SET_SRC (set)))
    set_unique_reg_note (insn, REG_EQUAL, x);

  /* Let optimizers know that TEMP is a pointer, and if so, the
     known alignment of that pointer.  */
  {
    unsigned align = 0;
    if (GET_CODE (x) == SYMBOL_REF)
      {
        align = BITS_PER_UNIT;
	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
      }
    else if (GET_CODE (x) == LABEL_REF)
      align = BITS_PER_UNIT;
    else if (GET_CODE (x) == CONST
	     && GET_CODE (XEXP (x, 0)) == PLUS
	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
      {
	rtx s = XEXP (XEXP (x, 0), 0);
	rtx c = XEXP (XEXP (x, 0), 1);
	unsigned sa, ca;

	sa = BITS_PER_UNIT;
	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));

	if (INTVAL (c) == 0)
	  align = sa;
	else
	  {
	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
	    align = MIN (sa, ca);
	  }
      }

    if (align || (MEM_P (x) && MEM_POINTER (x)))
      mark_reg_pointer (temp, align);
  }

  return temp;
}

/* If X is a memory ref, copy its contents to a new temp reg and return
   that reg.  Otherwise, return X.  */

rtx
force_not_mem (rtx x)
{
  rtx temp;

  if (!MEM_P (x) || GET_MODE (x) == BLKmode)
    return x;

  temp = gen_reg_rtx (GET_MODE (x));

  if (MEM_POINTER (x))
    REG_POINTER (temp) = 1;

  emit_move_insn (temp, x);
  return temp;
}

/* Copy X to TARGET (if it's nonzero and a reg)
   or to a new temp reg and return that reg.
   MODE is the mode to use for X in case it is a constant.  */

rtx
copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
{
  rtx temp;

  if (target && REG_P (target))
    temp = target;
  else
    temp = gen_reg_rtx (mode);

  emit_move_insn (temp, x);
  return temp;
}

/* Return the mode to use to pass or return a scalar of TYPE and MODE.
   PUNSIGNEDP points to the signedness of the type and may be adjusted
   to show what signedness to use on extension operations.

   FOR_RETURN is nonzero if the caller is promoting the return value
   of FNDECL, else it is for promoting args.  */

machine_mode
promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
		       const_tree funtype, int for_return)
{
  /* Called without a type node for a libcall.  */
  if (type == NULL_TREE)
    {
      if (INTEGRAL_MODE_P (mode))
	return targetm.calls.promote_function_mode (NULL_TREE, mode,
						    punsignedp, funtype,
						    for_return);
      else
	return mode;
    }

  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
    case POINTER_TYPE:   case REFERENCE_TYPE:
      return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
						  for_return);

    default:
      return mode;
    }
}
/* Return the mode to use to store a scalar of TYPE and MODE.
   PUNSIGNEDP points to the signedness of the type and may be adjusted
   to show what signedness to use on extension operations.  */

machine_mode
promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
	      int *punsignedp ATTRIBUTE_UNUSED)
{
#ifdef PROMOTE_MODE
  enum tree_code code;
  int unsignedp;
  scalar_mode smode;
#endif

  /* For libcalls this is invoked without TYPE from the backends
     TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
     case.  */
  if (type == NULL_TREE)
    return mode;

  /* FIXME: this is the same logic that was there until GCC 4.4, but we
     probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
     is not defined.  The affected targets are M32C, S390, SPARC.  */
#ifdef PROMOTE_MODE
  code = TREE_CODE (type);
  unsignedp = *punsignedp;

  switch (code)
    {
    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
      /* Values of these types always have scalar mode.  */
      smode = as_a <scalar_mode> (mode);
      PROMOTE_MODE (smode, unsignedp, type);
      *punsignedp = unsignedp;
      return smode;

#ifdef POINTERS_EXTEND_UNSIGNED
    case REFERENCE_TYPE:
    case POINTER_TYPE:
      *punsignedp = POINTERS_EXTEND_UNSIGNED;
      return targetm.addr_space.address_mode
	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
#endif

    default:
      return mode;
    }
#else
  return mode;
#endif
}


/* Use one of promote_mode or promote_function_mode to find the promoted
   mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
   of DECL after promotion.  */

machine_mode
promote_decl_mode (const_tree decl, int *punsignedp)
{
  tree type = TREE_TYPE (decl);
  int unsignedp = TYPE_UNSIGNED (type);
  machine_mode mode = DECL_MODE (decl);
  machine_mode pmode;

  if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
    pmode = promote_function_mode (type, mode, &unsignedp,
                                   TREE_TYPE (current_function_decl), 1);
  else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
    pmode = promote_function_mode (type, mode, &unsignedp,
                                   TREE_TYPE (current_function_decl), 2);
  else
    pmode = promote_mode (type, mode, &unsignedp);

  if (punsignedp)
    *punsignedp = unsignedp;
  return pmode;
}

/* Return the promoted mode for name.  If it is a named SSA_NAME, it
   is the same as promote_decl_mode.  Otherwise, it is the promoted
   mode of a temp decl of same type as the SSA_NAME, if we had created
   one.  */

machine_mode
promote_ssa_mode (const_tree name, int *punsignedp)
{
  gcc_assert (TREE_CODE (name) == SSA_NAME);

  /* Partitions holding parms and results must be promoted as expected
     by function.c.  */
  if (SSA_NAME_VAR (name)
      && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
	  || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
    {
      machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
      if (mode != BLKmode)
	return mode;
    }

  tree type = TREE_TYPE (name);
  int unsignedp = TYPE_UNSIGNED (type);
  machine_mode pmode = promote_mode (type, TYPE_MODE (type), &unsignedp);
  if (punsignedp)
    *punsignedp = unsignedp;

  return pmode;
}



/* Controls the behavior of {anti_,}adjust_stack.  */
static bool suppress_reg_args_size;

/* A helper for adjust_stack and anti_adjust_stack.  */

static void
adjust_stack_1 (rtx adjust, bool anti_p)
{
  rtx temp;
  rtx_insn *insn;

  /* Hereafter anti_p means subtract_p.  */
  if (!STACK_GROWS_DOWNWARD)
    anti_p = !anti_p;

  temp = expand_binop (Pmode,
		       anti_p ? sub_optab : add_optab,
		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
		       OPTAB_LIB_WIDEN);

  if (temp != stack_pointer_rtx)
    insn = emit_move_insn (stack_pointer_rtx, temp);
  else
    {
      insn = get_last_insn ();
      temp = single_set (insn);
      gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
    }

  if (!suppress_reg_args_size)
    add_args_size_note (insn, stack_pointer_delta);
}

/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
   This pops when ADJUST is positive.  ADJUST need not be constant.  */

void
adjust_stack (rtx adjust)
{
  if (adjust == const0_rtx)
    return;

  /* We expect all variable sized adjustments to be multiple of
     PREFERRED_STACK_BOUNDARY.  */
  poly_int64 const_adjust;
  if (poly_int_rtx_p (adjust, &const_adjust))
    stack_pointer_delta -= const_adjust;

  adjust_stack_1 (adjust, false);
}

/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
   This pushes when ADJUST is positive.  ADJUST need not be constant.  */

void
anti_adjust_stack (rtx adjust)
{
  if (adjust == const0_rtx)
    return;

  /* We expect all variable sized adjustments to be multiple of
     PREFERRED_STACK_BOUNDARY.  */
  poly_int64 const_adjust;
  if (poly_int_rtx_p (adjust, &const_adjust))
    stack_pointer_delta += const_adjust;

  adjust_stack_1 (adjust, true);
}

/* Round the size of a block to be pushed up to the boundary required
   by this machine.  SIZE is the desired size, which need not be constant.  */

static rtx
round_push (rtx size)
{
  rtx align_rtx, alignm1_rtx;

  if (!SUPPORTS_STACK_ALIGNMENT
      || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
    {
      int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;

      if (align == 1)
	return size;

      if (CONST_INT_P (size))
	{
	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;

	  if (INTVAL (size) != new_size)
	    size = GEN_INT (new_size);
	  return size;
	}

      align_rtx = GEN_INT (align);
      alignm1_rtx = GEN_INT (align - 1);
    }
  else
    {
      /* If crtl->preferred_stack_boundary might still grow, use
	 virtual_preferred_stack_boundary_rtx instead.  This will be
	 substituted by the right value in vregs pass and optimized
	 during combine.  */
      align_rtx = virtual_preferred_stack_boundary_rtx;
      alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
				   NULL_RTX);
    }

  /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
     but we know it can't.  So add ourselves and then do
     TRUNC_DIV_EXPR.  */
  size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
  size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
			NULL_RTX, 1);
  size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);

  return size;
}

/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
   to a previously-created save area.  If no save area has been allocated,
   this function will allocate one.  If a save area is specified, it
   must be of the proper mode.  */

void
emit_stack_save (enum save_level save_level, rtx *psave)
{
  rtx sa = *psave;
  /* The default is that we use a move insn and save in a Pmode object.  */
  rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
  machine_mode mode = STACK_SAVEAREA_MODE (save_level);

  /* See if this machine has anything special to do for this kind of save.  */
  switch (save_level)
    {
    case SAVE_BLOCK:
      if (targetm.have_save_stack_block ())
	fcn = targetm.gen_save_stack_block;
      break;
    case SAVE_FUNCTION:
      if (targetm.have_save_stack_function ())
	fcn = targetm.gen_save_stack_function;
      break;
    case SAVE_NONLOCAL:
      if (targetm.have_save_stack_nonlocal ())
	fcn = targetm.gen_save_stack_nonlocal;
      break;
    default:
      break;
    }

  /* If there is no save area and we have to allocate one, do so.  Otherwise
     verify the save area is the proper mode.  */

  if (sa == 0)
    {
      if (mode != VOIDmode)
	{
	  if (save_level == SAVE_NONLOCAL)
	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
	  else
	    *psave = sa = gen_reg_rtx (mode);
	}
    }

  do_pending_stack_adjust ();
  if (sa != 0)
    sa = validize_mem (sa);
  emit_insn (fcn (sa, stack_pointer_rtx));
}

/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
   area made by emit_stack_save.  If it is zero, we have nothing to do.  */

void
emit_stack_restore (enum save_level save_level, rtx sa)
{
  /* The default is that we use a move insn.  */
  rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;

  /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
     STACK_POINTER and HARD_FRAME_POINTER.
     If stack_realign_fp, the x86 backend emits a prologue that aligns only
     STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
     aligned variables, which is reflected in ix86_can_eliminate.
     We normally still have the realigned STACK_POINTER that we can use.
     But if there is a stack restore still present at reload, it can trigger 
     mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
     FRAME_POINTER into a hard reg.
     To prevent this situation, we force need_drap if we emit a stack
     restore.  */
  if (SUPPORTS_STACK_ALIGNMENT)
    crtl->need_drap = true;

  /* See if this machine has anything special to do for this kind of save.  */
  switch (save_level)
    {
    case SAVE_BLOCK:
      if (targetm.have_restore_stack_block ())
	fcn = targetm.gen_restore_stack_block;
      break;
    case SAVE_FUNCTION:
      if (targetm.have_restore_stack_function ())
	fcn = targetm.gen_restore_stack_function;
      break;
    case SAVE_NONLOCAL:
      if (targetm.have_restore_stack_nonlocal ())
	fcn = targetm.gen_restore_stack_nonlocal;
      break;
    default:
      break;
    }

  if (sa != 0)
    {
      sa = validize_mem (sa);
      /* These clobbers prevent the scheduler from moving
	 references to variable arrays below the code
	 that deletes (pops) the arrays.  */
      emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
      emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
    }

  discard_pending_stack_adjust ();

  emit_insn (fcn (stack_pointer_rtx, sa));
}

/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
   function.  This should be called whenever we allocate or deallocate
   dynamic stack space.  */

void
update_nonlocal_goto_save_area (void)
{
  tree t_save;
  rtx r_save;

  /* The nonlocal_goto_save_area object is an array of N pointers.  The
     first one is used for the frame pointer save; the rest are sized by
     STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
     of the stack save area slots.  */
  t_save = build4 (ARRAY_REF,
		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
		   cfun->nonlocal_goto_save_area,
		   integer_one_node, NULL_TREE, NULL_TREE);
  r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);

  emit_stack_save (SAVE_NONLOCAL, &r_save);
}

/* Record a new stack level for the current function.  This should be called
   whenever we allocate or deallocate dynamic stack space.  */

void
record_new_stack_level (void)
{
  /* Record the new stack level for nonlocal gotos.  */
  if (cfun->nonlocal_goto_save_area)
    update_nonlocal_goto_save_area ();
 
  /* Record the new stack level for SJLJ exceptions.  */
  if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
    update_sjlj_context ();
}

/* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET.  */

rtx
align_dynamic_address (rtx target, unsigned required_align)
{
  /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
     but we know it can't.  So add ourselves and then do
     TRUNC_DIV_EXPR.  */
  target = expand_binop (Pmode, add_optab, target,
			 gen_int_mode (required_align / BITS_PER_UNIT - 1,
				       Pmode),
			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
  target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
			  gen_int_mode (required_align / BITS_PER_UNIT,
					Pmode),
			  NULL_RTX, 1);
  target = expand_mult (Pmode, target,
			gen_int_mode (required_align / BITS_PER_UNIT,
				      Pmode),
			NULL_RTX, 1);

  return target;
}

/* Return an rtx through *PSIZE, representing the size of an area of memory to
   be dynamically pushed on the stack.

   *PSIZE is an rtx representing the size of the area.

   SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
   parameter may be zero.  If so, a proper value will be extracted
   from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.

   REQUIRED_ALIGN is the alignment (in bits) required for the region
   of memory.

   If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
   the additional size returned.  */
void
get_dynamic_stack_size (rtx *psize, unsigned size_align,
			unsigned required_align,
			HOST_WIDE_INT *pstack_usage_size)
{
  rtx size = *psize;

  /* Ensure the size is in the proper mode.  */
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
    size = convert_to_mode (Pmode, size, 1);

  if (CONST_INT_P (size))
    {
      unsigned HOST_WIDE_INT lsb;

      lsb = INTVAL (size);
      lsb &= -lsb;

      /* Watch out for overflow truncating to "unsigned".  */
      if (lsb > UINT_MAX / BITS_PER_UNIT)
	size_align = 1u << (HOST_BITS_PER_INT - 1);
      else
	size_align = (unsigned)lsb * BITS_PER_UNIT;
    }
  else if (size_align < BITS_PER_UNIT)
    size_align = BITS_PER_UNIT;

  /* We can't attempt to minimize alignment necessary, because we don't
     know the final value of preferred_stack_boundary yet while executing
     this code.  */
  if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
    crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;

  /* We will need to ensure that the address we return is aligned to
     REQUIRED_ALIGN.  At this point in the compilation, we don't always
     know the final value of the STACK_DYNAMIC_OFFSET used in function.c
     (it might depend on the size of the outgoing parameter lists, for
     example), so we must preventively align the value.  We leave space
     in SIZE for the hole that might result from the alignment operation.  */

  unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
  if (known_align == 0)
    known_align = BITS_PER_UNIT;
  if (required_align > known_align)
    {
      unsigned extra = (required_align - known_align) / BITS_PER_UNIT;
      size = plus_constant (Pmode, size, extra);
      size = force_operand (size, NULL_RTX);
      if (size_align > known_align)
	size_align = known_align;

      if (flag_stack_usage_info && pstack_usage_size)
	*pstack_usage_size += extra;
    }

  /* Round the size to a multiple of the required stack alignment.
     Since the stack is presumed to be rounded before this allocation,
     this will maintain the required alignment.

     If the stack grows downward, we could save an insn by subtracting
     SIZE from the stack pointer and then aligning the stack pointer.
     The problem with this is that the stack pointer may be unaligned
     between the execution of the subtraction and alignment insns and
     some machines do not allow this.  Even on those that do, some
     signal handlers malfunction if a signal should occur between those
     insns.  Since this is an extremely rare event, we have no reliable
     way of knowing which systems have this problem.  So we avoid even
     momentarily mis-aligning the stack.  */
  if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
    {
      size = round_push (size);

      if (flag_stack_usage_info && pstack_usage_size)
	{
	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
	  *pstack_usage_size =
	    (*pstack_usage_size + align - 1) / align * align;
	}
    }

  *psize = size;
}

/* Return the number of bytes to "protect" on the stack for -fstack-check.

   "protect" in the context of -fstack-check means how many bytes we
   should always ensure are available on the stack.  More importantly
   this is how many bytes are skipped when probing the stack.

   On some targets we want to reuse the -fstack-check prologue support
   to give a degree of protection against stack clashing style attacks.

   In that scenario we do not want to skip bytes before probing as that
   would render the stack clash protections useless.

   So we never use STACK_CHECK_PROTECT directly.  Instead we indirect though
   this helper which allows us to provide different values for
   -fstack-check and -fstack-clash-protection.  */
HOST_WIDE_INT
get_stack_check_protect (void)
{
  if (flag_stack_clash_protection)
    return 0;
 return STACK_CHECK_PROTECT;
}

/* Return an rtx representing the address of an area of memory dynamically
   pushed on the stack.

   Any required stack pointer alignment is preserved.

   SIZE is an rtx representing the size of the area.

   SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
   parameter may be zero.  If so, a proper value will be extracted
   from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.

   REQUIRED_ALIGN is the alignment (in bits) required for the region
   of memory.

   MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
   no such upper bound is known.

   If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
   stack space allocated by the generated code cannot be added with itself
   in the course of the execution of the function.  It is always safe to
   pass FALSE here and the following criterion is sufficient in order to
   pass TRUE: every path in the CFG that starts at the allocation point and
   loops to it executes the associated deallocation code.  */

rtx
allocate_dynamic_stack_space (rtx size, unsigned size_align,
			      unsigned required_align,
			      HOST_WIDE_INT max_size,
			      bool cannot_accumulate)
{
  HOST_WIDE_INT stack_usage_size = -1;
  rtx_code_label *final_label;
  rtx final_target, target;

  /* If we're asking for zero bytes, it doesn't matter what we point
     to since we can't dereference it.  But return a reasonable
     address anyway.  */
  if (size == const0_rtx)
    return virtual_stack_dynamic_rtx;

  /* Otherwise, show we're calling alloca or equivalent.  */
  cfun->calls_alloca = 1;

  /* If stack usage info is requested, look into the size we are passed.
     We need to do so this early to avoid the obfuscation that may be
     introduced later by the various alignment operations.  */
  if (flag_stack_usage_info)
    {
      if (CONST_INT_P (size))
	stack_usage_size = INTVAL (size);
      else if (REG_P (size))
        {
	  /* Look into the last emitted insn and see if we can deduce
	     something for the register.  */
	  rtx_insn *insn;
	  rtx set, note;
	  insn = get_last_insn ();
	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
	    {
	      if (CONST_INT_P (SET_SRC (set)))
		stack_usage_size = INTVAL (SET_SRC (set));
	      else if ((note = find_reg_equal_equiv_note (insn))
		       && CONST_INT_P (XEXP (note, 0)))
		stack_usage_size = INTVAL (XEXP (note, 0));
	    }
	}

      /* If the size is not constant, try the maximum size.  */
      if (stack_usage_size < 0)
	stack_usage_size = max_size;

      /* If the size is still not constant, we can't say anything.  */
      if (stack_usage_size < 0)
	{
	  current_function_has_unbounded_dynamic_stack_size = 1;
	  stack_usage_size = 0;
	}
    }

  get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);

  target = gen_reg_rtx (Pmode);

  /* The size is supposed to be fully adjusted at this point so record it
     if stack usage info is requested.  */
  if (flag_stack_usage_info)
    {
      current_function_dynamic_stack_size += stack_usage_size;

      /* ??? This is gross but the only safe stance in the absence
	 of stack usage oriented flow analysis.  */
      if (!cannot_accumulate)
	current_function_has_unbounded_dynamic_stack_size = 1;
    }

  do_pending_stack_adjust ();

  final_label = NULL;
  final_target = NULL_RTX;

  /* If we are splitting the stack, we need to ask the backend whether
     there is enough room on the current stack.  If there isn't, or if
     the backend doesn't know how to tell is, then we need to call a
     function to allocate memory in some other way.  This memory will
     be released when we release the current stack segment.  The
     effect is that stack allocation becomes less efficient, but at
     least it doesn't cause a stack overflow.  */
  if (flag_split_stack)
    {
      rtx_code_label *available_label;
      rtx ask, space, func;

      available_label = NULL;

      if (targetm.have_split_stack_space_check ())
	{
	  available_label = gen_label_rtx ();

	  /* This instruction will branch to AVAILABLE_LABEL if there
	     are SIZE bytes available on the stack.  */
	  emit_insn (targetm.gen_split_stack_space_check
		     (size, available_label));
	}

      /* The __morestack_allocate_stack_space function will allocate
	 memory using malloc.  If the alignment of the memory returned
	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
	 make sure we allocate enough space.  */
      if (MALLOC_ABI_ALIGNMENT >= required_align)
	ask = size;
      else
	ask = expand_binop (Pmode, add_optab, size,
			    gen_int_mode (required_align / BITS_PER_UNIT - 1,
					  Pmode),
			    NULL_RTX, 1, OPTAB_LIB_WIDEN);

      func = init_one_libfunc ("__morestack_allocate_stack_space");

      space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
				       ask, Pmode);

      if (available_label == NULL_RTX)
	return space;

      final_target = gen_reg_rtx (Pmode);

      emit_move_insn (final_target, space);

      final_label = gen_label_rtx ();
      emit_jump (final_label);

      emit_label (available_label);
    }

 /* We ought to be called always on the toplevel and stack ought to be aligned
    properly.  */
  gcc_assert (multiple_p (stack_pointer_delta,
			  PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));

  /* If needed, check that we have the required amount of stack.  Take into
     account what has already been checked.  */
  if (STACK_CHECK_MOVING_SP)
    ;
  else if (flag_stack_check == GENERIC_STACK_CHECK)
    probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
		       size);
  else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
    probe_stack_range (get_stack_check_protect (), size);

  /* Don't let anti_adjust_stack emit notes.  */
  suppress_reg_args_size = true;

  /* Perform the required allocation from the stack.  Some systems do
     this differently than simply incrementing/decrementing from the
     stack pointer, such as acquiring the space by calling malloc().  */
  if (targetm.have_allocate_stack ())
    {
      class expand_operand ops[2];
      /* We don't have to check against the predicate for operand 0 since
	 TARGET is known to be a pseudo of the proper mode, which must
	 be valid for the operand.  */
      create_fixed_operand (&ops[0], target);
      create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
      expand_insn (targetm.code_for_allocate_stack, 2, ops);
    }
  else
    {
      poly_int64 saved_stack_pointer_delta;

      if (!STACK_GROWS_DOWNWARD)
	emit_move_insn (target, virtual_stack_dynamic_rtx);

      /* Check stack bounds if necessary.  */
      if (crtl->limit_stack)
	{
	  rtx available;
	  rtx_code_label *space_available = gen_label_rtx ();
	  if (STACK_GROWS_DOWNWARD)
	    available = expand_binop (Pmode, sub_optab,
				      stack_pointer_rtx, stack_limit_rtx,
				      NULL_RTX, 1, OPTAB_WIDEN);
	  else
	    available = expand_binop (Pmode, sub_optab,
				      stack_limit_rtx, stack_pointer_rtx,
				      NULL_RTX, 1, OPTAB_WIDEN);

	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
				   space_available);
	  if (targetm.have_trap ())
	    emit_insn (targetm.gen_trap ());
	  else
	    error ("stack limits not supported on this target");
	  emit_barrier ();
	  emit_label (space_available);
	}

      saved_stack_pointer_delta = stack_pointer_delta;

      if (flag_stack_check && STACK_CHECK_MOVING_SP)
	anti_adjust_stack_and_probe (size, false);
      else if (flag_stack_clash_protection)
	anti_adjust_stack_and_probe_stack_clash (size);
      else
	anti_adjust_stack (size);

      /* Even if size is constant, don't modify stack_pointer_delta.
	 The constant size alloca should preserve
	 crtl->preferred_stack_boundary alignment.  */
      stack_pointer_delta = saved_stack_pointer_delta;

      if (STACK_GROWS_DOWNWARD)
	emit_move_insn (target, virtual_stack_dynamic_rtx);
    }

  suppress_reg_args_size = false;

  /* Finish up the split stack handling.  */
  if (final_label != NULL_RTX)
    {
      gcc_assert (flag_split_stack);
      emit_move_insn (final_target, target);
      emit_label (final_label);
      target = final_target;
    }

  target = align_dynamic_address (target, required_align);

  /* Now that we've committed to a return value, mark its alignment.  */
  mark_reg_pointer (target, required_align);

  /* Record the new stack level.  */
  record_new_stack_level ();

  return target;
}

/* Return an rtx representing the address of an area of memory already
   statically pushed onto the stack in the virtual stack vars area.  (It is
   assumed that the area is allocated in the function prologue.)

   Any required stack pointer alignment is preserved.

   OFFSET is the offset of the area into the virtual stack vars area.

   REQUIRED_ALIGN is the alignment (in bits) required for the region
   of memory.  */

rtx
get_dynamic_stack_base (poly_int64 offset, unsigned required_align)
{
  rtx target;

  if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
    crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;

  target = gen_reg_rtx (Pmode);
  emit_move_insn (target, virtual_stack_vars_rtx);
  target = expand_binop (Pmode, add_optab, target,
			 gen_int_mode (offset, Pmode),
			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
  target = align_dynamic_address (target, required_align);

  /* Now that we've committed to a return value, mark its alignment.  */
  mark_reg_pointer (target, required_align);

  return target;
}

/* A front end may want to override GCC's stack checking by providing a
   run-time routine to call to check the stack, so provide a mechanism for
   calling that routine.  */

static GTY(()) rtx stack_check_libfunc;

void
set_stack_check_libfunc (const char *libfunc_name)
{
  gcc_assert (stack_check_libfunc == NULL_RTX);
  stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
  tree ptype
    = Pmode == ptr_mode
      ? ptr_type_node
      : lang_hooks.types.type_for_mode (Pmode, 1);
  tree ftype
    = build_function_type_list (void_type_node, ptype, NULL_TREE);
  tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
			  get_identifier (libfunc_name), ftype);
  DECL_EXTERNAL (decl) = 1;
  SET_SYMBOL_REF_DECL (stack_check_libfunc, decl);
}

/* Emit one stack probe at ADDRESS, an address within the stack.  */

void
emit_stack_probe (rtx address)
{
  if (targetm.have_probe_stack_address ())
    {
      class expand_operand ops[1];
      insn_code icode = targetm.code_for_probe_stack_address;
      create_address_operand (ops, address);
      maybe_legitimize_operands (icode, 0, 1, ops);
      expand_insn (icode, 1, ops);
    }
  else
    {
      rtx memref = gen_rtx_MEM (word_mode, address);

      MEM_VOLATILE_P (memref) = 1;
      memref = validize_mem (memref);

      /* See if we have an insn to probe the stack.  */
      if (targetm.have_probe_stack ())
	emit_insn (targetm.gen_probe_stack (memref));
      else
	emit_move_insn (memref, const0_rtx);
    }
}

/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
   FIRST is a constant and size is a Pmode RTX.  These are offsets from
   the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
   or subtract them from the stack pointer.  */

#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)

#if STACK_GROWS_DOWNWARD
#define STACK_GROW_OP MINUS
#define STACK_GROW_OPTAB sub_optab
#define STACK_GROW_OFF(off) -(off)
#else
#define STACK_GROW_OP PLUS
#define STACK_GROW_OPTAB add_optab
#define STACK_GROW_OFF(off) (off)
#endif

void
probe_stack_range (HOST_WIDE_INT first, rtx size)
{
  /* First ensure SIZE is Pmode.  */
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
    size = convert_to_mode (Pmode, size, 1);

  /* Next see if we have a function to check the stack.  */
  if (stack_check_libfunc)
    {
      rtx addr = memory_address (Pmode,
				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
					         stack_pointer_rtx,
					         plus_constant (Pmode,
								size, first)));
      emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
			 addr, Pmode);
    }

  /* Next see if we have an insn to check the stack.  */
  else if (targetm.have_check_stack ())
    {
      class expand_operand ops[1];
      rtx addr = memory_address (Pmode,
				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
					         stack_pointer_rtx,
					         plus_constant (Pmode,
								size, first)));
      bool success;
      create_input_operand (&ops[0], addr, Pmode);
      success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
      gcc_assert (success);
    }

  /* Otherwise we have to generate explicit probes.  If we have a constant
     small number of them to generate, that's the easy case.  */
  else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
    {
      HOST_WIDE_INT isize = INTVAL (size), i;
      rtx addr;

      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
	 it exceeds SIZE.  If only one probe is needed, this will not
	 generate any code.  Then probe at FIRST + SIZE.  */
      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
	{
	  addr = memory_address (Pmode,
				 plus_constant (Pmode, stack_pointer_rtx,
				 		STACK_GROW_OFF (first + i)));
	  emit_stack_probe (addr);
	}

      addr = memory_address (Pmode,
			     plus_constant (Pmode, stack_pointer_rtx,
					    STACK_GROW_OFF (first + isize)));
      emit_stack_probe (addr);
    }

  /* In the variable case, do the same as above, but in a loop.  Note that we
     must be extra careful with variables wrapping around because we might be
     at the very top (or the very bottom) of the address space and we have to
     be able to handle this case properly; in particular, we use an equality
     test for the loop condition.  */
  else
    {
      rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
      rtx_code_label *loop_lab = gen_label_rtx ();
      rtx_code_label *end_lab = gen_label_rtx ();

      /* Step 1: round SIZE to the previous multiple of the interval.  */

      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
      rounded_size
	= simplify_gen_binary (AND, Pmode, size,
			       gen_int_mode (-PROBE_INTERVAL, Pmode));
      rounded_size_op = force_operand (rounded_size, NULL_RTX);


      /* Step 2: compute initial and final value of the loop counter.  */

      /* TEST_ADDR = SP + FIRST.  */
      test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
					 	 stack_pointer_rtx,
						 gen_int_mode (first, Pmode)),
				 NULL_RTX);

      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
						 test_addr,
						 rounded_size_op), NULL_RTX);


      /* Step 3: the loop

	 while (TEST_ADDR != LAST_ADDR)
	   {
	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
	     probe at TEST_ADDR
	   }

	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
	 until it is equal to ROUNDED_SIZE.  */

      emit_label (loop_lab);

      /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
      emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
			       end_lab);

      /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
      temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
			   gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
			   1, OPTAB_WIDEN);

      gcc_assert (temp == test_addr);

      /* Probe at TEST_ADDR.  */
      emit_stack_probe (test_addr);

      emit_jump (loop_lab);

      emit_label (end_lab);


      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
	 that SIZE is equal to ROUNDED_SIZE.  */

      /* TEMP = SIZE - ROUNDED_SIZE.  */
      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
      if (temp != const0_rtx)
	{
	  rtx addr;

	  if (CONST_INT_P (temp))
	    {
	      /* Use [base + disp} addressing mode if supported.  */
	      HOST_WIDE_INT offset = INTVAL (temp);
	      addr = memory_address (Pmode,
				     plus_constant (Pmode, last_addr,
						    STACK_GROW_OFF (offset)));
	    }
	  else
	    {
	      /* Manual CSE if the difference is not known at compile-time.  */
	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
	      addr = memory_address (Pmode,
				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
						     last_addr, temp));
	    }

	  emit_stack_probe (addr);
	}
    }

  /* Make sure nothing is scheduled before we are done.  */
  emit_insn (gen_blockage ());
}

/* Compute parameters for stack clash probing a dynamic stack
   allocation of SIZE bytes.

   We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.

   Additionally we conditionally dump the type of probing that will
   be needed given the values computed.  */

void
compute_stack_clash_protection_loop_data (rtx *rounded_size, rtx *last_addr,
					  rtx *residual,
					  HOST_WIDE_INT *probe_interval,
					  rtx size)
{
  /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
  *probe_interval
    = 1 << param_stack_clash_protection_probe_interval;
  *rounded_size = simplify_gen_binary (AND, Pmode, size,
				        GEN_INT (-*probe_interval));

  /* Compute the value of the stack pointer for the last iteration.
     It's just SP + ROUNDED_SIZE.  */
  rtx rounded_size_op = force_operand (*rounded_size, NULL_RTX);
  *last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
					      stack_pointer_rtx,
					      rounded_size_op),
			      NULL_RTX);

  /* Compute any residuals not allocated by the loop above.  Residuals
     are just the ROUNDED_SIZE - SIZE.  */
  *residual = simplify_gen_binary (MINUS, Pmode, size, *rounded_size);

  /* Dump key information to make writing tests easy.  */
  if (dump_file)
    {
      if (*rounded_size == CONST0_RTX (Pmode))
	fprintf (dump_file,
		 "Stack clash skipped dynamic allocation and probing loop.\n");
      else if (CONST_INT_P (*rounded_size)
	       && INTVAL (*rounded_size) <= 4 * *probe_interval)
	fprintf (dump_file,
		 "Stack clash dynamic allocation and probing inline.\n");
      else if (CONST_INT_P (*rounded_size))
	fprintf (dump_file,
		 "Stack clash dynamic allocation and probing in "
		 "rotated loop.\n");
      else
	fprintf (dump_file,
		 "Stack clash dynamic allocation and probing in loop.\n");

      if (*residual != CONST0_RTX (Pmode))
	fprintf (dump_file,
		 "Stack clash dynamic allocation and probing residuals.\n");
      else
	fprintf (dump_file,
		 "Stack clash skipped dynamic allocation and "
		 "probing residuals.\n");
    }
}

/* Emit the start of an allocate/probe loop for stack
   clash protection.

   LOOP_LAB and END_LAB are returned for use when we emit the
   end of the loop.

   LAST addr is the value for SP which stops the loop.  */
void
emit_stack_clash_protection_probe_loop_start (rtx *loop_lab,
					      rtx *end_lab,
					      rtx last_addr,
					      bool rotated)
{
  /* Essentially we want to emit any setup code, the top of loop
     label and the comparison at the top of the loop.  */
  *loop_lab = gen_label_rtx ();
  *end_lab = gen_label_rtx ();

  emit_label (*loop_lab);
  if (!rotated)
    emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
			     Pmode, 1, *end_lab);
}

/* Emit the end of a stack clash probing loop.

   This consists of just the jump back to LOOP_LAB and
   emitting END_LOOP after the loop.  */

void
emit_stack_clash_protection_probe_loop_end (rtx loop_lab, rtx end_loop,
					    rtx last_addr, bool rotated)
{
  if (rotated)
    emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, NE, NULL_RTX,
			     Pmode, 1, loop_lab);
  else
    emit_jump (loop_lab);

  emit_label (end_loop);

}

/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
   while probing it.  This pushes when SIZE is positive.  SIZE need not
   be constant.

   This is subtly different than anti_adjust_stack_and_probe to try and
   prevent stack-clash attacks

     1. It must assume no knowledge of the probing state, any allocation
	must probe.

	Consider the case of a 1 byte alloca in a loop.  If the sum of the
	allocations is large, then this could be used to jump the guard if
	probes were not emitted.

     2. It never skips probes, whereas anti_adjust_stack_and_probe will
	skip probes on the first couple PROBE_INTERVALs on the assumption
	they're done elsewhere.

     3. It only allocates and probes SIZE bytes, it does not need to
	allocate/probe beyond that because this probing style does not
	guarantee signal handling capability if the guard is hit.  */

static void
anti_adjust_stack_and_probe_stack_clash (rtx size)
{
  /* First ensure SIZE is Pmode.  */
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
    size = convert_to_mode (Pmode, size, 1);

  /* We can get here with a constant size on some targets.  */
  rtx rounded_size, last_addr, residual;
  HOST_WIDE_INT probe_interval, probe_range;
  bool target_probe_range_p = false;
  compute_stack_clash_protection_loop_data (&rounded_size, &last_addr,
					    &residual, &probe_interval, size);

  /* Get the back-end specific probe ranges.  */
  probe_range = targetm.stack_clash_protection_alloca_probe_range ();
  target_probe_range_p = probe_range != 0;
  gcc_assert (probe_range >= 0);

  /* If no back-end specific range defined, default to the top of the newly
     allocated range.  */
  if (probe_range == 0)
    probe_range = probe_interval - GET_MODE_SIZE (word_mode);

  if (rounded_size != CONST0_RTX (Pmode))
    {
      if (CONST_INT_P (rounded_size)
	  && INTVAL (rounded_size) <= 4 * probe_interval)
	{
	  for (HOST_WIDE_INT i = 0;
	       i < INTVAL (rounded_size);
	       i += probe_interval)
	    {
	      anti_adjust_stack (GEN_INT (probe_interval));
	      /* The prologue does not probe residuals.  Thus the offset
		 here to probe just beyond what the prologue had already
		 allocated.  */
	      emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
					       probe_range));

	      emit_insn (gen_blockage ());
	    }
	}
      else
	{
	  rtx loop_lab, end_loop;
	  bool rotate_loop = CONST_INT_P (rounded_size);
	  emit_stack_clash_protection_probe_loop_start (&loop_lab, &end_loop,
							last_addr, rotate_loop);

	  anti_adjust_stack (GEN_INT (probe_interval));

	  /* The prologue does not probe residuals.  Thus the offset here
	     to probe just beyond what the prologue had already
	     allocated.  */
	  emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
					   probe_range));

	  emit_stack_clash_protection_probe_loop_end (loop_lab, end_loop,
						      last_addr, rotate_loop);
	  emit_insn (gen_blockage ());
	}
    }

  if (residual != CONST0_RTX (Pmode))
    {
      rtx label = NULL_RTX;
      /* RESIDUAL could be zero at runtime and in that case *sp could
	 hold live data.  Furthermore, we do not want to probe into the
	 red zone.

	 If TARGET_PROBE_RANGE_P then the target has promised it's safe to
	 probe at offset 0.  In which case we no longer have to check for
	 RESIDUAL == 0.  However we still need to probe at the right offset
	 when RESIDUAL > PROBE_RANGE, in which case we probe at PROBE_RANGE.

	 If !TARGET_PROBE_RANGE_P then go ahead and just guard the probe at *sp
	 on RESIDUAL != 0 at runtime if RESIDUAL is not a compile time constant.
	 */
      anti_adjust_stack (residual);

      if (!CONST_INT_P (residual))
	{
	  label = gen_label_rtx ();
	  rtx_code op = target_probe_range_p ? LT : EQ;
	  rtx probe_cmp_value = target_probe_range_p
	    ? gen_rtx_CONST_INT (GET_MODE (residual), probe_range)
	    : CONST0_RTX (GET_MODE (residual));

	  if (target_probe_range_p)
	    emit_stack_probe (stack_pointer_rtx);

	  emit_cmp_and_jump_insns (residual, probe_cmp_value,
				   op, NULL_RTX, Pmode, 1, label);
	}

      rtx x = NULL_RTX;

      /* If RESIDUAL isn't a constant and TARGET_PROBE_RANGE_P then we probe up
	 by the ABI defined safe value.  */
      if (!CONST_INT_P (residual) && target_probe_range_p)
	x = GEN_INT (probe_range);
      /* If RESIDUAL is a constant but smaller than the ABI defined safe value,
	 we still want to probe up, but the safest amount if a word.  */
      else if (target_probe_range_p)
	{
	  if (INTVAL (residual) <= probe_range)
	    x = GEN_INT (GET_MODE_SIZE (word_mode));
	  else
	    x = GEN_INT (probe_range);
	}
      else
      /* If nothing else, probe at the top of the new allocation.  */
	x = plus_constant (Pmode, residual, -GET_MODE_SIZE (word_mode));

      emit_stack_probe (gen_rtx_PLUS (Pmode, stack_pointer_rtx, x));

      emit_insn (gen_blockage ());
      if (!CONST_INT_P (residual))
	  emit_label (label);
    }
}


/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
   while probing it.  This pushes when SIZE is positive.  SIZE need not
   be constant.  If ADJUST_BACK is true, adjust back the stack pointer
   by plus SIZE at the end.  */

void
anti_adjust_stack_and_probe (rtx size, bool adjust_back)
{
  /* We skip the probe for the first interval + a small dope of 4 words and
     probe that many bytes past the specified size to maintain a protection
     area at the botton of the stack.  */
  const int dope = 4 * UNITS_PER_WORD;

  /* First ensure SIZE is Pmode.  */
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
    size = convert_to_mode (Pmode, size, 1);

  /* If we have a constant small number of probes to generate, that's the
     easy case.  */
  if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
    {
      HOST_WIDE_INT isize = INTVAL (size), i;
      bool first_probe = true;

      /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
	 values of N from 1 until it exceeds SIZE.  If only one probe is
	 needed, this will not generate any code.  Then adjust and probe
	 to PROBE_INTERVAL + SIZE.  */
      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
	{
	  if (first_probe)
	    {
	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
	      first_probe = false;
	    }
	  else
	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
	  emit_stack_probe (stack_pointer_rtx);
	}

      if (first_probe)
	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
      else
	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
      emit_stack_probe (stack_pointer_rtx);
    }

  /* In the variable case, do the same as above, but in a loop.  Note that we
     must be extra careful with variables wrapping around because we might be
     at the very top (or the very bottom) of the address space and we have to
     be able to handle this case properly; in particular, we use an equality
     test for the loop condition.  */
  else
    {
      rtx rounded_size, rounded_size_op, last_addr, temp;
      rtx_code_label *loop_lab = gen_label_rtx ();
      rtx_code_label *end_lab = gen_label_rtx ();


      /* Step 1: round SIZE to the previous multiple of the interval.  */

      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
      rounded_size
	= simplify_gen_binary (AND, Pmode, size,
			       gen_int_mode (-PROBE_INTERVAL, Pmode));
      rounded_size_op = force_operand (rounded_size, NULL_RTX);


      /* Step 2: compute initial and final value of the loop counter.  */

      /* SP = SP_0 + PROBE_INTERVAL.  */
      anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));

      /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
						 stack_pointer_rtx,
						 rounded_size_op), NULL_RTX);


      /* Step 3: the loop

	 while (SP != LAST_ADDR)
	   {
	     SP = SP + PROBE_INTERVAL
	     probe at SP
	   }

	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
	 values of N from 1 until it is equal to ROUNDED_SIZE.  */

      emit_label (loop_lab);

      /* Jump to END_LAB if SP == LAST_ADDR.  */
      emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
			       Pmode, 1, end_lab);

      /* SP = SP + PROBE_INTERVAL and probe at SP.  */
      anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
      emit_stack_probe (stack_pointer_rtx);

      emit_jump (loop_lab);

      emit_label (end_lab);


      /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */

      /* TEMP = SIZE - ROUNDED_SIZE.  */
      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
      if (temp != const0_rtx)
	{
	  /* Manual CSE if the difference is not known at compile-time.  */
	  if (GET_CODE (temp) != CONST_INT)
	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
	  anti_adjust_stack (temp);
	  emit_stack_probe (stack_pointer_rtx);
	}
    }

  /* Adjust back and account for the additional first interval.  */
  if (adjust_back)
    adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
  else
    adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
}

/* Return an rtx representing the register or memory location
   in which a scalar value of data type VALTYPE
   was returned by a function call to function FUNC.
   FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
   function is known, otherwise 0.
   OUTGOING is 1 if on a machine with register windows this function
   should return the register in which the function will put its result
   and 0 otherwise.  */

rtx
hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
		     int outgoing ATTRIBUTE_UNUSED)
{
  rtx val;

  val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);

  if (REG_P (val)
      && GET_MODE (val) == BLKmode)
    {
      unsigned HOST_WIDE_INT bytes = arg_int_size_in_bytes (valtype);
      opt_scalar_int_mode tmpmode;

      /* int_size_in_bytes can return -1.  We don't need a check here
	 since the value of bytes will then be large enough that no
	 mode will match anyway.  */

      FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
	{
	  /* Have we found a large enough mode?  */
	  if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
	    break;
	}

      PUT_MODE (val, tmpmode.require ());
    }
  return val;
}

/* Return an rtx representing the register or memory location
   in which a scalar value of mode MODE was returned by a library call.  */

rtx
hard_libcall_value (machine_mode mode, rtx fun)
{
  return targetm.calls.libcall_value (mode, fun);
}

/* Look up the tree code for a given rtx code
   to provide the arithmetic operation for real_arithmetic.
   The function returns an int because the caller may not know
   what `enum tree_code' means.  */

int
rtx_to_tree_code (enum rtx_code code)
{
  enum tree_code tcode;

  switch (code)
    {
    case PLUS:
      tcode = PLUS_EXPR;
      break;
    case MINUS:
      tcode = MINUS_EXPR;
      break;
    case MULT:
      tcode = MULT_EXPR;
      break;
    case DIV:
      tcode = RDIV_EXPR;
      break;
    case SMIN:
      tcode = MIN_EXPR;
      break;
    case SMAX:
      tcode = MAX_EXPR;
      break;
    default:
      tcode = LAST_AND_UNUSED_TREE_CODE;
      break;
    }
  return ((int) tcode);
}

#include "gt-explow.h"