Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
/* Detection of Static Control Parts (SCoP) for Graphite.
   Copyright (C) 2009-2020 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <sebastian.pop@amd.com> and
   Tobias Grosser <grosser@fim.uni-passau.de>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#define USES_ISL

#include "config.h"

#ifdef HAVE_isl

#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "cfghooks.h"
#include "domwalk.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
#include "gimple-pretty-print.h"
#include "cfganal.h"
#include "graphite.h"

class debug_printer
{
private:
  FILE *dump_file;

public:
  void
  set_dump_file (FILE *f)
  {
    gcc_assert (f);
    dump_file = f;
  }

  friend debug_printer &
  operator<< (debug_printer &output, int i)
  {
    fprintf (output.dump_file, "%d", i);
    return output;
  }
  friend debug_printer &
  operator<< (debug_printer &output, const char *s)
  {
    fprintf (output.dump_file, "%s", s);
    return output;
  }
} dp;

#define DEBUG_PRINT(args) do \
    {								\
      if (dump_file && (dump_flags & TDF_DETAILS)) { args; }	\
    } while (0)

/* Pretty print to FILE all the SCoPs in DOT format and mark them with
   different colors.  If there are not enough colors, paint the
   remaining SCoPs in gray.

   Special nodes:
   - "*" after the node number denotes the entry of a SCoP,
   - "#" after the node number denotes the exit of a SCoP,
   - "()" around the node number denotes the entry or the
     exit nodes of the SCOP.  These are not part of SCoP.  */

DEBUG_FUNCTION void
dot_all_sese (FILE *file, vec<sese_l>& scops)
{
  /* Disable debugging while printing graph.  */
  dump_flags_t tmp_dump_flags = dump_flags;
  dump_flags = TDF_NONE;

  fprintf (file, "digraph all {\n");

  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
    {
      int part_of_scop = false;

      /* Use HTML for every bb label.  So we are able to print bbs
	 which are part of two different SCoPs, with two different
	 background colors.  */
      fprintf (file, "%d [label=<\n  <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
	       bb->index);
      fprintf (file, "CELLSPACING=\"0\">\n");

      /* Select color for SCoP.  */
      sese_l *region;
      int i;
      FOR_EACH_VEC_ELT (scops, i, region)
	{
	  bool sese_in_region = bb_in_sese_p (bb, *region);
	  if (sese_in_region || (region->exit->dest == bb)
	      || (region->entry->dest == bb))
	    {
	      const char *color;
	      switch (i % 17)
		{
		case 0: /* red */
		  color = "#e41a1c";
		  break;
		case 1: /* blue */
		  color = "#377eb8";
		  break;
		case 2: /* green */
		  color = "#4daf4a";
		  break;
		case 3: /* purple */
		  color = "#984ea3";
		  break;
		case 4: /* orange */
		  color = "#ff7f00";
		  break;
		case 5: /* yellow */
		  color = "#ffff33";
		  break;
		case 6: /* brown */
		  color = "#a65628";
		  break;
		case 7: /* rose */
		  color = "#f781bf";
		  break;
		case 8:
		  color = "#8dd3c7";
		  break;
		case 9:
		  color = "#ffffb3";
		  break;
		case 10:
		  color = "#bebada";
		  break;
		case 11:
		  color = "#fb8072";
		  break;
		case 12:
		  color = "#80b1d3";
		  break;
		case 13:
		  color = "#fdb462";
		  break;
		case 14:
		  color = "#b3de69";
		  break;
		case 15:
		  color = "#fccde5";
		  break;
		case 16:
		  color = "#bc80bd";
		  break;
		default: /* gray */
		  color = "#999999";
		}

	      fprintf (file, "    <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">",
		       color);

	      if (!sese_in_region)
		fprintf (file, " (");

	      if (bb == region->entry->dest && bb == region->exit->dest)
		fprintf (file, " %d*# ", bb->index);
	      else if (bb == region->entry->dest)
		fprintf (file, " %d* ", bb->index);
	      else if (bb == region->exit->dest)
		fprintf (file, " %d# ", bb->index);
	      else
		fprintf (file, " %d ", bb->index);

	      fprintf (file, "{lp_%d}", bb->loop_father->num);

	      if (!sese_in_region)
		fprintf (file, ")");

	      fprintf (file, "</TD></TR>\n");
	      part_of_scop = true;
	    }
	}

	if (!part_of_scop)
	  {
	    fprintf (file, "    <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
	    fprintf (file, " %d {lp_%d} </TD></TR>\n", bb->index,
		     bb->loop_father->num);
	  }
	fprintf (file, "  </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
    }

    FOR_ALL_BB_FN (bb, cfun)
      {
	edge e;
	edge_iterator ei;
	FOR_EACH_EDGE (e, ei, bb->succs)
	  fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
      }

  fputs ("}\n\n", file);

  /* Enable debugging again.  */
  dump_flags = tmp_dump_flags;
}

/* Display SCoP on stderr.  */

DEBUG_FUNCTION void
dot_sese (sese_l& scop)
{
  vec<sese_l> scops;
  scops.create (1);

  if (scop)
    scops.safe_push (scop);

  dot_all_sese (stderr, scops);

  scops.release ();
}

DEBUG_FUNCTION void
dot_cfg ()
{
  vec<sese_l> scops;
  scops.create (1);
  dot_all_sese (stderr, scops);
  scops.release ();
}

/* Returns a COND_EXPR statement when BB has a single predecessor, the
   edge between BB and its predecessor is not a loop exit edge, and
   the last statement of the single predecessor is a COND_EXPR.  */

static gcond *
single_pred_cond_non_loop_exit (basic_block bb)
{
  if (single_pred_p (bb))
    {
      edge e = single_pred_edge (bb);
      basic_block pred = e->src;
      gimple *stmt;

      if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
	return NULL;

      stmt = last_stmt (pred);

      if (stmt && gimple_code (stmt) == GIMPLE_COND)
	return as_a<gcond *> (stmt);
    }

  return NULL;
}

namespace
{

/* Build the maximal scop containing LOOPs and add it to SCOPS.  */

class scop_detection
{
public:
  scop_detection () : scops (vNULL) {}

  ~scop_detection ()
  {
    scops.release ();
  }

  /* A marker for invalid sese_l.  */
  static sese_l invalid_sese;

  /* Return the SCOPS in this SCOP_DETECTION.  */

  vec<sese_l>
  get_scops ()
  {
    return scops;
  }

  /* Return an sese_l around the LOOP.  */

  sese_l get_sese (loop_p loop);

  /* Merge scops at same loop depth and returns the new sese.
     Returns a new SESE when merge was successful, INVALID_SESE otherwise.  */

  sese_l merge_sese (sese_l first, sese_l second) const;

  /* Build scop outer->inner if possible.  */

  void build_scop_depth (loop_p loop);

  /* Return true when BEGIN is the preheader edge of a loop with a single exit
     END.  */

  static bool region_has_one_loop (sese_l s);

  /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END.  */

  void add_scop (sese_l s);

  /* Returns true if S1 subsumes/surrounds S2.  */
  static bool subsumes (sese_l s1, sese_l s2);

  /* Remove a SCoP which is subsumed by S1.  */
  void remove_subscops (sese_l s1);

  /* Returns true if S1 intersects with S2.  Since we already know that S1 does
     not subsume S2 or vice-versa, we only check for entry bbs.  */

  static bool intersects (sese_l s1, sese_l s2);

  /* Remove one of the scops when it intersects with any other.  */

  void remove_intersecting_scops (sese_l s1);

  /* Return true when a statement in SCOP cannot be represented by Graphite.  */

  bool harmful_loop_in_region (sese_l scop) const;

  /* Return true only when STMT is simple enough for being handled by Graphite.
     This depends on SCOP, as the parameters are initialized relatively to
     this basic block, the linear functions are initialized based on the
     outermost loop containing STMT inside the SCOP.  BB is the place where we
     try to evaluate the STMT.  */

  bool stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
			       basic_block bb) const;

  /* Something like "n * m" is not allowed.  */

  static bool graphite_can_represent_init (tree e);

  /* Return true when SCEV can be represented in the polyhedral model.

     An expression can be represented, if it can be expressed as an
     affine expression.  For loops (i, j) and parameters (m, n) all
     affine expressions are of the form:

     x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z

     1 i + 20 j + (-2) m + 25

     Something like "i * n" or "n * m" is not allowed.  */

  static bool graphite_can_represent_scev (sese_l scop, tree scev);

  /* Return true when EXPR can be represented in the polyhedral model.

     This means an expression can be represented, if it is linear with respect
     to the loops and the strides are non parametric.  LOOP is the place where
     the expr will be evaluated.  SCOP defines the region we analyse.  */

  static bool graphite_can_represent_expr (sese_l scop, loop_p loop,
					   tree expr);

  /* Return true if the data references of STMT can be represented by Graphite.
     We try to analyze the data references in a loop contained in the SCOP.  */

  static bool stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt);

  /* Remove the close phi node at GSI and replace its rhs with the rhs
     of PHI.  */

  static void remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi);

  /* Returns true when Graphite can represent LOOP in SCOP.
     FIXME: For the moment, graphite cannot be used on loops that iterate using
     induction variables that wrap.  */

  static bool can_represent_loop (loop_p loop, sese_l scop);

  /* Returns the number of pbbs that are in loops contained in SCOP.  */

  static int nb_pbbs_in_loops (scop_p scop);

private:
  vec<sese_l> scops;
};

sese_l scop_detection::invalid_sese (NULL, NULL);

/* Return an sese_l around the LOOP.  */

sese_l
scop_detection::get_sese (loop_p loop)
{
  if (!loop)
    return invalid_sese;

  edge scop_begin = loop_preheader_edge (loop);
  edge scop_end = single_exit (loop);
  if (!scop_end || (scop_end->flags & (EDGE_COMPLEX|EDGE_FAKE)))
    return invalid_sese;

  return sese_l (scop_begin, scop_end);
}

/* Merge scops at same loop depth and returns the new sese.
   Returns a new SESE when merge was successful, INVALID_SESE otherwise.  */

sese_l
scop_detection::merge_sese (sese_l first, sese_l second) const
{
  /* In the trivial case first/second may be NULL.  */
  if (!first)
    return second;
  if (!second)
    return first;

  DEBUG_PRINT (dp << "[scop-detection] try merging sese s1: ";
	       print_sese (dump_file, first);
	       dp << "[scop-detection] try merging sese s2: ";
	       print_sese (dump_file, second));

  auto_bitmap worklist, in_sese_region;
  bitmap_set_bit (worklist, get_entry_bb (first)->index);
  bitmap_set_bit (worklist, get_exit_bb (first)->index);
  bitmap_set_bit (worklist, get_entry_bb (second)->index);
  bitmap_set_bit (worklist, get_exit_bb (second)->index);
  edge entry = NULL, exit = NULL;

  /* We can optimize the case of adding a loop entry dest or exit
     src to the worklist (for single-exit loops) by skipping
     directly to the exit dest / entry src.  in_sese_region
     doesn't have to cover all blocks in the region but merely
     its border it acts more like a visited bitmap.  */
  do
    {
      int index = bitmap_first_set_bit (worklist);
      bitmap_clear_bit (worklist, index);
      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, index);
      edge_iterator ei;
      edge e;

      /* With fake exit edges we can end up with no possible exit.  */
      if (index == EXIT_BLOCK)
	{
	  DEBUG_PRINT (dp << "[scop-detection-fail] cannot merge seses.\n");
	  return invalid_sese;
	}

      bitmap_set_bit (in_sese_region, bb->index);
         
      basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (e->src == dom
	    && (! entry
		|| dominated_by_p (CDI_DOMINATORS, entry->dest, bb)))
	  {
	    if (entry
		&& ! bitmap_bit_p (in_sese_region, entry->src->index))
	      bitmap_set_bit (worklist, entry->src->index);
	    entry = e;
	  }
	else if (! bitmap_bit_p (in_sese_region, e->src->index))
	  bitmap_set_bit (worklist, e->src->index);

      basic_block pdom = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->dest == pdom
	    && (! exit
		|| dominated_by_p (CDI_POST_DOMINATORS, exit->src, bb)))
	  {
	    if (exit
		&& ! bitmap_bit_p (in_sese_region, exit->dest->index))
	      bitmap_set_bit (worklist, exit->dest->index);
	    exit = e;
	  }
	else if (! bitmap_bit_p (in_sese_region, e->dest->index))
	  bitmap_set_bit (worklist, e->dest->index);
    }
  while (! bitmap_empty_p (worklist));

  sese_l combined (entry, exit);

  DEBUG_PRINT (dp << "[merged-sese] s1: "; print_sese (dump_file, combined));

  return combined;
}

/* Build scop outer->inner if possible.  */

void
scop_detection::build_scop_depth (loop_p loop)
{
  sese_l s = invalid_sese;
  loop = loop->inner;
  while (loop)
    {
      sese_l next = get_sese (loop);
      if (! next
	  || harmful_loop_in_region (next))
	{
	  if (s)
	    add_scop (s);
	  build_scop_depth (loop);
	  s = invalid_sese;
	}
      else if (! s)
	s = next;
      else
	{
	  sese_l combined = merge_sese (s, next);
	  if (! combined
	      || harmful_loop_in_region (combined))
	    {
	      add_scop (s);
	      s = next;
	    }
	  else
	    s = combined;
	}
      loop = loop->next;
    }
  if (s)
    add_scop (s);
}

/* Returns true when Graphite can represent LOOP in SCOP.
   FIXME: For the moment, graphite cannot be used on loops that iterate using
   induction variables that wrap.  */

bool
scop_detection::can_represent_loop (loop_p loop, sese_l scop)
{
  tree niter;
  struct tree_niter_desc niter_desc;

  /* We can only handle do {} while () style loops correctly.  */
  edge exit = single_exit (loop);
  if (!exit
      || !single_pred_p (loop->latch)
      || exit->src != single_pred (loop->latch)
      || !empty_block_p (loop->latch))
    return false;

  return !(loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
    && number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
    && niter_desc.control.no_overflow
    && (niter = number_of_latch_executions (loop))
    && !chrec_contains_undetermined (niter)
    && graphite_can_represent_expr (scop, loop, niter);
}

/* Return true when BEGIN is the preheader edge of a loop with a single exit
   END.  */

bool
scop_detection::region_has_one_loop (sese_l s)
{
  edge begin = s.entry;
  edge end = s.exit;
  /* Check for a single perfectly nested loop.  */
  if (begin->dest->loop_father->inner)
    return false;

  /* Otherwise, check whether we have adjacent loops.  */
  return (single_pred_p (end->src)
	  && begin->dest->loop_father == single_pred (end->src)->loop_father);
}

/* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END.  */

void
scop_detection::add_scop (sese_l s)
{
  gcc_assert (s);

  /* If the exit edge is fake discard the SCoP for now as we're removing the
     fake edges again after analysis.  */
  if (s.exit->flags & EDGE_FAKE)
    {
      DEBUG_PRINT (dp << "[scop-detection-fail] Discarding infinite loop SCoP: ";
		   print_sese (dump_file, s));
      return;
    }

  /* Include the BB with the loop-closed SSA PHI nodes, we need this
     block in the region for code-generating out-of-SSA copies.
     canonicalize_loop_closed_ssa makes sure that is in proper shape.  */
  if (s.exit->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
      && loop_exit_edge_p (s.exit->src->loop_father, s.exit))
    {
      gcc_assert (single_pred_p (s.exit->dest)
		  && single_succ_p (s.exit->dest)
		  && sese_trivially_empty_bb_p (s.exit->dest));
      s.exit = single_succ_edge (s.exit->dest);
    }

  /* Do not add scops with only one loop.  */
  if (region_has_one_loop (s))
    {
      DEBUG_PRINT (dp << "[scop-detection-fail] Discarding one loop SCoP: ";
		   print_sese (dump_file, s));
      return;
    }

  if (get_exit_bb (s) == EXIT_BLOCK_PTR_FOR_FN (cfun))
    {
      DEBUG_PRINT (dp << "[scop-detection-fail] "
		      << "Discarding SCoP exiting to return: ";
		   print_sese (dump_file, s));
      return;
    }

  /* Remove all the scops which are subsumed by s.  */
  remove_subscops (s);

  /* Remove intersecting scops. FIXME: It will be a good idea to keep
     the non-intersecting part of the scop already in the list.  */
  remove_intersecting_scops (s);

  scops.safe_push (s);
  DEBUG_PRINT (dp << "[scop-detection] Adding SCoP: "; print_sese (dump_file, s));
}

/* Return true when a statement in SCOP cannot be represented by Graphite.  */

bool
scop_detection::harmful_loop_in_region (sese_l scop) const
{
  basic_block exit_bb = get_exit_bb (scop);
  basic_block entry_bb = get_entry_bb (scop);

  DEBUG_PRINT (dp << "[checking-harmful-bbs] ";
	       print_sese (dump_file, scop));
  gcc_assert (dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb));

  auto_vec<basic_block> worklist;
  auto_bitmap loops;

  worklist.safe_push (entry_bb);
  while (! worklist.is_empty ())
    {
      basic_block bb = worklist.pop ();
      DEBUG_PRINT (dp << "Visiting bb_" << bb->index << "\n");

      /* The basic block should not be part of an irreducible loop.  */
      if (bb->flags & BB_IRREDUCIBLE_LOOP)
	return true;

      /* Check for unstructured control flow: CFG not generated by structured
	 if-then-else.  */
      if (bb->succs->length () > 1)
	{
	  edge e;
	  edge_iterator ei;
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (!dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest)
		&& !dominated_by_p (CDI_DOMINATORS, e->dest, bb))
	      return true;
	}

      /* Collect all loops in the current region.  */
      loop_p loop = bb->loop_father;
      if (loop_in_sese_p (loop, scop))
	bitmap_set_bit (loops, loop->num);

      /* Check for harmful statements in basic blocks part of the region.  */
      for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
	   !gsi_end_p (gsi); gsi_next (&gsi))
	if (!stmt_simple_for_scop_p (scop, gsi_stmt (gsi), bb))
	  return true;

      for (basic_block dom = first_dom_son (CDI_DOMINATORS, bb);
	   dom;
	   dom = next_dom_son (CDI_DOMINATORS, dom))
	if (dom != scop.exit->dest)
	  worklist.safe_push (dom);
    }

  /* Go through all loops and check that they are still valid in the combined
     scop.  */
  unsigned j;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (loops, 0, j, bi)
    {
      loop_p loop = (*current_loops->larray)[j];
      gcc_assert (loop->num == (int) j);

      /* Check if the loop nests are to be optimized for speed.  */
      if (! loop->inner
	  && ! optimize_loop_for_speed_p (loop))
	{
	  DEBUG_PRINT (dp << "[scop-detection-fail] loop_"
		       << loop->num << " is not on a hot path.\n");
	  return true;
	}

      if (! can_represent_loop (loop, scop))
	{
	  DEBUG_PRINT (dp << "[scop-detection-fail] cannot represent loop_"
		       << loop->num << "\n");
	  return true;
	}

      /* Check if all loop nests have at least one data reference.
	 ???  This check is expensive and loops premature at this point.
	 If important to retain we can pre-compute this for all innermost
	 loops and reject those when we build a SESE region for a loop
	 during SESE discovery.  */
      if (! loop->inner
	  && ! loop_nest_has_data_refs (loop))
	{
	  DEBUG_PRINT (dp << "[scop-detection-fail] loop_" << loop->num
		       << "does not have any data reference.\n");
	  return true;
	}
    }

  return false;
}

/* Returns true if S1 subsumes/surrounds S2.  */
bool
scop_detection::subsumes (sese_l s1, sese_l s2)
{
  if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
		      get_entry_bb (s1))
      && dominated_by_p (CDI_POST_DOMINATORS, s2.exit->dest,
			 s1.exit->dest))
    return true;
  return false;
}

/* Remove a SCoP which is subsumed by S1.  */
void
scop_detection::remove_subscops (sese_l s1)
{
  int j;
  sese_l *s2;
  FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
    {
      if (subsumes (s1, *s2))
	{
	  DEBUG_PRINT (dp << "Removing sub-SCoP";
		       print_sese (dump_file, *s2));
	  scops.unordered_remove (j);
	}
    }
}

/* Returns true if S1 intersects with S2.  Since we already know that S1 does
   not subsume S2 or vice-versa, we only check for entry bbs.  */

bool
scop_detection::intersects (sese_l s1, sese_l s2)
{
  if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
		      get_entry_bb (s1))
      && !dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
			  get_exit_bb (s1)))
    return true;
  if ((s1.exit == s2.entry) || (s2.exit == s1.entry))
    return true;

  return false;
}

/* Remove one of the scops when it intersects with any other.  */

void
scop_detection::remove_intersecting_scops (sese_l s1)
{
  int j;
  sese_l *s2;
  FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
    {
      if (intersects (s1, *s2))
	{
	  DEBUG_PRINT (dp << "Removing intersecting SCoP";
		       print_sese (dump_file, *s2);
		       dp << "Intersects with:";
		       print_sese (dump_file, s1));
	  scops.unordered_remove (j);
	}
    }
}

/* Something like "n * m" is not allowed.  */

bool
scop_detection::graphite_can_represent_init (tree e)
{
  switch (TREE_CODE (e))
    {
    case POLYNOMIAL_CHREC:
      return graphite_can_represent_init (CHREC_LEFT (e))
	&& graphite_can_represent_init (CHREC_RIGHT (e));

    case MULT_EXPR:
      if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
	return graphite_can_represent_init (TREE_OPERAND (e, 0))
	  && tree_fits_shwi_p (TREE_OPERAND (e, 1));
      else
	return graphite_can_represent_init (TREE_OPERAND (e, 1))
	  && tree_fits_shwi_p (TREE_OPERAND (e, 0));

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case MINUS_EXPR:
      return graphite_can_represent_init (TREE_OPERAND (e, 0))
	&& graphite_can_represent_init (TREE_OPERAND (e, 1));

    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
    CASE_CONVERT:
    case NON_LVALUE_EXPR:
      return graphite_can_represent_init (TREE_OPERAND (e, 0));

    default:
      break;
    }

  return true;
}

/* Return true when SCEV can be represented in the polyhedral model.

   An expression can be represented, if it can be expressed as an
   affine expression.  For loops (i, j) and parameters (m, n) all
   affine expressions are of the form:

   x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z

   1 i + 20 j + (-2) m + 25

   Something like "i * n" or "n * m" is not allowed.  */

bool
scop_detection::graphite_can_represent_scev (sese_l scop, tree scev)
{
  if (chrec_contains_undetermined (scev))
    return false;

  switch (TREE_CODE (scev))
    {
    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
    CASE_CONVERT:
    case NON_LVALUE_EXPR:
      return graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0));

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case MINUS_EXPR:
      return graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0))
	&& graphite_can_represent_scev (scop, TREE_OPERAND (scev, 1));

    case MULT_EXPR:
      return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
	&& !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
	&& !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
	     && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
	&& graphite_can_represent_init (scev)
	&& graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0))
	&& graphite_can_represent_scev (scop, TREE_OPERAND (scev, 1));

    case POLYNOMIAL_CHREC:
      /* Check for constant strides.  With a non constant stride of
	 'n' we would have a value of 'iv * n'.  Also check that the
	 initial value can represented: for example 'n * m' cannot be
	 represented.  */
      gcc_assert (loop_in_sese_p (get_loop (cfun,
					    CHREC_VARIABLE (scev)), scop));
      if (!evolution_function_right_is_integer_cst (scev)
	  || !graphite_can_represent_init (scev))
	return false;
      return graphite_can_represent_scev (scop, CHREC_LEFT (scev));

    case ADDR_EXPR:
      /* We cannot encode addresses for ISL.  */
      return false;

    default:
      break;
    }

  /* Only affine functions can be represented.  */
  if (tree_contains_chrecs (scev, NULL) || !scev_is_linear_expression (scev))
    return false;

  return true;
}

/* Return true when EXPR can be represented in the polyhedral model.

   This means an expression can be represented, if it is linear with respect to
   the loops and the strides are non parametric.  LOOP is the place where the
   expr will be evaluated.  SCOP defines the region we analyse.  */

bool
scop_detection::graphite_can_represent_expr (sese_l scop, loop_p loop,
					     tree expr)
{
  tree scev = cached_scalar_evolution_in_region (scop, loop, expr);
  return graphite_can_represent_scev (scop, scev);
}

/* Return true if the data references of STMT can be represented by Graphite.
   We try to analyze the data references in a loop contained in the SCOP.  */

bool
scop_detection::stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt)
{
  edge nest = scop.entry;
  loop_p loop = loop_containing_stmt (stmt);
  if (!loop_in_sese_p (loop, scop))
    loop = NULL;

  auto_vec<data_reference_p> drs;
  if (! graphite_find_data_references_in_stmt (nest, loop, stmt, &drs))
    return false;

  int j;
  data_reference_p dr;
  FOR_EACH_VEC_ELT (drs, j, dr)
    {
      for (unsigned i = 0; i < DR_NUM_DIMENSIONS (dr); ++i)
	if (! graphite_can_represent_scev (scop, DR_ACCESS_FN (dr, i)))
	  return false;
    }

  return true;
}

/* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
   Calls have side-effects, except those to const or pure
   functions.  */

static bool
stmt_has_side_effects (gimple *stmt)
{
  if (gimple_has_volatile_ops (stmt)
      || (gimple_code (stmt) == GIMPLE_CALL
	  && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
      || (gimple_code (stmt) == GIMPLE_ASM))
    {
      DEBUG_PRINT (dp << "[scop-detection-fail] "
		      << "Statement has side-effects:\n";
	print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
      return true;
    }
  return false;
}

/* Return true only when STMT is simple enough for being handled by Graphite.
   This depends on SCOP, as the parameters are initialized relatively to
   this basic block, the linear functions are initialized based on the outermost
   loop containing STMT inside the SCOP.  BB is the place where we try to
   evaluate the STMT.  */

bool
scop_detection::stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
					basic_block bb) const
{
  gcc_assert (scop);

  if (is_gimple_debug (stmt))
    return true;

  if (stmt_has_side_effects (stmt))
    return false;

  if (!stmt_has_simple_data_refs_p (scop, stmt))
    {
      DEBUG_PRINT (dp << "[scop-detection-fail] "
		      << "Graphite cannot handle data-refs in stmt:\n";
	print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS););
      return false;
    }

  switch (gimple_code (stmt))
    {
    case GIMPLE_LABEL:
      return true;

    case GIMPLE_COND:
      {
	/* We can handle all binary comparisons.  Inequalities are
	   also supported as they can be represented with union of
	   polyhedra.  */
	enum tree_code code = gimple_cond_code (stmt);
	if (!(code == LT_EXPR
	      || code == GT_EXPR
	      || code == LE_EXPR
	      || code == GE_EXPR
	      || code == EQ_EXPR
	      || code == NE_EXPR))
	  {
	    DEBUG_PRINT (dp << "[scop-detection-fail] "
			    << "Graphite cannot handle cond stmt:\n";
			 print_gimple_stmt (dump_file, stmt, 0,
					    TDF_VOPS | TDF_MEMSYMS));
	    return false;
	  }

	loop_p loop = bb->loop_father;
	for (unsigned i = 0; i < 2; ++i)
	  {
	    tree op = gimple_op (stmt, i);
	    if (!graphite_can_represent_expr (scop, loop, op)
		/* We can only constrain on integer type.  */
		|| ! INTEGRAL_TYPE_P (TREE_TYPE (op)))
	      {
		DEBUG_PRINT (dp << "[scop-detection-fail] "
				<< "Graphite cannot represent stmt:\n";
			     print_gimple_stmt (dump_file, stmt, 0,
						TDF_VOPS | TDF_MEMSYMS));
		return false;
	      }
	  }

	return true;
      }

    case GIMPLE_ASSIGN:
    case GIMPLE_CALL:
      {
	tree op, lhs = gimple_get_lhs (stmt);
	ssa_op_iter i;
	/* If we are not going to instantiate the stmt do not require
	   its operands to be instantiatable at this point.  */
	if (lhs
	    && TREE_CODE (lhs) == SSA_NAME
	    && scev_analyzable_p (lhs, scop))
	  return true;
	/* Verify that if we can analyze operands at their def site we
	   also can represent them when analyzed at their uses.  */
	FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
	  if (scev_analyzable_p (op, scop)
	      && chrec_contains_undetermined
		   (cached_scalar_evolution_in_region (scop,
						       bb->loop_father, op)))
	    {
	      DEBUG_PRINT (dp << "[scop-detection-fail] "
			   << "Graphite cannot code-gen stmt:\n";
			   print_gimple_stmt (dump_file, stmt, 0,
					      TDF_VOPS | TDF_MEMSYMS));
	      return false;
	    }
	return true;
      }

    default:
      /* These nodes cut a new scope.  */
      DEBUG_PRINT (
	  dp << "[scop-detection-fail] "
	     << "Gimple stmt not handled in Graphite:\n";
	  print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
      return false;
    }
}

/* Returns the number of pbbs that are in loops contained in SCOP.  */

int
scop_detection::nb_pbbs_in_loops (scop_p scop)
{
  int i;
  poly_bb_p pbb;
  int res = 0;

  FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
    if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), scop->scop_info->region))
      res++;

  return res;
}

/* Assigns the parameter NAME an index in REGION.  */

static void
assign_parameter_index_in_region (tree name, sese_info_p region)
{
  gcc_assert (TREE_CODE (name) == SSA_NAME
	      && ! defined_in_sese_p (name, region->region));
  int i;
  tree p;
  FOR_EACH_VEC_ELT (region->params, i, p)
    if (p == name)
      return;

  region->params.safe_push (name);
}

/* In the context of sese S, scan the expression E and translate it to
   a linear expression C.  When parsing a symbolic multiplication, K
   represents the constant multiplier of an expression containing
   parameters.  */

static void
scan_tree_for_params (sese_info_p s, tree e)
{
  if (e == chrec_dont_know)
    return;

  switch (TREE_CODE (e))
    {
    case POLYNOMIAL_CHREC:
      scan_tree_for_params (s, CHREC_LEFT (e));
      break;

    case MULT_EXPR:
      if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
	scan_tree_for_params (s, TREE_OPERAND (e, 0));
      else
	scan_tree_for_params (s, TREE_OPERAND (e, 1));
      break;

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case MINUS_EXPR:
      scan_tree_for_params (s, TREE_OPERAND (e, 0));
      scan_tree_for_params (s, TREE_OPERAND (e, 1));
      break;

    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
    CASE_CONVERT:
    case NON_LVALUE_EXPR:
      scan_tree_for_params (s, TREE_OPERAND (e, 0));
      break;

    case SSA_NAME:
      assign_parameter_index_in_region (e, s);
      break;

    case INTEGER_CST:
    case ADDR_EXPR:
    case REAL_CST:
    case COMPLEX_CST:
    case VECTOR_CST:
      break;

   default:
      gcc_unreachable ();
      break;
    }
}

/* Find parameters with respect to REGION in BB. We are looking in memory
   access functions, conditions and loop bounds.  */

static void
find_params_in_bb (sese_info_p region, gimple_poly_bb_p gbb)
{
  /* Find parameters in the access functions of data references.  */
  int i;
  data_reference_p dr;
  FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
    for (unsigned j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
      scan_tree_for_params (region, DR_ACCESS_FN (dr, j));

  /* Find parameters in conditional statements.  */
  gimple *stmt;
  FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
    {
      loop_p loop = gimple_bb (stmt)->loop_father;
      tree lhs = cached_scalar_evolution_in_region (region->region, loop,
						    gimple_cond_lhs (stmt));
      tree rhs = cached_scalar_evolution_in_region (region->region, loop,
						    gimple_cond_rhs (stmt));
      gcc_assert (!chrec_contains_undetermined (lhs)
		  && !chrec_contains_undetermined (rhs));

      scan_tree_for_params (region, lhs);
      scan_tree_for_params (region, rhs);
    }
}

/* Record the parameters used in the SCOP BBs.  A variable is a parameter
   in a scop if it does not vary during the execution of that scop.  */

static void
find_scop_parameters (scop_p scop)
{
  unsigned i;
  sese_info_p region = scop->scop_info;

  /* Parameters used in loop bounds are processed during gather_bbs.  */

  /* Find the parameters used in data accesses.  */
  poly_bb_p pbb;
  FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
    find_params_in_bb (region, PBB_BLACK_BOX (pbb));

  int nbp = sese_nb_params (region);
  scop_set_nb_params (scop, nbp);
}

static void
add_write (vec<tree> *writes, tree def)
{
  writes->safe_push (def);
  DEBUG_PRINT (dp << "Adding scalar write: ";
	       print_generic_expr (dump_file, def);
	       dp << "\nFrom stmt: ";
	       print_gimple_stmt (dump_file,
				  SSA_NAME_DEF_STMT (def), 0));
}

static void
add_read (vec<scalar_use> *reads, tree use, gimple *use_stmt)
{
  DEBUG_PRINT (dp << "Adding scalar read: ";
	       print_generic_expr (dump_file, use);
	       dp << "\nFrom stmt: ";
	       print_gimple_stmt (dump_file, use_stmt, 0));
  reads->safe_push (std::make_pair (use_stmt, use));
}


/* Record DEF if it is used in other bbs different than DEF_BB in the SCOP.  */

static void
build_cross_bb_scalars_def (scop_p scop, tree def, basic_block def_bb,
			     vec<tree> *writes)
{
  if (!is_gimple_reg (def))
    return;

  bool scev_analyzable = scev_analyzable_p (def, scop->scop_info->region);

  gimple *use_stmt;
  imm_use_iterator imm_iter;
  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
    /* Do not gather scalar variables that can be analyzed by SCEV as they can
       be generated out of the induction variables.  */
    if ((! scev_analyzable
	 /* But gather SESE liveouts as we otherwise fail to rewrite their
	    exit PHIs.  */
	 || ! bb_in_sese_p (gimple_bb (use_stmt), scop->scop_info->region))
	&& (def_bb != gimple_bb (use_stmt) && !is_gimple_debug (use_stmt)))
      {
	add_write (writes, def);
	/* This is required by the FOR_EACH_IMM_USE_STMT when we want to break
	   before all the uses have been visited.  */
	BREAK_FROM_IMM_USE_STMT (imm_iter);
      }
}

/* Record USE if it is defined in other bbs different than USE_STMT
   in the SCOP.  */

static void
build_cross_bb_scalars_use (scop_p scop, tree use, gimple *use_stmt,
			    vec<scalar_use> *reads)
{
  if (!is_gimple_reg (use))
    return;

  /* Do not gather scalar variables that can be analyzed by SCEV as they can be
     generated out of the induction variables.  */
  if (scev_analyzable_p (use, scop->scop_info->region))
    return;

  gimple *def_stmt = SSA_NAME_DEF_STMT (use);
  if (gimple_bb (def_stmt) != gimple_bb (use_stmt))
    add_read (reads, use, use_stmt);
}

/* Generates a polyhedral black box only if the bb contains interesting
   information.  */

static gimple_poly_bb_p
try_generate_gimple_bb (scop_p scop, basic_block bb)
{
  vec<data_reference_p> drs = vNULL;
  vec<tree> writes = vNULL;
  vec<scalar_use> reads = vNULL;

  sese_l region = scop->scop_info->region;
  edge nest = region.entry;
  loop_p loop = bb->loop_father;
  if (!loop_in_sese_p (loop, region))
    loop = NULL;

  for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      if (is_gimple_debug (stmt))
	continue;

      graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);

      tree def = gimple_get_lhs (stmt);
      if (def)
	build_cross_bb_scalars_def (scop, def, gimple_bb (stmt), &writes);

      ssa_op_iter iter;
      tree use;
      FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
	build_cross_bb_scalars_use (scop, use, stmt, &reads);
    }

  /* Handle defs and uses in PHIs.  Those need special treatment given
     that we have to present ISL with sth that looks like we've rewritten
     the IL out-of-SSA.  */
  for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
       gsi_next (&psi))
    {
      gphi *phi = psi.phi ();
      tree res = gimple_phi_result (phi);
      if (virtual_operand_p (res)
	  || scev_analyzable_p (res, scop->scop_info->region))
	continue;
      /* To simulate out-of-SSA the block containing the PHI node has
         reads of the PHI destination.  And to preserve SSA dependences
	 we also write to it (the out-of-SSA decl and the SSA result
	 are coalesced for dependence purposes which is good enough).  */
      add_read (&reads, res, phi);
      add_write (&writes, res);
    }
  basic_block bb_for_succs = bb;
  if (bb_for_succs == bb_for_succs->loop_father->latch
      && bb_in_sese_p (bb_for_succs, scop->scop_info->region)
      && sese_trivially_empty_bb_p (bb_for_succs))
    bb_for_succs = NULL;
  while (bb_for_succs)
    {
      basic_block latch = NULL;
      edge_iterator ei;
      edge e;
      FOR_EACH_EDGE (e, ei, bb_for_succs->succs)
	{
	  for (gphi_iterator psi = gsi_start_phis (e->dest); !gsi_end_p (psi);
	       gsi_next (&psi))
	    {
	      gphi *phi = psi.phi ();
	      tree res = gimple_phi_result (phi);
	      if (virtual_operand_p (res))
		continue;
	      /* To simulate out-of-SSA the predecessor of edges into PHI nodes
		 has a copy from the PHI argument to the PHI destination.  */
	      if (! scev_analyzable_p (res, scop->scop_info->region))
		add_write (&writes, res);
	      tree use = PHI_ARG_DEF_FROM_EDGE (phi, e);
	      if (TREE_CODE (use) == SSA_NAME
		  && ! SSA_NAME_IS_DEFAULT_DEF (use)
		  && gimple_bb (SSA_NAME_DEF_STMT (use)) != bb_for_succs
		  && ! scev_analyzable_p (use, scop->scop_info->region))
		add_read (&reads, use, phi);
	    }
	  if (e->dest == bb_for_succs->loop_father->latch
	      && bb_in_sese_p (e->dest, scop->scop_info->region)
	      && sese_trivially_empty_bb_p (e->dest))
	    latch = e->dest;
	}
      /* Handle empty latch block PHIs here, otherwise we confuse ISL
	 with extra conditional code where it then peels off the last
	 iteration just because of that.  It would be simplest if we
	 just didn't force simple latches (thus remove the forwarder).  */
      bb_for_succs = latch;
    }

  /* For the region exit block add reads for all live-out vars.  */
  if (bb == scop->scop_info->region.exit->src)
    {
      sese_build_liveouts (scop->scop_info);
      unsigned i;
      bitmap_iterator bi;
      EXECUTE_IF_SET_IN_BITMAP (scop->scop_info->liveout, 0, i, bi)
	{
	  tree use = ssa_name (i);
	  add_read (&reads, use, NULL);
	}
    }

  if (drs.is_empty () && writes.is_empty () && reads.is_empty ())
    return NULL;

  return new_gimple_poly_bb (bb, drs, reads, writes);
}

/* Compute alias-sets for all data references in DRS.  */

static bool 
build_alias_set (scop_p scop)
{
  int num_vertices = scop->drs.length ();
  struct graph *g = new_graph (num_vertices);
  dr_info *dr1, *dr2;
  int i, j;
  int *all_vertices;

  struct loop *nest
    = find_common_loop (scop->scop_info->region.entry->dest->loop_father,
			scop->scop_info->region.exit->src->loop_father);

  FOR_EACH_VEC_ELT (scop->drs, i, dr1)
    for (j = i+1; scop->drs.iterate (j, &dr2); j++)
      if (dr_may_alias_p (dr1->dr, dr2->dr, nest))
	{
	  /* Dependences in the same alias set need to be handled
	     by just looking at DR_ACCESS_FNs.  */
	  if (DR_NUM_DIMENSIONS (dr1->dr) == 0
	      || DR_NUM_DIMENSIONS (dr1->dr) != DR_NUM_DIMENSIONS (dr2->dr)
	      || ! operand_equal_p (DR_BASE_OBJECT (dr1->dr),
				    DR_BASE_OBJECT (dr2->dr),
				    OEP_ADDRESS_OF)
	      || ! types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (dr1->dr)),
				       TREE_TYPE (DR_BASE_OBJECT (dr2->dr))))
	    {
	      free_graph (g);
	      return false;
	    }
	  add_edge (g, i, j);
	  add_edge (g, j, i);
	}

  all_vertices = XNEWVEC (int, num_vertices);
  for (i = 0; i < num_vertices; i++)
    all_vertices[i] = i;

  scop->max_alias_set
    = graphds_dfs (g, all_vertices, num_vertices, NULL, true, NULL) + 1;
  free (all_vertices);

  for (i = 0; i < g->n_vertices; i++)
    scop->drs[i].alias_set = g->vertices[i].component + 1;

  free_graph (g);
  return true;
}

/* Gather BBs and conditions for a SCOP.  */
class gather_bbs : public dom_walker
{
public:
  gather_bbs (cdi_direction, scop_p, int *);

  virtual edge before_dom_children (basic_block);
  virtual void after_dom_children (basic_block);

private:
  auto_vec<gimple *, 3> conditions, cases;
  scop_p scop;
};
}
gather_bbs::gather_bbs (cdi_direction direction, scop_p scop, int *bb_to_rpo)
  : dom_walker (direction, ALL_BLOCKS, bb_to_rpo), scop (scop)
{
}

/* Call-back for dom_walk executed before visiting the dominated
   blocks.  */

edge
gather_bbs::before_dom_children (basic_block bb)
{
  sese_info_p region = scop->scop_info;
  if (!bb_in_sese_p (bb, region->region))
    return dom_walker::STOP;

  /* For loops fully contained in the region record parameters in the
     loop bounds.  */
  loop_p loop = bb->loop_father;
  if (loop->header == bb
      && loop_in_sese_p (loop, region->region))
    {
      tree nb_iters = number_of_latch_executions (loop);
      if (chrec_contains_symbols (nb_iters))
	{
	  nb_iters = cached_scalar_evolution_in_region (region->region,
							loop, nb_iters);
	  scan_tree_for_params (region, nb_iters);
	}
    }

  if (gcond *stmt = single_pred_cond_non_loop_exit (bb))
    {
      edge e = single_pred_edge (bb);
      /* Make sure the condition is in the region and thus was verified
         to be handled.  */
      if (e != region->region.entry)
	{
	  conditions.safe_push (stmt);
	  if (e->flags & EDGE_TRUE_VALUE)
	    cases.safe_push (stmt);
	  else
	    cases.safe_push (NULL);
	}
    }

  scop->scop_info->bbs.safe_push (bb);

  gimple_poly_bb_p gbb = try_generate_gimple_bb (scop, bb);
  if (!gbb)
    return NULL;

  GBB_CONDITIONS (gbb) = conditions.copy ();
  GBB_CONDITION_CASES (gbb) = cases.copy ();

  poly_bb_p pbb = new_poly_bb (scop, gbb);
  scop->pbbs.safe_push (pbb);

  int i;
  data_reference_p dr;
  FOR_EACH_VEC_ELT (gbb->data_refs, i, dr)
    {
      DEBUG_PRINT (dp << "Adding memory ";
		   if (dr->is_read)
		     dp << "read: ";
		   else
		     dp << "write: ";
		   print_generic_expr (dump_file, dr->ref);
		   dp << "\nFrom stmt: ";
		   print_gimple_stmt (dump_file, dr->stmt, 0));

      scop->drs.safe_push (dr_info (dr, pbb));
    }

  return NULL;
}

/* Call-back for dom_walk executed after visiting the dominated
   blocks.  */

void
gather_bbs::after_dom_children (basic_block bb)
{
  if (!bb_in_sese_p (bb, scop->scop_info->region))
    return;

  if (single_pred_cond_non_loop_exit (bb))
    {
      edge e = single_pred_edge (bb);
      if (e != scop->scop_info->region.entry)
	{
	  conditions.pop ();
	  cases.pop ();
	}
    }
}


/* Compute sth like an execution order, dominator order with first executing
   edges that stay inside the current loop, delaying processing exit edges.  */

static int *bb_to_rpo;

/* Helper for qsort, sorting after order above.  */

static int
cmp_pbbs (const void *pa, const void *pb)
{
  poly_bb_p bb1 = *((const poly_bb_p *)pa);
  poly_bb_p bb2 = *((const poly_bb_p *)pb);
  if (bb_to_rpo[bb1->black_box->bb->index]
      < bb_to_rpo[bb2->black_box->bb->index])
    return -1;
  else if (bb_to_rpo[bb1->black_box->bb->index]
	   > bb_to_rpo[bb2->black_box->bb->index])
    return 1;
  else
    return 0;
}

/* Find Static Control Parts (SCoP) in the current function and pushes
   them to SCOPS.  */

void
build_scops (vec<scop_p> *scops)
{
  if (dump_file)
    dp.set_dump_file (dump_file);

  scop_detection sb;
  sb.build_scop_depth (current_loops->tree_root);

  /* Now create scops from the lightweight SESEs.  */
  vec<sese_l> scops_l = sb.get_scops ();

  /* Domwalk needs a bb to RPO mapping.  Compute it once here.  */
  int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
  int postorder_num = pre_and_rev_post_order_compute (NULL, postorder, true);
  bb_to_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
  for (int i = 0; i < postorder_num; ++i)
    bb_to_rpo[postorder[i]] = i;
  free (postorder);

  int i;
  sese_l *s;
  FOR_EACH_VEC_ELT (scops_l, i, s)
    {
      scop_p scop = new_scop (s->entry, s->exit);

      /* Record all basic blocks and their conditions in REGION.  */
      gather_bbs (CDI_DOMINATORS, scop, bb_to_rpo).walk (s->entry->dest);

      /* Sort pbbs after execution order for initial schedule generation.  */
      scop->pbbs.qsort (cmp_pbbs);

      if (! build_alias_set (scop))
	{
	  DEBUG_PRINT (dp << "[scop-detection-fail] cannot handle dependences\n");
	  free_scop (scop);
	  continue;
	}

      /* Do not optimize a scop containing only PBBs that do not belong
	 to any loops.  */
      if (sb.nb_pbbs_in_loops (scop) == 0)
	{
	  DEBUG_PRINT (dp << "[scop-detection-fail] no data references.\n");
	  free_scop (scop);
	  continue;
	}

      unsigned max_arrays = param_graphite_max_arrays_per_scop;
      if (max_arrays > 0
	  && scop->drs.length () >= max_arrays)
	{
	  DEBUG_PRINT (dp << "[scop-detection-fail] too many data references: "
		       << scop->drs.length ()
		       << " is larger than --param graphite-max-arrays-per-scop="
		       << max_arrays << ".\n");
	  free_scop (scop);
	  continue;
	}

      find_scop_parameters (scop);
      graphite_dim_t max_dim = param_graphite_max_nb_scop_params;
      if (max_dim > 0
	  && scop_nb_params (scop) > max_dim)
	{
	  DEBUG_PRINT (dp << "[scop-detection-fail] too many parameters: "
			  << scop_nb_params (scop)
			  << " larger than --param graphite-max-nb-scop-params="
			  << max_dim << ".\n");
	  free_scop (scop);
	  continue;
	}

      scops->safe_push (scop);
    }

  free (bb_to_rpo);
  bb_to_rpo = NULL;
  DEBUG_PRINT (dp << "number of SCoPs: " << (scops ? scops->length () : 0););
}

#endif /* HAVE_isl */