Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
.. Copyright (C) 2014-2020 Free Software Foundation, Inc.
   Originally contributed by David Malcolm <dmalcolm@redhat.com>

   This is free software: you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see
   <http://www.gnu.org/licenses/>.

Tutorial part 4: Adding JIT-compilation to a toy interpreter
------------------------------------------------------------
In this example we construct a "toy" interpreter, and add JIT-compilation
to it.

Our toy interpreter
*******************

It's a stack-based interpreter, and is intended as a (very simple) example
of the kind of bytecode interpreter seen in dynamic languages such as
Python, Ruby etc.

For the sake of simplicity, our toy virtual machine is very limited:

  * The only data type is `int`

  * It can only work on one function at a time (so that the only
    function call that can be made is to recurse).

  * Functions can only take one parameter.

  * Functions have a stack of `int` values.

  * We'll implement function call within the interpreter by calling a
    function in our implementation, rather than implementing our own
    frame stack.

  * The parser is only good enough to get the examples to work.

Naturally, a real interpreter would be much more complicated that this.

The following operations are supported:

====================== ======================== =============== ==============
Operation              Meaning                  Old Stack       New Stack
====================== ======================== =============== ==============
DUP                    Duplicate top of stack.  ``[..., x]``    ``[..., x, x]``
ROT                    Swap top two elements    ``[..., x, y]`` ``[..., y, x]``
                       of stack.
BINARY_ADD             Add the top two elements ``[..., x, y]`` ``[..., (x+y)]``
                       on the stack.
BINARY_SUBTRACT        Likewise, but subtract.  ``[..., x, y]`` ``[..., (x-y)]``
BINARY_MULT            Likewise, but multiply.  ``[..., x, y]`` ``[..., (x*y)]``
BINARY_COMPARE_LT      Compare the top two      ``[..., x, y]`` ``[..., (x<y)]``
                       elements on the stack
                       and push a nonzero/zero
                       if (x<y).
RECURSE                Recurse, passing the top ``[..., x]``    ``[..., fn(x)]``
                       of the stack, and
                       popping the result.
RETURN                 Return the top of the    ``[x]``         ``[]``
                       stack.
PUSH_CONST `arg`       Push an int const.       ``[...]``       ``[..., arg]``
JUMP_ABS_IF_TRUE `arg` Pop; if top of stack was ``[..., x]``    ``[...]``
                       nonzero, jump to
                       ``arg``.
====================== ======================== =============== ==============

Programs can be interpreted, disassembled, and compiled to machine code.

The interpreter reads ``.toy`` scripts.  Here's what a simple recursive
factorial program looks like, the script ``factorial.toy``.
The parser ignores lines beginning with a `#`.

   .. literalinclude:: ../examples/tut04-toyvm/factorial.toy
    :lines: 1-
    :language: c

The interpreter is a simple infinite loop with a big ``switch`` statement
based on what the next opcode is:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Execute the given function.  */
    :end-before: /* JIT compilation.  */
    :language: c

Compiling to machine code
*************************
We want to generate machine code that can be cast to this type and
then directly executed in-process:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Functions are compiled to this function ptr type.  */
    :end-before: enum opcode
    :language: c

The lifetime of the code is tied to that of a :c:type:`gcc_jit_result *`.
We'll handle this by bundling them up in a structure, so that we can
clean them up together by calling :c:func:`gcc_jit_result_release`:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* A struct to hold the compilation results.  */
    :end-before: /* The main compilation hook.  */
    :language: c

Our compiler isn't very sophisticated; it takes the implementation of
each opcode above, and maps it directly to the operations supported by
the libgccjit API.

How should we handle the stack?  In theory we could calculate what the
stack depth will be at each opcode, and optimize away the stack
manipulation "by hand".  We'll see below that libgccjit is able to do
this for us, so we'll implement stack manipulation
in a direct way, by creating a ``stack`` array and ``stack_depth``
variables, local within the generated function, equivalent to this C code:

.. code-block:: c

  int stack_depth;
  int stack[MAX_STACK_DEPTH];

We'll also have local variables ``x`` and ``y`` for use when implementing
the opcodes, equivalent to this:

.. code-block:: c

  int x;
  int y;

This means our compiler has the following state:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* JIT compilation.  */
    :end-before: /* Stack manipulation.  */
    :language: c

Setting things up
*****************

First we create our types:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Create types.  */
    :end-before: /* The constant value 1.  */
    :language: c

along with extracting a useful `int` constant:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* The constant value 1.  */
    :end-before: /* Create locations.  */
    :language: c

We'll implement push and pop in terms of the ``stack`` array and
``stack_depth``.  Here are helper functions for adding statements to
a block, implementing pushing and popping values:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Stack manipulation.  */
    :end-before: /* A struct to hold the compilation results.  */
    :language: c

We will support single-stepping through the generated code in the
debugger, so we need to create :c:type:`gcc_jit_location` instances, one
per operation in the source code.  These will reference the lines of
e.g. ``factorial.toy``.

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Create locations.  */
    :end-before: /* Creating the function.  */
    :language: c

Let's create the function itself.  As usual, we create its parameter
first, then use the parameter to create the function:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Creating the function.  */
    :end-before: /* Create stack lvalues.  */
    :language: c

We create the locals within the function.

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Create stack lvalues.  */
    :end-before: /* 1st pass: create blocks, one per opcode.
    :language: c

Populating the function
***********************

There's some one-time initialization, and the API treats the first block
you create as the entrypoint of the function, so we need to create that
block first:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: first.  */
    :end-before: /* Create a block per operation.  */
    :language: c

We can now create blocks for each of the operations.  Most of these will
be consolidated into larger blocks when the optimizer runs.

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Create a block per operation.  */
    :end-before: /* Populate the initial block.  */
    :language: c

Now that we have a block it can jump to when it's done, we can populate
the initial block:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Populate the initial block.  */
    :end-before: /* 2nd pass: fill in instructions.  */
    :language: c

We can now populate the blocks for the individual operations.  We loop
through them, adding instructions to their blocks:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* 2nd pass: fill in instructions.  */
    :end-before: /* Helper macros.  */
    :language: c

We're going to have another big ``switch`` statement for implementing
the opcodes, this time for compiling them, rather than interpreting
them.  It's helpful to have macros for implementing push and pop, so that
we can make the ``switch`` statement that's coming up look as much as
possible like the one above within the interpreter:

.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Helper macros.  */
    :end-before: gcc_jit_block_add_comment
    :language: c

.. note::

   A particularly clever implementation would have an *identical*
   ``switch`` statement shared by the interpreter and the compiler, with
   some preprocessor "magic".  We're not doing that here, for the sake
   of simplicity.

When I first implemented this compiler, I accidentally missed an edit
when copying and pasting the ``Y_EQUALS_POP`` macro, so that popping the
stack into ``y`` instead erroneously assigned it to ``x``, leaving ``y``
uninitialized.

To track this kind of thing down, we can use
:c:func:`gcc_jit_block_add_comment` to add descriptive comments
to the internal representation.  This is invaluable when looking through
the generated IR for, say ``factorial``:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: PUSH_RVALUE (gcc_jit_lvalue_as_rvalue (state.y))
    :end-before: /* Handle the individual opcodes.  */
    :language: c

We can now write the big ``switch`` statement that implements the
individual opcodes, populating the relevant block with statements:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Handle the individual opcodes.  */
    :end-before: /* Go to the next block.  */
    :language: c

Every block must be terminated, via a call to one of the
``gcc_jit_block_end_with_`` entrypoints.  This has been done for two
of the opcodes, but we need to do it for the other ones, by jumping
to the next block.

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* Go to the next block.  */
    :end-before: /* end of loop on PC locations.  */
    :language: c

This is analogous to simply incrementing the program counter.

Verifying the control flow graph
********************************
Having finished looping over the blocks, the context is complete.

As before, we can verify that the control flow and statements are sane by
using :c:func:`gcc_jit_function_dump_to_dot`:

.. code-block:: c

  gcc_jit_function_dump_to_dot (state.fn, "/tmp/factorial.dot");

and viewing the result.  Note how the label names, comments, and
variable names show up in the dump, to make it easier to spot
errors in our compiler.

  .. figure:: factorial.png
    :alt: image of a control flow graph

Compiling the context
*********************
Having finished looping over the blocks and populating them with
statements, the context is complete.

We can now compile it, and extract machine code from the result:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* We've now finished populating the context.  Compile it.  */
    :end-before: /* (this leaks "result" and "funcname") */
    :language: c

We can now run the result:

   .. literalinclude:: ../examples/tut04-toyvm/toyvm.c
    :start-after: /* JIT-compilation.  */
    :end-before: return 0;
    :language: c

Single-stepping through the generated code
******************************************

It's possible to debug the generated code.  To do this we need to both:

  * Set up source code locations for our statements, so that we can
    meaningfully step through the code.  We did this above by
    calling :c:func:`gcc_jit_context_new_location` and using the
    results.

  * Enable the generation of debugging information, by setting
    :c:macro:`GCC_JIT_BOOL_OPTION_DEBUGINFO` on the
    :c:type:`gcc_jit_context` via
    :c:func:`gcc_jit_context_set_bool_option`:

    .. code-block:: c

     gcc_jit_context_set_bool_option (
       ctxt,
       GCC_JIT_BOOL_OPTION_DEBUGINFO,
       1);

Having done this, we can put a breakpoint on the generated function:

.. code-block:: console

  $ gdb --args ./toyvm factorial.toy 10
  (gdb) break factorial
  Function "factorial" not defined.
  Make breakpoint pending on future shared library load? (y or [n]) y
  Breakpoint 1 (factorial) pending.
  (gdb) run
  Breakpoint 1, factorial (arg=10) at factorial.toy:14
  14	DUP

We've set up location information, which references ``factorial.toy``.
This allows us to use e.g. ``list`` to see where we are in the script:

.. code-block:: console

  (gdb) list
  9
  10    # Initial state:
  11    # stack: [arg]
  12
  13    # 0:
  14    DUP
  15    # stack: [arg, arg]
  16
  17    # 1:
  18    PUSH_CONST 2

and to step through the function, examining the data:

.. code-block:: console

  (gdb) n
  18    PUSH_CONST 2
  (gdb) n
  22    BINARY_COMPARE_LT
  (gdb) print stack
  $5 = {10, 10, 2, 0, -7152, 32767, 0, 0}
  (gdb) print stack_depth
  $6 = 3

You'll see that the parts of the ``stack`` array that haven't been
touched yet are uninitialized.

.. note::

   Turning on optimizations may lead to unpredictable results when
   stepping through the generated code: the execution may appear to
   "jump around" the source code.  This is analogous to turning up the
   optimization level in a regular compiler.

Examining the generated code
****************************

How good is the optimized code?

We can turn up optimizations, by calling
:c:func:`gcc_jit_context_set_int_option` with
:c:macro:`GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL`:

.. code-block:: c

  gcc_jit_context_set_int_option (
    ctxt,
    GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL,
    3);

One of GCC's internal representations is called "gimple".  A dump of the
initial gimple representation of the code can be seen by setting:

.. code-block:: c

  gcc_jit_context_set_bool_option (ctxt,
                                   GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE,
                                   1);

With optimization on and source locations displayed, this gives:

.. We'll use "c" for gimple dumps

.. code-block:: c

  factorial (signed int arg)
  {
    <unnamed type> D.80;
    signed int D.81;
    signed int D.82;
    signed int D.83;
    signed int D.84;
    signed int D.85;
    signed int y;
    signed int x;
    signed int stack_depth;
    signed int stack[8];

    try
      {
        initial:
        stack_depth = 0;
        stack[stack_depth] = arg;
        stack_depth = stack_depth + 1;
        goto instr0;
        instr0:
        /* DUP */:
        stack_depth = stack_depth + -1;
        x = stack[stack_depth];
        stack[stack_depth] = x;
        stack_depth = stack_depth + 1;
        stack[stack_depth] = x;
        stack_depth = stack_depth + 1;
        goto instr1;
        instr1:
        /* PUSH_CONST */:
        stack[stack_depth] = 2;
        stack_depth = stack_depth + 1;
        goto instr2;

        /* etc */

You can see the generated machine code in assembly form via:

.. code-block:: c

  gcc_jit_context_set_bool_option (
    ctxt,
    GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE,
    1);
  result = gcc_jit_context_compile (ctxt);

which shows that (on this x86_64 box) the compiler has unrolled the loop
and is using MMX instructions to perform several multiplications
simultaneously:

.. code-block:: gas

          .file   "fake.c"
          .text
  .Ltext0:
          .p2align 4,,15
          .globl  factorial
          .type   factorial, @function
  factorial:
  .LFB0:
          .file 1 "factorial.toy"
          .loc 1 14 0
          .cfi_startproc
  .LVL0:
  .L2:
          .loc 1 26 0
          cmpl    $1, %edi
          jle     .L13
          leal    -1(%rdi), %edx
          movl    %edx, %ecx
          shrl    $2, %ecx
          leal    0(,%rcx,4), %esi
          testl   %esi, %esi
          je      .L14
          cmpl    $9, %edx
          jbe     .L14
          leal    -2(%rdi), %eax
          movl    %eax, -16(%rsp)
          leal    -3(%rdi), %eax
          movd    -16(%rsp), %xmm0
          movl    %edi, -16(%rsp)
          movl    %eax, -12(%rsp)
          movd    -16(%rsp), %xmm1
          xorl    %eax, %eax
          movl    %edx, -16(%rsp)
          movd    -12(%rsp), %xmm4
          movd    -16(%rsp), %xmm6
          punpckldq       %xmm4, %xmm0
          movdqa  .LC1(%rip), %xmm4
          punpckldq       %xmm6, %xmm1
          punpcklqdq      %xmm0, %xmm1
          movdqa  .LC0(%rip), %xmm0
          jmp     .L5
          # etc - edited for brevity

This is clearly overkill for a function that will likely overflow the
``int`` type before the vectorization is worthwhile - but then again, this
is a toy example.

Turning down the optimization level to 2:

.. code-block:: c

  gcc_jit_context_set_int_option (
    ctxt,
    GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL,
    3);

yields this code, which is simple enough to quote in its entirety:

.. code-block:: gas

          .file   "fake.c"
          .text
          .p2align 4,,15
          .globl  factorial
          .type   factorial, @function
  factorial:
  .LFB0:
          .cfi_startproc
  .L2:
          cmpl    $1, %edi
          jle     .L8
          movl    $1, %edx
          jmp     .L4
          .p2align 4,,10
          .p2align 3
  .L6:
          movl    %eax, %edi
  .L4:
  .L5:
          leal    -1(%rdi), %eax
          imull   %edi, %edx
          cmpl    $1, %eax
          jne     .L6
  .L3:
  .L7:
          imull   %edx, %eax
          ret
  .L8:
          movl    %edi, %eax
          movl    $1, %edx
          jmp     .L7
          .cfi_endproc
  .LFE0:
          .size   factorial, .-factorial
          .ident  "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-%{gcc_release})"
          .section        .note.GNU-stack,"",@progbits

Note that the stack pushing and popping have been eliminated, as has the
recursive call (in favor of an iteration).

Putting it all together
***********************

The complete example can be seen in the source tree at
``gcc/jit/docs/examples/tut04-toyvm/toyvm.c``

along with a Makefile and a couple of sample .toy scripts:

.. code-block:: console

  $ ls -al
  drwxrwxr-x. 2 david david   4096 Sep 19 17:46 .
  drwxrwxr-x. 3 david david   4096 Sep 19 15:26 ..
  -rw-rw-r--. 1 david david    615 Sep 19 12:43 factorial.toy
  -rw-rw-r--. 1 david david    834 Sep 19 13:08 fibonacci.toy
  -rw-rw-r--. 1 david david    238 Sep 19 14:22 Makefile
  -rw-rw-r--. 1 david david  16457 Sep 19 17:07 toyvm.c

  $ make toyvm
  g++ -Wall -g -o toyvm toyvm.c -lgccjit

  $ ./toyvm factorial.toy 10
  interpreter result: 3628800
  compiler result: 3628800

  $ ./toyvm fibonacci.toy 10
  interpreter result: 55
  compiler result: 55

Behind the curtain: How does our code get optimized?
****************************************************

Our example is done, but you may be wondering about exactly how the
compiler turned what we gave it into the machine code seen above.

We can examine what the compiler is doing in detail by setting:

.. code-block:: c

  gcc_jit_context_set_bool_option (state.ctxt,
                                   GCC_JIT_BOOL_OPTION_DUMP_EVERYTHING,
                                   1);
  gcc_jit_context_set_bool_option (state.ctxt,
                                   GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES,
                                   1);

This will dump detailed information about the compiler's state to a
directory under ``/tmp``, and keep it from being cleaned up.

The precise names and their formats of these files is subject to change.
Higher optimization levels lead to more files.
Here's what I saw (edited for brevity; there were almost 200 files):

.. code-block:: console

  intermediate files written to /tmp/libgccjit-KPQbGw
  $ ls /tmp/libgccjit-KPQbGw/
  fake.c.000i.cgraph
  fake.c.000i.type-inheritance
  fake.c.004t.gimple
  fake.c.007t.omplower
  fake.c.008t.lower
  fake.c.011t.eh
  fake.c.012t.cfg
  fake.c.014i.visibility
  fake.c.015i.early_local_cleanups
  fake.c.016t.ssa
  # etc

The gimple code is converted into Static Single Assignment form,
with annotations for use when generating the debuginfo:

.. code-block:: console

  $ less /tmp/libgccjit-KPQbGw/fake.c.016t.ssa

.. code-block:: c

  ;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)

  factorial (signed int arg)
  {
    signed int stack[8];
    signed int stack_depth;
    signed int x;
    signed int y;
    <unnamed type> _20;
    signed int _21;
    signed int _38;
    signed int _44;
    signed int _51;
    signed int _56;

  initial:
    stack_depth_3 = 0;
    # DEBUG stack_depth => stack_depth_3
    stack[stack_depth_3] = arg_5(D);
    stack_depth_7 = stack_depth_3 + 1;
    # DEBUG stack_depth => stack_depth_7
    # DEBUG instr0 => NULL
    # DEBUG /* DUP */ => NULL
    stack_depth_8 = stack_depth_7 + -1;
    # DEBUG stack_depth => stack_depth_8
    x_9 = stack[stack_depth_8];
    # DEBUG x => x_9
    stack[stack_depth_8] = x_9;
    stack_depth_11 = stack_depth_8 + 1;
    # DEBUG stack_depth => stack_depth_11
    stack[stack_depth_11] = x_9;
    stack_depth_13 = stack_depth_11 + 1;
    # DEBUG stack_depth => stack_depth_13
    # DEBUG instr1 => NULL
    # DEBUG /* PUSH_CONST */ => NULL
    stack[stack_depth_13] = 2;

    /* etc; edited for brevity */

We can perhaps better see the code by turning off
:c:macro:`GCC_JIT_BOOL_OPTION_DEBUGINFO` to suppress all those ``DEBUG``
statements, giving:

.. code-block:: console

  $ less /tmp/libgccjit-1Hywc0/fake.c.016t.ssa

.. code-block:: c

  ;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)

  factorial (signed int arg)
  {
    signed int stack[8];
    signed int stack_depth;
    signed int x;
    signed int y;
    <unnamed type> _20;
    signed int _21;
    signed int _38;
    signed int _44;
    signed int _51;
    signed int _56;

  initial:
    stack_depth_3 = 0;
    stack[stack_depth_3] = arg_5(D);
    stack_depth_7 = stack_depth_3 + 1;
    stack_depth_8 = stack_depth_7 + -1;
    x_9 = stack[stack_depth_8];
    stack[stack_depth_8] = x_9;
    stack_depth_11 = stack_depth_8 + 1;
    stack[stack_depth_11] = x_9;
    stack_depth_13 = stack_depth_11 + 1;
    stack[stack_depth_13] = 2;
    stack_depth_15 = stack_depth_13 + 1;
    stack_depth_16 = stack_depth_15 + -1;
    y_17 = stack[stack_depth_16];
    stack_depth_18 = stack_depth_16 + -1;
    x_19 = stack[stack_depth_18];
    _20 = x_19 < y_17;
    _21 = (signed int) _20;
    stack[stack_depth_18] = _21;
    stack_depth_23 = stack_depth_18 + 1;
    stack_depth_24 = stack_depth_23 + -1;
    x_25 = stack[stack_depth_24];
    if (x_25 != 0)
      goto <bb 4> (instr9);
    else
      goto <bb 3> (instr4);

  instr4:
  /* DUP */:
    stack_depth_26 = stack_depth_24 + -1;
    x_27 = stack[stack_depth_26];
    stack[stack_depth_26] = x_27;
    stack_depth_29 = stack_depth_26 + 1;
    stack[stack_depth_29] = x_27;
    stack_depth_31 = stack_depth_29 + 1;
    stack[stack_depth_31] = 1;
    stack_depth_33 = stack_depth_31 + 1;
    stack_depth_34 = stack_depth_33 + -1;
    y_35 = stack[stack_depth_34];
    stack_depth_36 = stack_depth_34 + -1;
    x_37 = stack[stack_depth_36];
    _38 = x_37 - y_35;
    stack[stack_depth_36] = _38;
    stack_depth_40 = stack_depth_36 + 1;
    stack_depth_41 = stack_depth_40 + -1;
    x_42 = stack[stack_depth_41];
    _44 = factorial (x_42);
    stack[stack_depth_41] = _44;
    stack_depth_46 = stack_depth_41 + 1;
    stack_depth_47 = stack_depth_46 + -1;
    y_48 = stack[stack_depth_47];
    stack_depth_49 = stack_depth_47 + -1;
    x_50 = stack[stack_depth_49];
    _51 = x_50 * y_48;
    stack[stack_depth_49] = _51;
    stack_depth_53 = stack_depth_49 + 1;

    # stack_depth_1 = PHI <stack_depth_24(2), stack_depth_53(3)>
  instr9:
  /* RETURN */:
    stack_depth_54 = stack_depth_1 + -1;
    x_55 = stack[stack_depth_54];
    _56 = x_55;
    stack ={v} {CLOBBER};
    return _56;

  }

Note in the above how all the :c:type:`gcc_jit_block` instances we
created have been consolidated into just 3 blocks in GCC's internal
representation: ``initial``, ``instr4`` and ``instr9``.

Optimizing away stack manipulation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Recall our simple implementation of stack operations.  Let's examine
how the stack operations are optimized away.

After a pass of constant-propagation, the depth of the stack at each
opcode can be determined at compile-time:

.. code-block:: console

  $ less /tmp/libgccjit-1Hywc0/fake.c.021t.ccp1

.. code-block:: c

  ;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)

  factorial (signed int arg)
  {
    signed int stack[8];
    signed int stack_depth;
    signed int x;
    signed int y;
    <unnamed type> _20;
    signed int _21;
    signed int _38;
    signed int _44;
    signed int _51;

  initial:
    stack[0] = arg_5(D);
    x_9 = stack[0];
    stack[0] = x_9;
    stack[1] = x_9;
    stack[2] = 2;
    y_17 = stack[2];
    x_19 = stack[1];
    _20 = x_19 < y_17;
    _21 = (signed int) _20;
    stack[1] = _21;
    x_25 = stack[1];
    if (x_25 != 0)
      goto <bb 4> (instr9);
    else
      goto <bb 3> (instr4);

  instr4:
  /* DUP */:
    x_27 = stack[0];
    stack[0] = x_27;
    stack[1] = x_27;
    stack[2] = 1;
    y_35 = stack[2];
    x_37 = stack[1];
    _38 = x_37 - y_35;
    stack[1] = _38;
    x_42 = stack[1];
    _44 = factorial (x_42);
    stack[1] = _44;
    y_48 = stack[1];
    x_50 = stack[0];
    _51 = x_50 * y_48;
    stack[0] = _51;

  instr9:
  /* RETURN */:
    x_55 = stack[0];
    x_56 = x_55;
    stack ={v} {CLOBBER};
    return x_56;

  }

Note how, in the above, all those ``stack_depth`` values are now just
constants: we're accessing specific stack locations at each opcode.

The "esra" pass ("Early Scalar Replacement of Aggregates") breaks
out our "stack" array into individual elements:

.. code-block:: console

  $ less /tmp/libgccjit-1Hywc0/fake.c.024t.esra

.. code-block:: c

  ;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)

  Created a replacement for stack offset: 0, size: 32: stack$0
  Created a replacement for stack offset: 32, size: 32: stack$1
  Created a replacement for stack offset: 64, size: 32: stack$2

  Symbols to be put in SSA form
  { D.89 D.90 D.91 }
  Incremental SSA update started at block: 0
  Number of blocks in CFG: 5
  Number of blocks to update: 4 ( 80%)


  factorial (signed int arg)
  {
    signed int stack$2;
    signed int stack$1;
    signed int stack$0;
    signed int stack[8];
    signed int stack_depth;
    signed int x;
    signed int y;
    <unnamed type> _20;
    signed int _21;
    signed int _38;
    signed int _44;
    signed int _51;

  initial:
    stack$0_45 = arg_5(D);
    x_9 = stack$0_45;
    stack$0_39 = x_9;
    stack$1_32 = x_9;
    stack$2_30 = 2;
    y_17 = stack$2_30;
    x_19 = stack$1_32;
    _20 = x_19 < y_17;
    _21 = (signed int) _20;
    stack$1_28 = _21;
    x_25 = stack$1_28;
    if (x_25 != 0)
      goto <bb 4> (instr9);
    else
      goto <bb 3> (instr4);

  instr4:
  /* DUP */:
    x_27 = stack$0_39;
    stack$0_22 = x_27;
    stack$1_14 = x_27;
    stack$2_12 = 1;
    y_35 = stack$2_12;
    x_37 = stack$1_14;
    _38 = x_37 - y_35;
    stack$1_10 = _38;
    x_42 = stack$1_10;
    _44 = factorial (x_42);
    stack$1_6 = _44;
    y_48 = stack$1_6;
    x_50 = stack$0_22;
    _51 = x_50 * y_48;
    stack$0_1 = _51;

    # stack$0_52 = PHI <stack$0_39(2), stack$0_1(3)>
  instr9:
  /* RETURN */:
    x_55 = stack$0_52;
    x_56 = x_55;
    stack ={v} {CLOBBER};
    return x_56;

  }

Hence at this point, all those pushes and pops of the stack are now
simply assignments to specific temporary variables.

After some copy propagation, the stack manipulation has been completely
optimized away:

.. code-block:: console

  $ less /tmp/libgccjit-1Hywc0/fake.c.026t.copyprop1

.. code-block:: c

  ;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)

  factorial (signed int arg)
  {
    signed int stack$2;
    signed int stack$1;
    signed int stack$0;
    signed int stack[8];
    signed int stack_depth;
    signed int x;
    signed int y;
    <unnamed type> _20;
    signed int _21;
    signed int _38;
    signed int _44;
    signed int _51;

  initial:
    stack$0_39 = arg_5(D);
    _20 = arg_5(D) <= 1;
    _21 = (signed int) _20;
    if (_21 != 0)
      goto <bb 4> (instr9);
    else
      goto <bb 3> (instr4);

  instr4:
  /* DUP */:
    _38 = arg_5(D) + -1;
    _44 = factorial (_38);
    _51 = arg_5(D) * _44;
    stack$0_1 = _51;

    # stack$0_52 = PHI <arg_5(D)(2), _51(3)>
  instr9:
  /* RETURN */:
    stack ={v} {CLOBBER};
    return stack$0_52;

  }

Later on, another pass finally eliminated ``stack_depth`` local and the
unused parts of the `stack`` array altogether:

.. code-block:: console

  $ less /tmp/libgccjit-1Hywc0/fake.c.036t.release_ssa

.. code-block:: c

  ;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)

  Released 44 names, 314.29%, removed 44 holes
  factorial (signed int arg)
  {
    signed int stack$0;
    signed int mult_acc_1;
    <unnamed type> _5;
    signed int _6;
    signed int _7;
    signed int mul_tmp_10;
    signed int mult_acc_11;
    signed int mult_acc_13;

    # arg_9 = PHI <arg_8(D)(0)>
    # mult_acc_13 = PHI <1(0)>
  initial:

    <bb 5>:
    # arg_4 = PHI <arg_9(2), _7(3)>
    # mult_acc_1 = PHI <mult_acc_13(2), mult_acc_11(3)>
    _5 = arg_4 <= 1;
    _6 = (signed int) _5;
    if (_6 != 0)
      goto <bb 4> (instr9);
    else
      goto <bb 3> (instr4);

  instr4:
  /* DUP */:
    _7 = arg_4 + -1;
    mult_acc_11 = mult_acc_1 * arg_4;
    goto <bb 5>;

    # stack$0_12 = PHI <arg_4(5)>
  instr9:
  /* RETURN */:
    mul_tmp_10 = mult_acc_1 * stack$0_12;
    return mul_tmp_10;

  }


Elimination of tail recursion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another significant optimization is the detection that the call to
``factorial`` is tail recursion, which can be eliminated in favor of
an iteration:

.. code-block:: console

  $ less /tmp/libgccjit-1Hywc0/fake.c.030t.tailr1

.. code-block:: c

  ;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)


  Symbols to be put in SSA form
  { D.88 }
  Incremental SSA update started at block: 0
  Number of blocks in CFG: 5
  Number of blocks to update: 4 ( 80%)


  factorial (signed int arg)
  {
    signed int stack$2;
    signed int stack$1;
    signed int stack$0;
    signed int stack[8];
    signed int stack_depth;
    signed int x;
    signed int y;
    signed int mult_acc_1;
    <unnamed type> _20;
    signed int _21;
    signed int _38;
    signed int mul_tmp_44;
    signed int mult_acc_51;

    # arg_5 = PHI <arg_39(D)(0), _38(3)>
    # mult_acc_1 = PHI <1(0), mult_acc_51(3)>
  initial:
    _20 = arg_5 <= 1;
    _21 = (signed int) _20;
    if (_21 != 0)
      goto <bb 4> (instr9);
    else
      goto <bb 3> (instr4);

  instr4:
  /* DUP */:
    _38 = arg_5 + -1;
    mult_acc_51 = mult_acc_1 * arg_5;
    goto <bb 2> (initial);

    # stack$0_52 = PHI <arg_5(2)>
  instr9:
  /* RETURN */:
    stack ={v} {CLOBBER};
    mul_tmp_44 = mult_acc_1 * stack$0_52;
    return mul_tmp_44;

  }