Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
/* Lower vector operations to scalar operations.
   Copyright (C) 2004-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "expmed.h"
#include "optabs-tree.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "langhooks.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimplify.h"
#include "tree-cfg.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "insn-config.h"
#include "recog.h"		/* FIXME: for insn_data */


static void expand_vector_operations_1 (gimple_stmt_iterator *);

/* Return the number of elements in a vector type TYPE that we have
   already decided needs to be expanded piecewise.  We don't support
   this kind of expansion for variable-length vectors, since we should
   always check for target support before introducing uses of those.  */
static unsigned int
nunits_for_known_piecewise_op (const_tree type)
{
  return TYPE_VECTOR_SUBPARTS (type).to_constant ();
}

/* Return true if TYPE1 has more elements than TYPE2, where either
   type may be a vector or a scalar.  */

static inline bool
subparts_gt (tree type1, tree type2)
{
  poly_uint64 n1 = VECTOR_TYPE_P (type1) ? TYPE_VECTOR_SUBPARTS (type1) : 1;
  poly_uint64 n2 = VECTOR_TYPE_P (type2) ? TYPE_VECTOR_SUBPARTS (type2) : 1;
  return known_gt (n1, n2);
}

/* Build a constant of type TYPE, made of VALUE's bits replicated
   every TYPE_SIZE (INNER_TYPE) bits to fit TYPE's precision.  */
static tree
build_replicated_const (tree type, tree inner_type, HOST_WIDE_INT value)
{
  int width = tree_to_uhwi (TYPE_SIZE (inner_type));
  int n = (TYPE_PRECISION (type) + HOST_BITS_PER_WIDE_INT - 1) 
    / HOST_BITS_PER_WIDE_INT;
  unsigned HOST_WIDE_INT low, mask;
  HOST_WIDE_INT a[WIDE_INT_MAX_ELTS];
  int i;

  gcc_assert (n && n <= WIDE_INT_MAX_ELTS);

  if (width == HOST_BITS_PER_WIDE_INT)
    low = value;
  else
    {
      mask = ((HOST_WIDE_INT)1 << width) - 1;
      low = (unsigned HOST_WIDE_INT) ~0 / mask * (value & mask);
    }

  for (i = 0; i < n; i++)
    a[i] = low;

  gcc_assert (TYPE_PRECISION (type) <= MAX_BITSIZE_MODE_ANY_INT);
  return wide_int_to_tree
    (type, wide_int::from_array (a, n, TYPE_PRECISION (type)));
}

static GTY(()) tree vector_inner_type;
static GTY(()) tree vector_last_type;
static GTY(()) int vector_last_nunits;

/* Return a suitable vector types made of SUBPARTS units each of mode
   "word_mode" (the global variable).  */
static tree
build_word_mode_vector_type (int nunits)
{
  if (!vector_inner_type)
    vector_inner_type = lang_hooks.types.type_for_mode (word_mode, 1);
  else if (vector_last_nunits == nunits)
    {
      gcc_assert (TREE_CODE (vector_last_type) == VECTOR_TYPE);
      return vector_last_type;
    }

  vector_last_nunits = nunits;
  vector_last_type = build_vector_type (vector_inner_type, nunits);
  return vector_last_type;
}

typedef tree (*elem_op_func) (gimple_stmt_iterator *,
			      tree, tree, tree, tree, tree, enum tree_code,
			      tree);

tree
tree_vec_extract (gimple_stmt_iterator *gsi, tree type,
		  tree t, tree bitsize, tree bitpos)
{
  if (TREE_CODE (t) == SSA_NAME)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (t);
      if (is_gimple_assign (def_stmt)
	  && (gimple_assign_rhs_code (def_stmt) == VECTOR_CST
	      || (bitpos
		  && gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR)))
	t = gimple_assign_rhs1 (def_stmt);
    }
  if (bitpos)
    {
      if (TREE_CODE (type) == BOOLEAN_TYPE)
	{
	  tree itype
	    = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 0);
	  tree field = gimplify_build3 (gsi, BIT_FIELD_REF, itype, t,
					bitsize, bitpos);
	  return gimplify_build2 (gsi, NE_EXPR, type, field,
				  build_zero_cst (itype));
	}
      else
	return gimplify_build3 (gsi, BIT_FIELD_REF, type, t, bitsize, bitpos);
    }
  else
    return gimplify_build1 (gsi, VIEW_CONVERT_EXPR, type, t);
}

static tree
do_unop (gimple_stmt_iterator *gsi, tree inner_type, tree a,
	 tree b ATTRIBUTE_UNUSED, tree bitpos, tree bitsize,
	 enum tree_code code, tree type ATTRIBUTE_UNUSED)
{
  a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  return gimplify_build1 (gsi, code, inner_type, a);
}

static tree
do_binop (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
	  tree bitpos, tree bitsize, enum tree_code code,
	  tree type ATTRIBUTE_UNUSED)
{
  if (TREE_CODE (TREE_TYPE (a)) == VECTOR_TYPE)
    a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  if (TREE_CODE (TREE_TYPE (b)) == VECTOR_TYPE)
    b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
  return gimplify_build2 (gsi, code, inner_type, a, b);
}

/* Construct expression (A[BITPOS] code B[BITPOS]) ? -1 : 0

   INNER_TYPE is the type of A and B elements

   returned expression is of signed integer type with the
   size equal to the size of INNER_TYPE.  */
static tree
do_compare (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
	    tree bitpos, tree bitsize, enum tree_code code, tree type)
{
  tree stype = TREE_TYPE (type);
  tree cst_false = build_zero_cst (stype);
  tree cst_true = build_all_ones_cst (stype);
  tree cmp;

  a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);

  cmp = build2 (code, boolean_type_node, a, b);
  return gimplify_build3 (gsi, COND_EXPR, stype, cmp, cst_true, cst_false);
}

/* Expand vector addition to scalars.  This does bit twiddling
   in order to increase parallelism:

   a + b = (((int) a & 0x7f7f7f7f) + ((int) b & 0x7f7f7f7f)) ^
           (a ^ b) & 0x80808080

   a - b =  (((int) a | 0x80808080) - ((int) b & 0x7f7f7f7f)) ^
            (a ^ ~b) & 0x80808080

   -b = (0x80808080 - ((int) b & 0x7f7f7f7f)) ^ (~b & 0x80808080)

   This optimization should be done only if 4 vector items or more
   fit into a word.  */
static tree
do_plus_minus (gimple_stmt_iterator *gsi, tree word_type, tree a, tree b,
	       tree bitpos ATTRIBUTE_UNUSED, tree bitsize ATTRIBUTE_UNUSED,
	       enum tree_code code, tree type ATTRIBUTE_UNUSED)
{
  tree inner_type = TREE_TYPE (TREE_TYPE (a));
  unsigned HOST_WIDE_INT max;
  tree low_bits, high_bits, a_low, b_low, result_low, signs;

  max = GET_MODE_MASK (TYPE_MODE (inner_type));
  low_bits = build_replicated_const (word_type, inner_type, max >> 1);
  high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));

  a = tree_vec_extract (gsi, word_type, a, bitsize, bitpos);
  b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);

  signs = gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, a, b);
  b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
  if (code == PLUS_EXPR)
    a_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, a, low_bits);
  else
    {
      a_low = gimplify_build2 (gsi, BIT_IOR_EXPR, word_type, a, high_bits);
      signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, signs);
    }

  signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
  result_low = gimplify_build2 (gsi, code, word_type, a_low, b_low);
  return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
}

static tree
do_negate (gimple_stmt_iterator *gsi, tree word_type, tree b,
	   tree unused ATTRIBUTE_UNUSED, tree bitpos ATTRIBUTE_UNUSED,
	   tree bitsize ATTRIBUTE_UNUSED,
	   enum tree_code code ATTRIBUTE_UNUSED,
	   tree type ATTRIBUTE_UNUSED)
{
  tree inner_type = TREE_TYPE (TREE_TYPE (b));
  HOST_WIDE_INT max;
  tree low_bits, high_bits, b_low, result_low, signs;

  max = GET_MODE_MASK (TYPE_MODE (inner_type));
  low_bits = build_replicated_const (word_type, inner_type, max >> 1);
  high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));

  b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);

  b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
  signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, b);
  signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
  result_low = gimplify_build2 (gsi, MINUS_EXPR, word_type, high_bits, b_low);
  return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
}

/* Expand a vector operation to scalars, by using many operations
   whose type is the vector type's inner type.  */
static tree
expand_vector_piecewise (gimple_stmt_iterator *gsi, elem_op_func f,
			 tree type, tree inner_type,
			 tree a, tree b, enum tree_code code,
			 tree ret_type = NULL_TREE)
{
  vec<constructor_elt, va_gc> *v;
  tree part_width = TYPE_SIZE (inner_type);
  tree index = bitsize_int (0);
  int nunits = nunits_for_known_piecewise_op (type);
  int delta = tree_to_uhwi (part_width)
	      / tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
  int i;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  if (ret_type
      || types_compatible_p (gimple_expr_type (gsi_stmt (*gsi)), type))
    warning_at (loc, OPT_Wvector_operation_performance,
		"vector operation will be expanded piecewise");
  else
    warning_at (loc, OPT_Wvector_operation_performance,
		"vector operation will be expanded in parallel");

  if (!ret_type)
    ret_type = type;
  vec_alloc (v, (nunits + delta - 1) / delta);
  for (i = 0; i < nunits;
       i += delta, index = int_const_binop (PLUS_EXPR, index, part_width))
    {
      tree result = f (gsi, inner_type, a, b, index, part_width, code,
		       ret_type);
      constructor_elt ce = {NULL_TREE, result};
      v->quick_push (ce);
    }

  return build_constructor (ret_type, v);
}

/* Expand a vector operation to scalars with the freedom to use
   a scalar integer type, or to use a different size for the items
   in the vector type.  */
static tree
expand_vector_parallel (gimple_stmt_iterator *gsi, elem_op_func f, tree type,
			tree a, tree b, enum tree_code code)
{
  tree result, compute_type;
  int n_words = tree_to_uhwi (TYPE_SIZE_UNIT (type)) / UNITS_PER_WORD;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  /* We have three strategies.  If the type is already correct, just do
     the operation an element at a time.  Else, if the vector is wider than
     one word, do it a word at a time; finally, if the vector is smaller
     than one word, do it as a scalar.  */
  if (TYPE_MODE (TREE_TYPE (type)) == word_mode)
     return expand_vector_piecewise (gsi, f,
				     type, TREE_TYPE (type),
				     a, b, code);
  else if (n_words > 1)
    {
      tree word_type = build_word_mode_vector_type (n_words);
      result = expand_vector_piecewise (gsi, f,
				        word_type, TREE_TYPE (word_type),
					a, b, code);
      result = force_gimple_operand_gsi (gsi, result, true, NULL, true,
                                         GSI_SAME_STMT);
    }
  else
    {
      /* Use a single scalar operation with a mode no wider than word_mode.  */
      scalar_int_mode mode
	= int_mode_for_size (tree_to_uhwi (TYPE_SIZE (type)), 0).require ();
      compute_type = lang_hooks.types.type_for_mode (mode, 1);
      result = f (gsi, compute_type, a, b, NULL_TREE, NULL_TREE, code, type);
      warning_at (loc, OPT_Wvector_operation_performance,
	          "vector operation will be expanded with a "
		  "single scalar operation");
    }

  return result;
}

/* Expand a vector operation to scalars; for integer types we can use
   special bit twiddling tricks to do the sums a word at a time, using
   function F_PARALLEL instead of F.  These tricks are done only if
   they can process at least four items, that is, only if the vector
   holds at least four items and if a word can hold four items.  */
static tree
expand_vector_addition (gimple_stmt_iterator *gsi,
			elem_op_func f, elem_op_func f_parallel,
			tree type, tree a, tree b, enum tree_code code)
{
  int parts_per_word = UNITS_PER_WORD
	  	       / tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (type)));

  if (INTEGRAL_TYPE_P (TREE_TYPE (type))
      && parts_per_word >= 4
      && nunits_for_known_piecewise_op (type) >= 4)
    return expand_vector_parallel (gsi, f_parallel,
				   type, a, b, code);
  else
    return expand_vector_piecewise (gsi, f,
				    type, TREE_TYPE (type),
				    a, b, code);
}

/* Try to expand vector comparison expression OP0 CODE OP1 by
   querying optab if the following expression:
	VEC_COND_EXPR< OP0 CODE OP1, {-1,...}, {0,...}>
   can be expanded.  */
static tree
expand_vector_comparison (gimple_stmt_iterator *gsi, tree type, tree op0,
                          tree op1, enum tree_code code)
{
  tree t;
  if (!expand_vec_cmp_expr_p (TREE_TYPE (op0), type, code)
      && !expand_vec_cond_expr_p (type, TREE_TYPE (op0), code))
    {
      if (VECTOR_BOOLEAN_TYPE_P (type)
	  && SCALAR_INT_MODE_P (TYPE_MODE (type))
	  && known_lt (GET_MODE_BITSIZE (TYPE_MODE (type)),
		       TYPE_VECTOR_SUBPARTS (type)
		       * GET_MODE_BITSIZE (SCALAR_TYPE_MODE
						(TREE_TYPE (type)))))
	{
	  tree inner_type = TREE_TYPE (TREE_TYPE (op0));
	  tree part_width = TYPE_SIZE (inner_type);
	  tree index = bitsize_int (0);
	  int nunits = nunits_for_known_piecewise_op (TREE_TYPE (op0));
	  int prec = GET_MODE_PRECISION (SCALAR_TYPE_MODE (type));
	  tree ret_type = build_nonstandard_integer_type (prec, 1);
	  tree ret_inner_type = boolean_type_node;
	  int i;
	  location_t loc = gimple_location (gsi_stmt (*gsi));
	  t = build_zero_cst (ret_type);

	  if (TYPE_PRECISION (ret_inner_type) != 1)
	    ret_inner_type = build_nonstandard_integer_type (1, 1);
	  warning_at (loc, OPT_Wvector_operation_performance,
		      "vector operation will be expanded piecewise");
	  for (i = 0; i < nunits;
	       i++, index = int_const_binop (PLUS_EXPR, index, part_width))
	    {
	      tree a = tree_vec_extract (gsi, inner_type, op0, part_width,
					 index);
	      tree b = tree_vec_extract (gsi, inner_type, op1, part_width,
					 index);
	      tree result = gimplify_build2 (gsi, code, ret_inner_type, a, b);
	      t = gimplify_build3 (gsi, BIT_INSERT_EXPR, ret_type, t, result,
				   bitsize_int (i));
	    }
	  t = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, type, t);
	}
      else
	t = expand_vector_piecewise (gsi, do_compare, type,
				     TREE_TYPE (TREE_TYPE (op0)), op0, op1,
				     code);
    }
  else
    t = NULL_TREE;

  return t;
}

/* Helper function of expand_vector_divmod.  Gimplify a RSHIFT_EXPR in type
   of OP0 with shift counts in SHIFTCNTS array and return the temporary holding
   the result if successful, otherwise return NULL_TREE.  */
static tree
add_rshift (gimple_stmt_iterator *gsi, tree type, tree op0, int *shiftcnts)
{
  optab op;
  unsigned int i, nunits = nunits_for_known_piecewise_op (type);
  bool scalar_shift = true;

  for (i = 1; i < nunits; i++)
    {
      if (shiftcnts[i] != shiftcnts[0])
	scalar_shift = false;
    }

  if (scalar_shift && shiftcnts[0] == 0)
    return op0;

  if (scalar_shift)
    {
      op = optab_for_tree_code (RSHIFT_EXPR, type, optab_scalar);
      if (op != unknown_optab
	  && optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
	return gimplify_build2 (gsi, RSHIFT_EXPR, type, op0,
				build_int_cst (NULL_TREE, shiftcnts[0]));
    }

  op = optab_for_tree_code (RSHIFT_EXPR, type, optab_vector);
  if (op != unknown_optab
      && optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
    {
      tree_vector_builder vec (type, nunits, 1);
      for (i = 0; i < nunits; i++)
	vec.quick_push (build_int_cst (TREE_TYPE (type), shiftcnts[i]));
      return gimplify_build2 (gsi, RSHIFT_EXPR, type, op0, vec.build ());
    }

  return NULL_TREE;
}

/* Try to expand integer vector division by constant using
   widening multiply, shifts and additions.  */
static tree
expand_vector_divmod (gimple_stmt_iterator *gsi, tree type, tree op0,
		      tree op1, enum tree_code code)
{
  bool use_pow2 = true;
  bool has_vector_shift = true;
  bool use_abs_op1 = false;
  int mode = -1, this_mode;
  int pre_shift = -1, post_shift;
  unsigned int nunits = nunits_for_known_piecewise_op (type);
  int *shifts = XALLOCAVEC (int, nunits * 4);
  int *pre_shifts = shifts + nunits;
  int *post_shifts = pre_shifts + nunits;
  int *shift_temps = post_shifts + nunits;
  unsigned HOST_WIDE_INT *mulc = XALLOCAVEC (unsigned HOST_WIDE_INT, nunits);
  int prec = TYPE_PRECISION (TREE_TYPE (type));
  int dummy_int;
  unsigned int i;
  signop sign_p = TYPE_SIGN (TREE_TYPE (type));
  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (TYPE_MODE (TREE_TYPE (type)));
  tree cur_op, mulcst, tem;
  optab op;

  if (prec > HOST_BITS_PER_WIDE_INT)
    return NULL_TREE;

  op = optab_for_tree_code (RSHIFT_EXPR, type, optab_vector);
  if (op == unknown_optab
      || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
    has_vector_shift = false;

  /* Analysis phase.  Determine if all op1 elements are either power
     of two and it is possible to expand it using shifts (or for remainder
     using masking).  Additionally compute the multiplicative constants
     and pre and post shifts if the division is to be expanded using
     widening or high part multiplication plus shifts.  */
  for (i = 0; i < nunits; i++)
    {
      tree cst = VECTOR_CST_ELT (op1, i);
      unsigned HOST_WIDE_INT ml;

      if (TREE_CODE (cst) != INTEGER_CST || integer_zerop (cst))
	return NULL_TREE;
      pre_shifts[i] = 0;
      post_shifts[i] = 0;
      mulc[i] = 0;
      if (use_pow2
	  && (!integer_pow2p (cst) || tree_int_cst_sgn (cst) != 1))
	use_pow2 = false;
      if (use_pow2)
	{
	  shifts[i] = tree_log2 (cst);
	  if (shifts[i] != shifts[0]
	      && code == TRUNC_DIV_EXPR
	      && !has_vector_shift)
	    use_pow2 = false;
	}
      if (mode == -2)
	continue;
      if (sign_p == UNSIGNED)
	{
	  unsigned HOST_WIDE_INT mh;
	  unsigned HOST_WIDE_INT d = TREE_INT_CST_LOW (cst) & mask;

	  if (d >= (HOST_WIDE_INT_1U << (prec - 1)))
	    /* FIXME: Can transform this into op0 >= op1 ? 1 : 0.  */
	    return NULL_TREE;

	  if (d <= 1)
	    {
	      mode = -2;
	      continue;
	    }

	  /* Find a suitable multiplier and right shift count
	     instead of multiplying with D.  */
	  mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);

	  /* If the suggested multiplier is more than SIZE bits, we can
	     do better for even divisors, using an initial right shift.  */
	  if ((mh != 0 && (d & 1) == 0)
	      || (!has_vector_shift && pre_shift != -1))
	    {
	      if (has_vector_shift)
		pre_shift = ctz_or_zero (d);
	      else if (pre_shift == -1)
		{
		  unsigned int j;
		  for (j = 0; j < nunits; j++)
		    {
		      tree cst2 = VECTOR_CST_ELT (op1, j);
		      unsigned HOST_WIDE_INT d2;
		      int this_pre_shift;

		      if (!tree_fits_uhwi_p (cst2))
			return NULL_TREE;
		      d2 = tree_to_uhwi (cst2) & mask;
		      if (d2 == 0)
			return NULL_TREE;
		      this_pre_shift = floor_log2 (d2 & -d2);
		      if (pre_shift == -1 || this_pre_shift < pre_shift)
			pre_shift = this_pre_shift;
		    }
		  if (i != 0 && pre_shift != 0)
		    {
		      /* Restart.  */
		      i = -1U;
		      mode = -1;
		      continue;
		    }
		}
	      if (pre_shift != 0)
		{
		  if ((d >> pre_shift) <= 1)
		    {
		      mode = -2;
		      continue;
		    }
		  mh = choose_multiplier (d >> pre_shift, prec,
					  prec - pre_shift,
					  &ml, &post_shift, &dummy_int);
		  gcc_assert (!mh);
		  pre_shifts[i] = pre_shift;
		}
	    }
	  if (!mh)
	    this_mode = 0;
	  else
	    this_mode = 1;
	}
      else
	{
	  HOST_WIDE_INT d = TREE_INT_CST_LOW (cst);
	  unsigned HOST_WIDE_INT abs_d;

	  if (d == -1)
	    return NULL_TREE;

	  /* Since d might be INT_MIN, we have to cast to
	     unsigned HOST_WIDE_INT before negating to avoid
	     undefined signed overflow.  */
	  abs_d = (d >= 0
		  ? (unsigned HOST_WIDE_INT) d
		  : - (unsigned HOST_WIDE_INT) d);

	  /* n rem d = n rem -d */
	  if (code == TRUNC_MOD_EXPR && d < 0)
	    {
	      d = abs_d;
	      use_abs_op1 = true;
	    }
	  if (abs_d == HOST_WIDE_INT_1U << (prec - 1))
	    {
	      /* This case is not handled correctly below.  */
	      mode = -2;
	      continue;
	    }
	  if (abs_d <= 1)
	    {
	      mode = -2;
	      continue;
	    }

	  choose_multiplier (abs_d, prec, prec - 1, &ml,
			     &post_shift, &dummy_int);
	  if (ml >= HOST_WIDE_INT_1U << (prec - 1))
	    {
	      this_mode = 4 + (d < 0);
	      ml |= HOST_WIDE_INT_M1U << (prec - 1);
	    }
	  else
	    this_mode = 2 + (d < 0);
	}
      mulc[i] = ml;
      post_shifts[i] = post_shift;
      if ((i && !has_vector_shift && post_shifts[0] != post_shift)
	  || post_shift >= prec
	  || pre_shifts[i] >= prec)
	this_mode = -2;

      if (i == 0)
	mode = this_mode;
      else if (mode != this_mode)
	mode = -2;
    }

  if (use_pow2)
    {
      tree addend = NULL_TREE;
      if (sign_p == SIGNED)
	{
	  tree uns_type;

	  /* Both division and remainder sequences need
	     op0 < 0 ? mask : 0 computed.  It can be either computed as
	     (type) (((uns_type) (op0 >> (prec - 1))) >> (prec - shifts[i]))
	     if none of the shifts is 0, or as the conditional.  */
	  for (i = 0; i < nunits; i++)
	    if (shifts[i] == 0)
	      break;
	  uns_type
	    = build_vector_type (build_nonstandard_integer_type (prec, 1),
				 nunits);
	  if (i == nunits && TYPE_MODE (uns_type) == TYPE_MODE (type))
	    {
	      for (i = 0; i < nunits; i++)
		shift_temps[i] = prec - 1;
	      cur_op = add_rshift (gsi, type, op0, shift_temps);
	      if (cur_op != NULL_TREE)
		{
		  cur_op = gimplify_build1 (gsi, VIEW_CONVERT_EXPR,
					    uns_type, cur_op);
		  for (i = 0; i < nunits; i++)
		    shift_temps[i] = prec - shifts[i];
		  cur_op = add_rshift (gsi, uns_type, cur_op, shift_temps);
		  if (cur_op != NULL_TREE)
		    addend = gimplify_build1 (gsi, VIEW_CONVERT_EXPR,
					      type, cur_op);
		}
	    }
	  if (addend == NULL_TREE
	      && expand_vec_cond_expr_p (type, type, LT_EXPR))
	    {
	      tree zero, cst, cond, mask_type;
	      gimple *stmt;

	      mask_type = truth_type_for (type);
	      zero = build_zero_cst (type);
	      cond = build2 (LT_EXPR, mask_type, op0, zero);
	      tree_vector_builder vec (type, nunits, 1);
	      for (i = 0; i < nunits; i++)
		vec.quick_push (build_int_cst (TREE_TYPE (type),
					       (HOST_WIDE_INT_1U
						<< shifts[i]) - 1));
	      cst = vec.build ();
	      addend = make_ssa_name (type);
	      stmt = gimple_build_assign (addend, VEC_COND_EXPR, cond,
					  cst, zero);
	      gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
	    }
	}
      if (code == TRUNC_DIV_EXPR)
	{
	  if (sign_p == UNSIGNED)
	    {
	      /* q = op0 >> shift;  */
	      cur_op = add_rshift (gsi, type, op0, shifts);
	      if (cur_op != NULL_TREE)
		return cur_op;
	    }
	  else if (addend != NULL_TREE)
	    {
	      /* t1 = op0 + addend;
		 q = t1 >> shift;  */
	      op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
	      if (op != unknown_optab
		  && optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
		{
		  cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, op0, addend);
		  cur_op = add_rshift (gsi, type, cur_op, shifts);
		  if (cur_op != NULL_TREE)
		    return cur_op;
		}
	    }
	}
      else
	{
	  tree mask;
	  tree_vector_builder vec (type, nunits, 1);
	  for (i = 0; i < nunits; i++)
	    vec.quick_push (build_int_cst (TREE_TYPE (type),
					   (HOST_WIDE_INT_1U
					    << shifts[i]) - 1));
	  mask = vec.build ();
	  op = optab_for_tree_code (BIT_AND_EXPR, type, optab_default);
	  if (op != unknown_optab
	      && optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
	    {
	      if (sign_p == UNSIGNED)
		/* r = op0 & mask;  */
		return gimplify_build2 (gsi, BIT_AND_EXPR, type, op0, mask);
	      else if (addend != NULL_TREE)
		{
		  /* t1 = op0 + addend;
		     t2 = t1 & mask;
		     r = t2 - addend;  */
		  op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
		  if (op != unknown_optab
		      && optab_handler (op, TYPE_MODE (type))
			 != CODE_FOR_nothing)
		    {
		      cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, op0,
						addend);
		      cur_op = gimplify_build2 (gsi, BIT_AND_EXPR, type,
						cur_op, mask);
		      op = optab_for_tree_code (MINUS_EXPR, type,
						optab_default);
		      if (op != unknown_optab
			  && optab_handler (op, TYPE_MODE (type))
			     != CODE_FOR_nothing)
			return gimplify_build2 (gsi, MINUS_EXPR, type,
						cur_op, addend);
		    }
		}
	    }
	}
    }

  if (mode == -2 || BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
    return NULL_TREE;

  if (!can_mult_highpart_p (TYPE_MODE (type), TYPE_UNSIGNED (type)))
    return NULL_TREE;

  cur_op = op0;

  switch (mode)
    {
    case 0:
      gcc_assert (sign_p == UNSIGNED);
      /* t1 = oprnd0 >> pre_shift;
	 t2 = t1 h* ml;
	 q = t2 >> post_shift;  */
      cur_op = add_rshift (gsi, type, cur_op, pre_shifts);
      if (cur_op == NULL_TREE)
	return NULL_TREE;
      break;
    case 1:
      gcc_assert (sign_p == UNSIGNED);
      for (i = 0; i < nunits; i++)
	{
	  shift_temps[i] = 1;
	  post_shifts[i]--;
	}
      break;
    case 2:
    case 3:
    case 4:
    case 5:
      gcc_assert (sign_p == SIGNED);
      for (i = 0; i < nunits; i++)
	shift_temps[i] = prec - 1;
      break;
    default:
      return NULL_TREE;
    }

  tree_vector_builder vec (type, nunits, 1);
  for (i = 0; i < nunits; i++)
    vec.quick_push (build_int_cst (TREE_TYPE (type), mulc[i]));
  mulcst = vec.build ();

  cur_op = gimplify_build2 (gsi, MULT_HIGHPART_EXPR, type, cur_op, mulcst);

  switch (mode)
    {
    case 0:
      /* t1 = oprnd0 >> pre_shift;
	 t2 = t1 h* ml;
	 q = t2 >> post_shift;  */
      cur_op = add_rshift (gsi, type, cur_op, post_shifts);
      break;
    case 1:
      /* t1 = oprnd0 h* ml;
	 t2 = oprnd0 - t1;
	 t3 = t2 >> 1;
	 t4 = t1 + t3;
	 q = t4 >> (post_shift - 1);  */
      op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
      if (op == unknown_optab
	  || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
	return NULL_TREE;
      tem = gimplify_build2 (gsi, MINUS_EXPR, type, op0, cur_op);
      tem = add_rshift (gsi, type, tem, shift_temps);
      op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
      if (op == unknown_optab
	  || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
	return NULL_TREE;
      tem = gimplify_build2 (gsi, PLUS_EXPR, type, cur_op, tem);
      cur_op = add_rshift (gsi, type, tem, post_shifts);
      if (cur_op == NULL_TREE)
	return NULL_TREE;
      break;
    case 2:
    case 3:
    case 4:
    case 5:
      /* t1 = oprnd0 h* ml;
	 t2 = t1; [ iff (mode & 2) != 0 ]
	 t2 = t1 + oprnd0; [ iff (mode & 2) == 0 ]
	 t3 = t2 >> post_shift;
	 t4 = oprnd0 >> (prec - 1);
	 q = t3 - t4; [ iff (mode & 1) == 0 ]
	 q = t4 - t3; [ iff (mode & 1) != 0 ]  */
      if ((mode & 2) == 0)
	{
	  op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
	  if (op == unknown_optab
	      || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
	    return NULL_TREE;
	  cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, cur_op, op0);
	}
      cur_op = add_rshift (gsi, type, cur_op, post_shifts);
      if (cur_op == NULL_TREE)
	return NULL_TREE;
      tem = add_rshift (gsi, type, op0, shift_temps);
      if (tem == NULL_TREE)
	return NULL_TREE;
      op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
      if (op == unknown_optab
	  || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
	return NULL_TREE;
      if ((mode & 1) == 0)
	cur_op = gimplify_build2 (gsi, MINUS_EXPR, type, cur_op, tem);
      else
	cur_op = gimplify_build2 (gsi, MINUS_EXPR, type, tem, cur_op);
      break;
    default:
      gcc_unreachable ();
    }

  if (code == TRUNC_DIV_EXPR)
    return cur_op;

  /* We divided.  Now finish by:
     t1 = q * oprnd1;
     r = oprnd0 - t1;  */
  op = optab_for_tree_code (MULT_EXPR, type, optab_default);
  if (op == unknown_optab
      || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
    return NULL_TREE;
  if (use_abs_op1)
    {
      tree_vector_builder elts;
      if (!elts.new_unary_operation (type, op1, false))
	return NULL_TREE;
      unsigned int count = elts.encoded_nelts ();
      for (unsigned int i = 0; i < count; ++i)
	{
	  tree elem1 = VECTOR_CST_ELT (op1, i);

	  tree elt = const_unop (ABS_EXPR, TREE_TYPE (elem1), elem1);
	  if (elt == NULL_TREE)
	    return NULL_TREE;
	  elts.quick_push (elt);
	}
      op1 = elts.build ();
    }
  tem = gimplify_build2 (gsi, MULT_EXPR, type, cur_op, op1);
  op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
  if (op == unknown_optab
      || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
    return NULL_TREE;
  return gimplify_build2 (gsi, MINUS_EXPR, type, op0, tem);
}

/* Expand a vector condition to scalars, by using many conditions
   on the vector's elements.  */
static void
expand_vector_condition (gimple_stmt_iterator *gsi)
{
  gassign *stmt = as_a <gassign *> (gsi_stmt (*gsi));
  tree type = gimple_expr_type (stmt);
  tree a = gimple_assign_rhs1 (stmt);
  tree a1 = a;
  tree a2 = NULL_TREE;
  bool a_is_comparison = false;
  bool a_is_scalar_bitmask = false;
  tree b = gimple_assign_rhs2 (stmt);
  tree c = gimple_assign_rhs3 (stmt);
  vec<constructor_elt, va_gc> *v;
  tree constr;
  tree inner_type = TREE_TYPE (type);
  tree cond_type = TREE_TYPE (TREE_TYPE (a));
  tree comp_inner_type = cond_type;
  tree width = TYPE_SIZE (inner_type);
  tree index = bitsize_int (0);
  tree comp_width = width;
  tree comp_index = index;
  int i;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  if (!is_gimple_val (a))
    {
      gcc_assert (COMPARISON_CLASS_P (a));
      a_is_comparison = true;
      a1 = TREE_OPERAND (a, 0);
      a2 = TREE_OPERAND (a, 1);
      comp_inner_type = TREE_TYPE (TREE_TYPE (a1));
      comp_width = TYPE_SIZE (comp_inner_type);
    }

  if (expand_vec_cond_expr_p (type, TREE_TYPE (a1), TREE_CODE (a)))
    return;

  /* Handle vector boolean types with bitmasks.  If there is a comparison
     and we can expand the comparison into the vector boolean bitmask,
     or otherwise if it is compatible with type, we can transform
      vbfld_1 = x_2 < y_3 ? vbfld_4 : vbfld_5;
     into
      tmp_6 = x_2 < y_3;
      tmp_7 = tmp_6 & vbfld_4;
      tmp_8 = ~tmp_6;
      tmp_9 = tmp_8 & vbfld_5;
      vbfld_1 = tmp_7 | tmp_9;
     Similarly for vbfld_10 instead of x_2 < y_3.  */
  if (VECTOR_BOOLEAN_TYPE_P (type)
      && SCALAR_INT_MODE_P (TYPE_MODE (type))
      && known_lt (GET_MODE_BITSIZE (TYPE_MODE (type)),
		   TYPE_VECTOR_SUBPARTS (type)
		   * GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (type))))
      && (a_is_comparison
	  ? useless_type_conversion_p (type, TREE_TYPE (a))
	  : expand_vec_cmp_expr_p (TREE_TYPE (a1), type, TREE_CODE (a))))
    {
      if (a_is_comparison)
	a = gimplify_build2 (gsi, TREE_CODE (a), type, a1, a2);
      a1 = gimplify_build2 (gsi, BIT_AND_EXPR, type, a, b);
      a2 = gimplify_build1 (gsi, BIT_NOT_EXPR, type, a);
      a2 = gimplify_build2 (gsi, BIT_AND_EXPR, type, a2, c);
      a = gimplify_build2 (gsi, BIT_IOR_EXPR, type, a1, a2);
      gimple_assign_set_rhs_from_tree (gsi, a);
      update_stmt (gsi_stmt (*gsi));
      return;
    }

  /* TODO: try and find a smaller vector type.  */

  warning_at (loc, OPT_Wvector_operation_performance,
	      "vector condition will be expanded piecewise");

  if (!a_is_comparison
      && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (a))
      && SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (a)))
      && known_lt (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (a))),
		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (a))
		   * GET_MODE_BITSIZE (SCALAR_TYPE_MODE
						(TREE_TYPE (TREE_TYPE (a))))))
    {
      a_is_scalar_bitmask = true;
      int prec = GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (a)));
      tree atype = build_nonstandard_integer_type (prec, 1);
      a = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, atype, a);
    }

  int nunits = nunits_for_known_piecewise_op (type);
  vec_alloc (v, nunits);
  for (i = 0; i < nunits; i++)
    {
      tree aa, result;
      tree bb = tree_vec_extract (gsi, inner_type, b, width, index);
      tree cc = tree_vec_extract (gsi, inner_type, c, width, index);
      if (a_is_comparison)
	{
	  tree aa1 = tree_vec_extract (gsi, comp_inner_type, a1,
				       comp_width, comp_index);
	  tree aa2 = tree_vec_extract (gsi, comp_inner_type, a2,
				       comp_width, comp_index);
	  aa = fold_build2 (TREE_CODE (a), cond_type, aa1, aa2);
	}
      else if (a_is_scalar_bitmask)
	{
	  wide_int w = wi::set_bit_in_zero (i, TYPE_PRECISION (TREE_TYPE (a)));
	  result = gimplify_build2 (gsi, BIT_AND_EXPR, TREE_TYPE (a),
				    a, wide_int_to_tree (TREE_TYPE (a), w));
	  aa = fold_build2 (NE_EXPR, boolean_type_node, result,
			    build_zero_cst (TREE_TYPE (a)));
	}
      else
	aa = tree_vec_extract (gsi, cond_type, a, width, index);
      result = gimplify_build3 (gsi, COND_EXPR, inner_type, aa, bb, cc);
      constructor_elt ce = {NULL_TREE, result};
      v->quick_push (ce);
      index = int_const_binop (PLUS_EXPR, index, width);
      if (width == comp_width)
	comp_index = index;
      else
	comp_index = int_const_binop (PLUS_EXPR, comp_index, comp_width);
    }

  constr = build_constructor (type, v);
  gimple_assign_set_rhs_from_tree (gsi, constr);
  update_stmt (gsi_stmt (*gsi));
}

static tree
expand_vector_operation (gimple_stmt_iterator *gsi, tree type, tree compute_type,
			 gassign *assign, enum tree_code code)
{
  machine_mode compute_mode = TYPE_MODE (compute_type);

  /* If the compute mode is not a vector mode (hence we are not decomposing
     a BLKmode vector to smaller, hardware-supported vectors), we may want
     to expand the operations in parallel.  */
  if (!VECTOR_MODE_P (compute_mode))
    switch (code)
      {
      case PLUS_EXPR:
      case MINUS_EXPR:
        if (ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_TRAPS (type))
	  return expand_vector_addition (gsi, do_binop, do_plus_minus, type,
					 gimple_assign_rhs1 (assign),
					 gimple_assign_rhs2 (assign), code);
	break;

      case NEGATE_EXPR:
        if (ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_TRAPS (type))
          return expand_vector_addition (gsi, do_unop, do_negate, type,
		      		         gimple_assign_rhs1 (assign),
					 NULL_TREE, code);
	break;

      case BIT_AND_EXPR:
      case BIT_IOR_EXPR:
      case BIT_XOR_EXPR:
        return expand_vector_parallel (gsi, do_binop, type,
		      		       gimple_assign_rhs1 (assign),
				       gimple_assign_rhs2 (assign), code);

      case BIT_NOT_EXPR:
        return expand_vector_parallel (gsi, do_unop, type,
		      		       gimple_assign_rhs1 (assign),
        			       NULL_TREE, code);
      case EQ_EXPR:
      case NE_EXPR:
      case GT_EXPR:
      case LT_EXPR:
      case GE_EXPR:
      case LE_EXPR:
      case UNEQ_EXPR:
      case UNGT_EXPR:
      case UNLT_EXPR:
      case UNGE_EXPR:
      case UNLE_EXPR:
      case LTGT_EXPR:
      case ORDERED_EXPR:
      case UNORDERED_EXPR:
	{
	  tree rhs1 = gimple_assign_rhs1 (assign);
	  tree rhs2 = gimple_assign_rhs2 (assign);

	  return expand_vector_comparison (gsi, type, rhs1, rhs2, code);
	}

      case TRUNC_DIV_EXPR:
      case TRUNC_MOD_EXPR:
	{
	  tree rhs1 = gimple_assign_rhs1 (assign);
	  tree rhs2 = gimple_assign_rhs2 (assign);
	  tree ret;

	  if (!optimize
	      || !VECTOR_INTEGER_TYPE_P (type)
	      || TREE_CODE (rhs2) != VECTOR_CST
	      || !VECTOR_MODE_P (TYPE_MODE (type)))
	    break;

	  ret = expand_vector_divmod (gsi, type, rhs1, rhs2, code);
	  if (ret != NULL_TREE)
	    return ret;
	  break;
	}

      default:
	break;
      }

  if (TREE_CODE_CLASS (code) == tcc_unary)
    return expand_vector_piecewise (gsi, do_unop, type, compute_type,
				    gimple_assign_rhs1 (assign),
				    NULL_TREE, code);
  else
    return expand_vector_piecewise (gsi, do_binop, type, compute_type,
				    gimple_assign_rhs1 (assign),
				    gimple_assign_rhs2 (assign), code);
}

/* Try to optimize
   a_5 = { b_7, b_7 + 3, b_7 + 6, b_7 + 9 };
   style stmts into:
   _9 = { b_7, b_7, b_7, b_7 };
   a_5 = _9 + { 0, 3, 6, 9 };
   because vector splat operation is usually more efficient
   than piecewise initialization of the vector.  */

static void
optimize_vector_constructor (gimple_stmt_iterator *gsi)
{
  gassign *stmt = as_a <gassign *> (gsi_stmt (*gsi));
  tree lhs = gimple_assign_lhs (stmt);
  tree rhs = gimple_assign_rhs1 (stmt);
  tree type = TREE_TYPE (rhs);
  unsigned int i, j;
  unsigned HOST_WIDE_INT nelts;
  bool all_same = true;
  constructor_elt *elt;
  gimple *g;
  tree base = NULL_TREE;
  optab op;

  if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts)
      || nelts <= 2
      || CONSTRUCTOR_NELTS (rhs) != nelts)
    return;
  op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
  if (op == unknown_optab
      || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
    return;
  FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (rhs), i, elt)
    if (TREE_CODE (elt->value) != SSA_NAME
	|| TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
      return;
    else
      {
	tree this_base = elt->value;
	if (this_base != CONSTRUCTOR_ELT (rhs, 0)->value)
	  all_same = false;
	for (j = 0; j < nelts + 1; j++)
	  {
	    g = SSA_NAME_DEF_STMT (this_base);
	    if (is_gimple_assign (g)
		&& gimple_assign_rhs_code (g) == PLUS_EXPR
		&& TREE_CODE (gimple_assign_rhs2 (g)) == INTEGER_CST
		&& TREE_CODE (gimple_assign_rhs1 (g)) == SSA_NAME
		&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g)))
	      this_base = gimple_assign_rhs1 (g);
	    else
	      break;
	  }
	if (i == 0)
	  base = this_base;
	else if (this_base != base)
	  return;
      }
  if (all_same)
    return;
  tree_vector_builder cst (type, nelts, 1);
  for (i = 0; i < nelts; i++)
    {
      tree this_base = CONSTRUCTOR_ELT (rhs, i)->value;
      tree elt = build_zero_cst (TREE_TYPE (base));
      while (this_base != base)
	{
	  g = SSA_NAME_DEF_STMT (this_base);
	  elt = fold_binary (PLUS_EXPR, TREE_TYPE (base),
			     elt, gimple_assign_rhs2 (g));
	  if (elt == NULL_TREE
	      || TREE_CODE (elt) != INTEGER_CST
	      || TREE_OVERFLOW (elt))
	    return;
	  this_base = gimple_assign_rhs1 (g);
	}
      cst.quick_push (elt);
    }
  for (i = 0; i < nelts; i++)
    CONSTRUCTOR_ELT (rhs, i)->value = base;
  g = gimple_build_assign (make_ssa_name (type), rhs);
  gsi_insert_before (gsi, g, GSI_SAME_STMT);
  g = gimple_build_assign (lhs, PLUS_EXPR, gimple_assign_lhs (g),
			   cst.build ());
  gsi_replace (gsi, g, false);
}

/* Return a type for the widest vector mode whose components are of type
   TYPE, or NULL_TREE if none is found.  */

static tree
type_for_widest_vector_mode (tree type, optab op)
{
  machine_mode inner_mode = TYPE_MODE (type);
  machine_mode best_mode = VOIDmode, mode;
  poly_int64 best_nunits = 0;

  if (SCALAR_FLOAT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_FLOAT;
  else if (SCALAR_FRACT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_FRACT;
  else if (SCALAR_UFRACT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_UFRACT;
  else if (SCALAR_ACCUM_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_ACCUM;
  else if (SCALAR_UACCUM_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_UACCUM;
  else if (inner_mode == BImode)
    mode = MIN_MODE_VECTOR_BOOL;
  else
    mode = MIN_MODE_VECTOR_INT;

  FOR_EACH_MODE_FROM (mode, mode)
    if (GET_MODE_INNER (mode) == inner_mode
	&& maybe_gt (GET_MODE_NUNITS (mode), best_nunits)
	&& optab_handler (op, mode) != CODE_FOR_nothing)
      best_mode = mode, best_nunits = GET_MODE_NUNITS (mode);

  if (best_mode == VOIDmode)
    return NULL_TREE;
  else
    return build_vector_type_for_mode (type, best_mode);
}


/* Build a reference to the element of the vector VECT.  Function
   returns either the element itself, either BIT_FIELD_REF, or an
   ARRAY_REF expression.

   GSI is required to insert temporary variables while building a
   refernece to the element of the vector VECT.

   PTMPVEC is a pointer to the temporary variable for caching
   purposes.  In case when PTMPVEC is NULL new temporary variable
   will be created.  */
static tree
vector_element (gimple_stmt_iterator *gsi, tree vect, tree idx, tree *ptmpvec)
{
  tree vect_type, vect_elt_type;
  gimple *asgn;
  tree tmpvec;
  tree arraytype;
  bool need_asgn = true;
  unsigned int elements;

  vect_type = TREE_TYPE (vect);
  vect_elt_type = TREE_TYPE (vect_type);
  elements = nunits_for_known_piecewise_op (vect_type);

  if (TREE_CODE (idx) == INTEGER_CST)
    {
      unsigned HOST_WIDE_INT index;

      /* Given that we're about to compute a binary modulus,
	 we don't care about the high bits of the value.  */
      index = TREE_INT_CST_LOW (idx);
      if (!tree_fits_uhwi_p (idx) || index >= elements)
	{
	  index &= elements - 1;
	  idx = build_int_cst (TREE_TYPE (idx), index);
	}

      /* When lowering a vector statement sequence do some easy
         simplification by looking through intermediate vector results.  */
      if (TREE_CODE (vect) == SSA_NAME)
	{
	  gimple *def_stmt = SSA_NAME_DEF_STMT (vect);
	  if (is_gimple_assign (def_stmt)
	      && (gimple_assign_rhs_code (def_stmt) == VECTOR_CST
		  || gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR))
	    vect = gimple_assign_rhs1 (def_stmt);
	}

      if (TREE_CODE (vect) == VECTOR_CST)
	return VECTOR_CST_ELT (vect, index);
      else if (TREE_CODE (vect) == CONSTRUCTOR
	       && (CONSTRUCTOR_NELTS (vect) == 0
		   || TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (vect, 0)->value))
		      != VECTOR_TYPE))
        {
	  if (index < CONSTRUCTOR_NELTS (vect))
	    return CONSTRUCTOR_ELT (vect, index)->value;
          return build_zero_cst (vect_elt_type);
        }
      else
        {
	  tree size = TYPE_SIZE (vect_elt_type);
	  tree pos = fold_build2 (MULT_EXPR, bitsizetype, bitsize_int (index),
				  size);
	  return fold_build3 (BIT_FIELD_REF, vect_elt_type, vect, size, pos);
        }
    }

  if (!ptmpvec)
    tmpvec = create_tmp_var (vect_type, "vectmp");
  else if (!*ptmpvec)
    tmpvec = *ptmpvec = create_tmp_var (vect_type, "vectmp");
  else
    {
      tmpvec = *ptmpvec;
      need_asgn = false;
    }

  if (need_asgn)
    {
      TREE_ADDRESSABLE (tmpvec) = 1;
      asgn = gimple_build_assign (tmpvec, vect);
      gsi_insert_before (gsi, asgn, GSI_SAME_STMT);
    }

  arraytype = build_array_type_nelts (vect_elt_type, elements);
  return build4 (ARRAY_REF, vect_elt_type,
                 build1 (VIEW_CONVERT_EXPR, arraytype, tmpvec),
                 idx, NULL_TREE, NULL_TREE);
}

/* Check if VEC_PERM_EXPR within the given setting is supported
   by hardware, or lower it piecewise.

   When VEC_PERM_EXPR has the same first and second operands:
   VEC_PERM_EXPR <v0, v0, mask> the lowered version would be
   {v0[mask[0]], v0[mask[1]], ...}
   MASK and V0 must have the same number of elements.

   Otherwise VEC_PERM_EXPR <v0, v1, mask> is lowered to
   {mask[0] < len(v0) ? v0[mask[0]] : v1[mask[0]], ...}
   V0 and V1 must have the same type.  MASK, V0, V1 must have the
   same number of arguments.  */

static void
lower_vec_perm (gimple_stmt_iterator *gsi)
{
  gassign *stmt = as_a <gassign *> (gsi_stmt (*gsi));
  tree mask = gimple_assign_rhs3 (stmt);
  tree vec0 = gimple_assign_rhs1 (stmt);
  tree vec1 = gimple_assign_rhs2 (stmt);
  tree vect_type = TREE_TYPE (vec0);
  tree mask_type = TREE_TYPE (mask);
  tree vect_elt_type = TREE_TYPE (vect_type);
  tree mask_elt_type = TREE_TYPE (mask_type);
  unsigned HOST_WIDE_INT elements;
  vec<constructor_elt, va_gc> *v;
  tree constr, t, si, i_val;
  tree vec0tmp = NULL_TREE, vec1tmp = NULL_TREE, masktmp = NULL_TREE;
  bool two_operand_p = !operand_equal_p (vec0, vec1, 0);
  location_t loc = gimple_location (gsi_stmt (*gsi));
  unsigned i;

  if (!TYPE_VECTOR_SUBPARTS (vect_type).is_constant (&elements))
    return;

  if (TREE_CODE (mask) == SSA_NAME)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (mask);
      if (is_gimple_assign (def_stmt)
	  && gimple_assign_rhs_code (def_stmt) == VECTOR_CST)
	mask = gimple_assign_rhs1 (def_stmt);
    }

  vec_perm_builder sel_int;

  if (TREE_CODE (mask) == VECTOR_CST
      && tree_to_vec_perm_builder (&sel_int, mask))
    {
      vec_perm_indices indices (sel_int, 2, elements);
      if (can_vec_perm_const_p (TYPE_MODE (vect_type), indices))
	{
	  gimple_assign_set_rhs3 (stmt, mask);
	  update_stmt (stmt);
	  return;
	}
      /* Also detect vec_shr pattern - VEC_PERM_EXPR with zero
	 vector as VEC1 and a right element shift MASK.  */
      if (optab_handler (vec_shr_optab, TYPE_MODE (vect_type))
	  != CODE_FOR_nothing
	  && TREE_CODE (vec1) == VECTOR_CST
	  && initializer_zerop (vec1)
	  && maybe_ne (indices[0], 0)
	  && known_lt (poly_uint64 (indices[0]), elements))
	{
	  bool ok_p = indices.series_p (0, 1, indices[0], 1);
	  if (!ok_p)
	    {
	      for (i = 1; i < elements; ++i)
		{
		  poly_uint64 actual = indices[i];
		  poly_uint64 expected = i + indices[0];
		  /* Indices into the second vector are all equivalent.  */
		  if (maybe_lt (actual, elements)
		      ? maybe_ne (actual, expected)
		      : maybe_lt (expected, elements))
		    break;
		}
	      ok_p = i == elements;
	    }
	  if (ok_p)
	    {
	      gimple_assign_set_rhs3 (stmt, mask);
	      update_stmt (stmt);
	      return;
	    }
	}
      /* And similarly vec_shl pattern.  */
      if (optab_handler (vec_shl_optab, TYPE_MODE (vect_type))
	  != CODE_FOR_nothing
	  && TREE_CODE (vec0) == VECTOR_CST
	  && initializer_zerop (vec0))
	{
	  unsigned int first = 0;
	  for (i = 0; i < elements; ++i)
	    if (known_eq (poly_uint64 (indices[i]), elements))
	      {
		if (i == 0 || first)
		  break;
		first = i;
	      }
	    else if (first
		     ? maybe_ne (poly_uint64 (indices[i]),
					      elements + i - first)
		     : maybe_ge (poly_uint64 (indices[i]), elements))
	      break;
	  if (i == elements)
	    {
	      gimple_assign_set_rhs3 (stmt, mask);
	      update_stmt (stmt);
	      return;
	    }
	}
    }
  else if (can_vec_perm_var_p (TYPE_MODE (vect_type)))
    return;
  
  warning_at (loc, OPT_Wvector_operation_performance,
              "vector shuffling operation will be expanded piecewise");

  vec_alloc (v, elements);
  for (i = 0; i < elements; i++)
    {
      si = size_int (i);
      i_val = vector_element (gsi, mask, si, &masktmp);

      if (TREE_CODE (i_val) == INTEGER_CST)
        {
	  unsigned HOST_WIDE_INT index;

	  index = TREE_INT_CST_LOW (i_val);
	  if (!tree_fits_uhwi_p (i_val) || index >= elements)
	    i_val = build_int_cst (mask_elt_type, index & (elements - 1));

          if (two_operand_p && (index & elements) != 0)
	    t = vector_element (gsi, vec1, i_val, &vec1tmp);
	  else
	    t = vector_element (gsi, vec0, i_val, &vec0tmp);

          t = force_gimple_operand_gsi (gsi, t, true, NULL_TREE,
					true, GSI_SAME_STMT);
        }
      else
        {
	  tree cond = NULL_TREE, v0_val;

	  if (two_operand_p)
	    {
	      cond = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
			          build_int_cst (mask_elt_type, elements));
	      cond = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
					       true, GSI_SAME_STMT);
	    }

	  i_val = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
			       build_int_cst (mask_elt_type, elements - 1));
	  i_val = force_gimple_operand_gsi (gsi, i_val, true, NULL_TREE,
					    true, GSI_SAME_STMT);

	  v0_val = vector_element (gsi, vec0, i_val, &vec0tmp);
	  v0_val = force_gimple_operand_gsi (gsi, v0_val, true, NULL_TREE,
					     true, GSI_SAME_STMT);

	  if (two_operand_p)
	    {
	      tree v1_val;

	      v1_val = vector_element (gsi, vec1, i_val, &vec1tmp);
	      v1_val = force_gimple_operand_gsi (gsi, v1_val, true, NULL_TREE,
						 true, GSI_SAME_STMT);

	      cond = fold_build2 (EQ_EXPR, boolean_type_node,
				  cond, build_zero_cst (mask_elt_type));
	      cond = fold_build3 (COND_EXPR, vect_elt_type,
				  cond, v0_val, v1_val);
              t = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
					    true, GSI_SAME_STMT);
            }
	  else
	    t = v0_val;
        }

      CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);
    }

  constr = build_constructor (vect_type, v);
  gimple_assign_set_rhs_from_tree (gsi, constr);
  update_stmt (gsi_stmt (*gsi));
}

/* If OP is a uniform vector return the element it is a splat from.  */

static tree
ssa_uniform_vector_p (tree op)
{
  if (TREE_CODE (op) == VECTOR_CST
      || TREE_CODE (op) == VEC_DUPLICATE_EXPR
      || TREE_CODE (op) == CONSTRUCTOR)
    return uniform_vector_p (op);
  if (TREE_CODE (op) == SSA_NAME)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (op);
      if (gimple_assign_single_p (def_stmt))
	return uniform_vector_p (gimple_assign_rhs1 (def_stmt));
    }
  return NULL_TREE;
}

/* Return type in which CODE operation with optab OP can be
   computed.  */

static tree
get_compute_type (enum tree_code code, optab op, tree type)
{
  /* For very wide vectors, try using a smaller vector mode.  */
  tree compute_type = type;
  if (op
      && (!VECTOR_MODE_P (TYPE_MODE (type))
	  || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing))
    {
      tree vector_compute_type
	= type_for_widest_vector_mode (TREE_TYPE (type), op);
      if (vector_compute_type != NULL_TREE
	  && subparts_gt (compute_type, vector_compute_type)
	  && maybe_ne (TYPE_VECTOR_SUBPARTS (vector_compute_type), 1U)
	  && (optab_handler (op, TYPE_MODE (vector_compute_type))
	      != CODE_FOR_nothing))
	compute_type = vector_compute_type;
    }

  /* If we are breaking a BLKmode vector into smaller pieces,
     type_for_widest_vector_mode has already looked into the optab,
     so skip these checks.  */
  if (compute_type == type)
    {
      machine_mode compute_mode = TYPE_MODE (compute_type);
      if (VECTOR_MODE_P (compute_mode))
	{
	  if (op && optab_handler (op, compute_mode) != CODE_FOR_nothing)
	    return compute_type;
	  if (code == MULT_HIGHPART_EXPR
	      && can_mult_highpart_p (compute_mode,
				      TYPE_UNSIGNED (compute_type)))
	    return compute_type;
	}
      /* There is no operation in hardware, so fall back to scalars.  */
      compute_type = TREE_TYPE (type);
    }

  return compute_type;
}

static tree
do_cond (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
	 tree bitpos, tree bitsize, enum tree_code code,
	 tree type ATTRIBUTE_UNUSED)
{
  if (TREE_CODE (TREE_TYPE (a)) == VECTOR_TYPE)
    a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  if (TREE_CODE (TREE_TYPE (b)) == VECTOR_TYPE)
    b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
  tree cond = gimple_assign_rhs1 (gsi_stmt (*gsi));
  return gimplify_build3 (gsi, code, inner_type, unshare_expr (cond), a, b);
}

/* Expand a vector COND_EXPR to scalars, piecewise.  */
static void
expand_vector_scalar_condition (gimple_stmt_iterator *gsi)
{
  gassign *stmt = as_a <gassign *> (gsi_stmt (*gsi));
  tree type = gimple_expr_type (stmt);
  tree compute_type = get_compute_type (COND_EXPR, mov_optab, type);
  machine_mode compute_mode = TYPE_MODE (compute_type);
  gcc_assert (compute_mode != BLKmode);
  tree lhs = gimple_assign_lhs (stmt);
  tree rhs2 = gimple_assign_rhs2 (stmt);
  tree rhs3 = gimple_assign_rhs3 (stmt);
  tree new_rhs;

  /* If the compute mode is not a vector mode (hence we are not decomposing
     a BLKmode vector to smaller, hardware-supported vectors), we may want
     to expand the operations in parallel.  */
  if (!VECTOR_MODE_P (compute_mode))
    new_rhs = expand_vector_parallel (gsi, do_cond, type, rhs2, rhs3,
				      COND_EXPR);
  else
    new_rhs = expand_vector_piecewise (gsi, do_cond, type, compute_type,
				       rhs2, rhs3, COND_EXPR);
  if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs)))
    new_rhs = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
			       new_rhs);

  /* NOTE:  We should avoid using gimple_assign_set_rhs_from_tree. One
     way to do it is change expand_vector_operation and its callees to
     return a tree_code, RHS1 and RHS2 instead of a tree. */
  gimple_assign_set_rhs_from_tree (gsi, new_rhs);
  update_stmt (gsi_stmt (*gsi));
}

/* Callback for expand_vector_piecewise to do VEC_CONVERT ifn call
   lowering.  If INNER_TYPE is not a vector type, this is a scalar
   fallback.  */

static tree
do_vec_conversion (gimple_stmt_iterator *gsi, tree inner_type, tree a,
		   tree decl, tree bitpos, tree bitsize,
		   enum tree_code code, tree type)
{
  a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  if (!VECTOR_TYPE_P (inner_type))
    return gimplify_build1 (gsi, code, TREE_TYPE (type), a);
  if (code == CALL_EXPR)
    {
      gimple *g = gimple_build_call (decl, 1, a);
      tree lhs = make_ssa_name (TREE_TYPE (TREE_TYPE (decl)));
      gimple_call_set_lhs (g, lhs);
      gsi_insert_before (gsi, g, GSI_SAME_STMT);
      return lhs;
    }
  else
    {
      tree outer_type = build_vector_type (TREE_TYPE (type),
					   TYPE_VECTOR_SUBPARTS (inner_type));
      return gimplify_build1 (gsi, code, outer_type, a);
    }
}

/* Similarly, but for narrowing conversion.  */

static tree
do_vec_narrow_conversion (gimple_stmt_iterator *gsi, tree inner_type, tree a,
			  tree, tree bitpos, tree, enum tree_code code,
			  tree type)
{
  tree itype = build_vector_type (TREE_TYPE (inner_type),
				  exact_div (TYPE_VECTOR_SUBPARTS (inner_type),
					     2));
  tree b = tree_vec_extract (gsi, itype, a, TYPE_SIZE (itype), bitpos);
  tree c = tree_vec_extract (gsi, itype, a, TYPE_SIZE (itype),
			     int_const_binop (PLUS_EXPR, bitpos,
					      TYPE_SIZE (itype)));
  tree outer_type = build_vector_type (TREE_TYPE (type),
				       TYPE_VECTOR_SUBPARTS (inner_type));
  return gimplify_build2 (gsi, code, outer_type, b, c);
}

/* Expand VEC_CONVERT ifn call.  */

static void
expand_vector_conversion (gimple_stmt_iterator *gsi)
{
  gimple *stmt = gsi_stmt (*gsi);
  gimple *g;
  tree lhs = gimple_call_lhs (stmt);
  if (lhs == NULL_TREE)
    {
      g = gimple_build_nop ();
      gsi_replace (gsi, g, false);
      return;
    }
  tree arg = gimple_call_arg (stmt, 0);
  tree ret_type = TREE_TYPE (lhs);
  tree arg_type = TREE_TYPE (arg);
  tree new_rhs, compute_type = TREE_TYPE (arg_type);
  enum tree_code code = NOP_EXPR;
  enum tree_code code1 = ERROR_MARK;
  enum { NARROW, NONE, WIDEN } modifier = NONE;
  optab optab1 = unknown_optab;

  gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type));
  gcc_checking_assert (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (ret_type))));
  gcc_checking_assert (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (arg_type))));
  if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
      && SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type)))
    code = FIX_TRUNC_EXPR;
  else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
	   && SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type)))
    code = FLOAT_EXPR;
  if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (ret_type)))
      < tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg_type))))
    modifier = NARROW;
  else if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (ret_type)))
	   > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg_type))))
    modifier = WIDEN;

  if (modifier == NONE && (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR))
    {
      if (supportable_convert_operation (code, ret_type, arg_type, &code1))
	{
	  g = gimple_build_assign (lhs, code1, arg);
	  gsi_replace (gsi, g, false);
	  return;
	}
      /* Can't use get_compute_type here, as supportable_convert_operation
	 doesn't necessarily use an optab and needs two arguments.  */
      tree vec_compute_type
	= type_for_widest_vector_mode (TREE_TYPE (arg_type), mov_optab);
      if (vec_compute_type
	  && VECTOR_MODE_P (TYPE_MODE (vec_compute_type))
	  && subparts_gt (arg_type, vec_compute_type))
	{
	  unsigned HOST_WIDE_INT nelts
	    = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_compute_type));
	  while (nelts > 1)
	    {
	      tree ret1_type = build_vector_type (TREE_TYPE (ret_type), nelts);
	      tree arg1_type = build_vector_type (TREE_TYPE (arg_type), nelts);
	      if (supportable_convert_operation (code, ret1_type, arg1_type,
						 &code1))
		{
		  new_rhs = expand_vector_piecewise (gsi, do_vec_conversion,
						     ret_type, arg1_type, arg,
						     NULL_TREE, code1);
		  g = gimple_build_assign (lhs, new_rhs);
		  gsi_replace (gsi, g, false);
		  return;
		}
	      nelts = nelts / 2;
	    }
	}
    }
  else if (modifier == NARROW)
    {
      switch (code)
	{
	CASE_CONVERT:
	  code1 = VEC_PACK_TRUNC_EXPR;
	  optab1 = optab_for_tree_code (code1, arg_type, optab_default);
	  break;
	case FIX_TRUNC_EXPR:
	  code1 = VEC_PACK_FIX_TRUNC_EXPR;
	  /* The signedness is determined from output operand.  */
	  optab1 = optab_for_tree_code (code1, ret_type, optab_default);
	  break;
	case FLOAT_EXPR:
	  code1 = VEC_PACK_FLOAT_EXPR;
	  optab1 = optab_for_tree_code (code1, arg_type, optab_default);
	  break;
	default:
	  gcc_unreachable ();
	}

      if (optab1)
	compute_type = get_compute_type (code1, optab1, arg_type);
      enum insn_code icode1;
      if (VECTOR_TYPE_P (compute_type)
	  && ((icode1 = optab_handler (optab1, TYPE_MODE (compute_type)))
	      != CODE_FOR_nothing)
	  && VECTOR_MODE_P (insn_data[icode1].operand[0].mode))
	{
	  tree cretd_type
	    = build_vector_type (TREE_TYPE (ret_type),
				 TYPE_VECTOR_SUBPARTS (compute_type) * 2);
	  if (insn_data[icode1].operand[0].mode == TYPE_MODE (cretd_type))
	    {
	      if (compute_type == arg_type)
		{
		  new_rhs = gimplify_build2 (gsi, code1, cretd_type,
					     arg, build_zero_cst (arg_type));
		  new_rhs = tree_vec_extract (gsi, ret_type, new_rhs,
					      TYPE_SIZE (ret_type),
					      bitsize_int (0));
		  g = gimple_build_assign (lhs, new_rhs);
		  gsi_replace (gsi, g, false);
		  return;
		}
	      tree dcompute_type
		= build_vector_type (TREE_TYPE (compute_type),
				     TYPE_VECTOR_SUBPARTS (compute_type) * 2);
	      if (TYPE_MAIN_VARIANT (dcompute_type)
		  == TYPE_MAIN_VARIANT (arg_type))
		new_rhs = do_vec_narrow_conversion (gsi, dcompute_type, arg,
						    NULL_TREE, bitsize_int (0),
						    NULL_TREE, code1,
						    ret_type);
	      else
		new_rhs = expand_vector_piecewise (gsi,
						   do_vec_narrow_conversion,
						   arg_type, dcompute_type,
						   arg, NULL_TREE, code1,
						   ret_type);
	      g = gimple_build_assign (lhs, new_rhs);
	      gsi_replace (gsi, g, false);
	      return;
	    }
	}
    }
  else if (modifier == WIDEN)
    {
      enum tree_code code2 = ERROR_MARK;
      optab optab2 = unknown_optab;
      switch (code)
	{
	CASE_CONVERT:
	  code1 = VEC_UNPACK_LO_EXPR;
          code2 = VEC_UNPACK_HI_EXPR;
	  break;
	case FIX_TRUNC_EXPR:
	  code1 = VEC_UNPACK_FIX_TRUNC_LO_EXPR;
	  code2 = VEC_UNPACK_FIX_TRUNC_HI_EXPR;
	  break;
	case FLOAT_EXPR:
	  code1 = VEC_UNPACK_FLOAT_LO_EXPR;
	  code2 = VEC_UNPACK_FLOAT_HI_EXPR;
	  break;
	default:
	  gcc_unreachable ();
	}
      if (BYTES_BIG_ENDIAN)
	std::swap (code1, code2);

      if (code == FIX_TRUNC_EXPR)
	{
	  /* The signedness is determined from output operand.  */
	  optab1 = optab_for_tree_code (code1, ret_type, optab_default);
	  optab2 = optab_for_tree_code (code2, ret_type, optab_default);
	}
      else
	{
	  optab1 = optab_for_tree_code (code1, arg_type, optab_default);
	  optab2 = optab_for_tree_code (code2, arg_type, optab_default);
	}

      if (optab1 && optab2)
	compute_type = get_compute_type (code1, optab1, arg_type);

      enum insn_code icode1, icode2;
      if (VECTOR_TYPE_P (compute_type)
	  && ((icode1 = optab_handler (optab1, TYPE_MODE (compute_type)))
	      != CODE_FOR_nothing)
	  && ((icode2 = optab_handler (optab2, TYPE_MODE (compute_type)))
	      != CODE_FOR_nothing)
	  && VECTOR_MODE_P (insn_data[icode1].operand[0].mode)
	  && (insn_data[icode1].operand[0].mode
	      == insn_data[icode2].operand[0].mode))
	{
	  poly_uint64 nunits
	    = exact_div (TYPE_VECTOR_SUBPARTS (compute_type), 2);
	  tree cretd_type = build_vector_type (TREE_TYPE (ret_type), nunits);
	  if (insn_data[icode1].operand[0].mode == TYPE_MODE (cretd_type))
	    {
	      vec<constructor_elt, va_gc> *v;
	      tree part_width = TYPE_SIZE (compute_type);
	      tree index = bitsize_int (0);
	      int nunits = nunits_for_known_piecewise_op (arg_type);
	      int delta = tree_to_uhwi (part_width)
			  / tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg_type)));
	      int i;
	      location_t loc = gimple_location (gsi_stmt (*gsi));

	      if (compute_type != arg_type)
		warning_at (loc, OPT_Wvector_operation_performance,
			    "vector operation will be expanded piecewise");
	      else
		{
		  nunits = 1;
		  delta = 1;
		}

	      vec_alloc (v, (nunits + delta - 1) / delta * 2);
	      for (i = 0; i < nunits;
		   i += delta, index = int_const_binop (PLUS_EXPR, index,
							part_width))
		{
		  tree a = arg;
		  if (compute_type != arg_type)
		    a = tree_vec_extract (gsi, compute_type, a, part_width,
					  index);
		  tree result = gimplify_build1 (gsi, code1, cretd_type, a);
		  constructor_elt ce = { NULL_TREE, result };
		  v->quick_push (ce);
		  ce.value = gimplify_build1 (gsi, code2, cretd_type, a);
		  v->quick_push (ce);
		}

	      new_rhs = build_constructor (ret_type, v);
	      g = gimple_build_assign (lhs, new_rhs);
	      gsi_replace (gsi, g, false);
	      return;
	    }
	}
    }

  new_rhs = expand_vector_piecewise (gsi, do_vec_conversion, arg_type,
				     TREE_TYPE (arg_type), arg,
				     NULL_TREE, code, ret_type);
  g = gimple_build_assign (lhs, new_rhs);
  gsi_replace (gsi, g, false);
}

/* Process one statement.  If we identify a vector operation, expand it.  */

static void
expand_vector_operations_1 (gimple_stmt_iterator *gsi)
{
  tree lhs, rhs1, rhs2 = NULL, type, compute_type = NULL_TREE;
  enum tree_code code;
  optab op = unknown_optab;
  enum gimple_rhs_class rhs_class;
  tree new_rhs;

  /* Only consider code == GIMPLE_ASSIGN. */
  gassign *stmt = dyn_cast <gassign *> (gsi_stmt (*gsi));
  if (!stmt)
    {
      if (gimple_call_internal_p (gsi_stmt (*gsi), IFN_VEC_CONVERT))
	expand_vector_conversion (gsi);
      return;
    }

  code = gimple_assign_rhs_code (stmt);
  rhs_class = get_gimple_rhs_class (code);
  lhs = gimple_assign_lhs (stmt);

  if (code == VEC_PERM_EXPR)
    {
      lower_vec_perm (gsi);
      return;
    }

  if (code == VEC_COND_EXPR)
    {
      expand_vector_condition (gsi);
      return;
    }

  if (code == COND_EXPR
      && TREE_CODE (TREE_TYPE (gimple_assign_lhs (stmt))) == VECTOR_TYPE
      && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))) == BLKmode)
    {
      expand_vector_scalar_condition (gsi);
      return;
    }

  if (code == CONSTRUCTOR
      && TREE_CODE (lhs) == SSA_NAME
      && VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (lhs)))
      && !gimple_clobber_p (stmt)
      && optimize)
    {
      optimize_vector_constructor (gsi);
      return;
    }

  if (rhs_class != GIMPLE_UNARY_RHS && rhs_class != GIMPLE_BINARY_RHS)
    return;

  rhs1 = gimple_assign_rhs1 (stmt);
  type = gimple_expr_type (stmt);
  if (rhs_class == GIMPLE_BINARY_RHS)
    rhs2 = gimple_assign_rhs2 (stmt);

  if (!VECTOR_TYPE_P (type)
      || !VECTOR_TYPE_P (TREE_TYPE (rhs1)))
    return;
 
  /* A scalar operation pretending to be a vector one.  */
  if (VECTOR_BOOLEAN_TYPE_P (type)
      && !VECTOR_MODE_P (TYPE_MODE (type))
      && TYPE_MODE (type) != BLKmode
      && (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) != tcc_comparison
	  || (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1))
	      && !VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (rhs1)))
	      && TYPE_MODE (TREE_TYPE (rhs1)) != BLKmode)))
    return;

  /* If the vector operation is operating on all same vector elements
     implement it with a scalar operation and a splat if the target
     supports the scalar operation.  */
  tree srhs1, srhs2 = NULL_TREE;
  if ((srhs1 = ssa_uniform_vector_p (rhs1)) != NULL_TREE
      && (rhs2 == NULL_TREE
	  || (! VECTOR_TYPE_P (TREE_TYPE (rhs2))
	      && (srhs2 = rhs2))
	  || (srhs2 = ssa_uniform_vector_p (rhs2)) != NULL_TREE)
      /* As we query direct optabs restrict to non-convert operations.  */
      && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (TREE_TYPE (srhs1)))
    {
      op = optab_for_tree_code (code, TREE_TYPE (type), optab_scalar);
      if (op >= FIRST_NORM_OPTAB && op <= LAST_NORM_OPTAB
	  && optab_handler (op, TYPE_MODE (TREE_TYPE (type))) != CODE_FOR_nothing)
	{
	  tree slhs = make_ssa_name (TREE_TYPE (srhs1));
	  gimple *repl = gimple_build_assign (slhs, code, srhs1, srhs2);
	  gsi_insert_before (gsi, repl, GSI_SAME_STMT);
	  gimple_assign_set_rhs_from_tree (gsi,
					   build_vector_from_val (type, slhs));
	  update_stmt (stmt);
	  return;
	}
    }

  if (CONVERT_EXPR_CODE_P (code)
      || code == FLOAT_EXPR
      || code == FIX_TRUNC_EXPR
      || code == VIEW_CONVERT_EXPR)
    return;

  /* The signedness is determined from input argument.  */
  if (code == VEC_UNPACK_FLOAT_HI_EXPR
      || code == VEC_UNPACK_FLOAT_LO_EXPR
      || code == VEC_PACK_FLOAT_EXPR)
    {
      /* We do not know how to scalarize those.  */
      return;
    }

  /* For widening/narrowing vector operations, the relevant type is of the
     arguments, not the widened result.  VEC_UNPACK_FLOAT_*_EXPR is
     calculated in the same way above.  */
  if (code == WIDEN_SUM_EXPR
      || code == VEC_WIDEN_MULT_HI_EXPR
      || code == VEC_WIDEN_MULT_LO_EXPR
      || code == VEC_WIDEN_MULT_EVEN_EXPR
      || code == VEC_WIDEN_MULT_ODD_EXPR
      || code == VEC_UNPACK_HI_EXPR
      || code == VEC_UNPACK_LO_EXPR
      || code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
      || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR
      || code == VEC_PACK_TRUNC_EXPR
      || code == VEC_PACK_SAT_EXPR
      || code == VEC_PACK_FIX_TRUNC_EXPR
      || code == VEC_WIDEN_LSHIFT_HI_EXPR
      || code == VEC_WIDEN_LSHIFT_LO_EXPR)
    {
      /* We do not know how to scalarize those.  */
      return;
    }

  /* Choose between vector shift/rotate by vector and vector shift/rotate by
     scalar */
  if (code == LSHIFT_EXPR
      || code == RSHIFT_EXPR
      || code == LROTATE_EXPR
      || code == RROTATE_EXPR)
    {
      optab opv;

      /* Check whether we have vector <op> {x,x,x,x} where x
         could be a scalar variable or a constant.  Transform
         vector <op> {x,x,x,x} ==> vector <op> scalar.  */
      if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
        {
          tree first;

          if ((first = ssa_uniform_vector_p (rhs2)) != NULL_TREE)
            {
              gimple_assign_set_rhs2 (stmt, first);
              update_stmt (stmt);
              rhs2 = first;
            }
        }

      opv = optab_for_tree_code (code, type, optab_vector);
      if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
	op = opv;
      else
	{
          op = optab_for_tree_code (code, type, optab_scalar);

	  compute_type = get_compute_type (code, op, type);
	  if (compute_type == type)
	    return;
	  /* The rtl expander will expand vector/scalar as vector/vector
	     if necessary.  Pick one with wider vector type.  */
	  tree compute_vtype = get_compute_type (code, opv, type);
	  if (subparts_gt (compute_vtype, compute_type))
	    {
	      compute_type = compute_vtype;
	      op = opv;
	    }
	}

      if (code == LROTATE_EXPR || code == RROTATE_EXPR)
	{
	  if (compute_type == NULL_TREE)
	    compute_type = get_compute_type (code, op, type);
	  if (compute_type == type)
	    return;
	  /* Before splitting vector rotates into scalar rotates,
	     see if we can't use vector shifts and BIT_IOR_EXPR
	     instead.  For vector by vector rotates we'd also
	     need to check BIT_AND_EXPR and NEGATE_EXPR, punt there
	     for now, fold doesn't seem to create such rotates anyway.  */
	  if (compute_type == TREE_TYPE (type)
	      && !VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
	    {
	      optab oplv = vashl_optab, opl = ashl_optab;
	      optab oprv = vlshr_optab, opr = lshr_optab, opo = ior_optab;
	      tree compute_lvtype = get_compute_type (LSHIFT_EXPR, oplv, type);
	      tree compute_rvtype = get_compute_type (RSHIFT_EXPR, oprv, type);
	      tree compute_otype = get_compute_type (BIT_IOR_EXPR, opo, type);
	      tree compute_ltype = get_compute_type (LSHIFT_EXPR, opl, type);
	      tree compute_rtype = get_compute_type (RSHIFT_EXPR, opr, type);
	      /* The rtl expander will expand vector/scalar as vector/vector
		 if necessary.  Pick one with wider vector type.  */
	      if (subparts_gt (compute_lvtype, compute_ltype))
		{
		  compute_ltype = compute_lvtype;
		  opl = oplv;
		}
	      if (subparts_gt (compute_rvtype, compute_rtype))
		{
		  compute_rtype = compute_rvtype;
		  opr = oprv;
		}
	      /* Pick the narrowest type from LSHIFT_EXPR, RSHIFT_EXPR and
		 BIT_IOR_EXPR.  */
	      compute_type = compute_ltype;
	      if (subparts_gt (compute_type, compute_rtype))
		compute_type = compute_rtype;
	      if (subparts_gt (compute_type, compute_otype))
		compute_type = compute_otype;
	      /* Verify all 3 operations can be performed in that type.  */
	      if (compute_type != TREE_TYPE (type))
		{
		  if (optab_handler (opl, TYPE_MODE (compute_type))
		      == CODE_FOR_nothing
		      || optab_handler (opr, TYPE_MODE (compute_type))
			 == CODE_FOR_nothing
		      || optab_handler (opo, TYPE_MODE (compute_type))
			 == CODE_FOR_nothing)
		    compute_type = TREE_TYPE (type);
		}
	    }
	}
    }
  else
    op = optab_for_tree_code (code, type, optab_default);

  /* Optabs will try converting a negation into a subtraction, so
     look for it as well.  TODO: negation of floating-point vectors
     might be turned into an exclusive OR toggling the sign bit.  */
  if (op == unknown_optab
      && code == NEGATE_EXPR
      && INTEGRAL_TYPE_P (TREE_TYPE (type)))
    op = optab_for_tree_code (MINUS_EXPR, type, optab_default);

  if (compute_type == NULL_TREE)
    compute_type = get_compute_type (code, op, type);
  if (compute_type == type)
    return;

  new_rhs = expand_vector_operation (gsi, type, compute_type, stmt, code);

  /* Leave expression untouched for later expansion.  */
  if (new_rhs == NULL_TREE)
    return;

  if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs)))
    new_rhs = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
                               new_rhs);

  /* NOTE:  We should avoid using gimple_assign_set_rhs_from_tree. One
     way to do it is change expand_vector_operation and its callees to
     return a tree_code, RHS1 and RHS2 instead of a tree. */
  gimple_assign_set_rhs_from_tree (gsi, new_rhs);
  update_stmt (gsi_stmt (*gsi));
}

/* Use this to lower vector operations introduced by the vectorizer,
   if it may need the bit-twiddling tricks implemented in this file.  */

static unsigned int
expand_vector_operations (void)
{
  gimple_stmt_iterator gsi;
  basic_block bb;
  bool cfg_changed = false;

  FOR_EACH_BB_FN (bb, cfun)
    {
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  expand_vector_operations_1 (&gsi);
	  /* ???  If we do not cleanup EH then we will ICE in
	     verification.  But in reality we have created wrong-code
	     as we did not properly transition EH info and edges to
	     the piecewise computations.  */
	  if (maybe_clean_eh_stmt (gsi_stmt (gsi))
	      && gimple_purge_dead_eh_edges (bb))
	    cfg_changed = true;
	}
    }

  return cfg_changed ? TODO_cleanup_cfg : 0;
}

namespace {

const pass_data pass_data_lower_vector =
{
  GIMPLE_PASS, /* type */
  "veclower", /* name */
  OPTGROUP_VEC, /* optinfo_flags */
  TV_NONE, /* tv_id */
  PROP_cfg, /* properties_required */
  PROP_gimple_lvec, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa, /* todo_flags_finish */
};

class pass_lower_vector : public gimple_opt_pass
{
public:
  pass_lower_vector (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_lower_vector, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *fun)
    {
      return !(fun->curr_properties & PROP_gimple_lvec);
    }

  virtual unsigned int execute (function *)
    {
      return expand_vector_operations ();
    }

}; // class pass_lower_vector

} // anon namespace

gimple_opt_pass *
make_pass_lower_vector (gcc::context *ctxt)
{
  return new pass_lower_vector (ctxt);
}

namespace {

const pass_data pass_data_lower_vector_ssa =
{
  GIMPLE_PASS, /* type */
  "veclower2", /* name */
  OPTGROUP_VEC, /* optinfo_flags */
  TV_NONE, /* tv_id */
  PROP_cfg, /* properties_required */
  PROP_gimple_lvec, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_update_ssa
    | TODO_cleanup_cfg ), /* todo_flags_finish */
};

class pass_lower_vector_ssa : public gimple_opt_pass
{
public:
  pass_lower_vector_ssa (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_lower_vector_ssa, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_lower_vector_ssa (m_ctxt); }
  virtual unsigned int execute (function *)
    {
      return expand_vector_operations ();
    }

}; // class pass_lower_vector_ssa

} // anon namespace

gimple_opt_pass *
make_pass_lower_vector_ssa (gcc::context *ctxt)
{
  return new pass_lower_vector_ssa (ctxt);
}

#include "gt-tree-vect-generic.h"