Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
// Written in the D programming language.
/**
This is a submodule of $(MREF std, algorithm).
It contains generic algorithms that implement set operations.

The functions $(LREF multiwayMerge), $(LREF multiwayUnion), $(LREF setDifference),
$(LREF setIntersection), $(LREF setSymmetricDifference) expect a range of sorted
ranges as input.

All algorithms are generalized to accept as input not only sets but also
$(HTTP https://en.wikipedia.org/wiki/Multiset, multisets). Each algorithm
documents behaviour in the presence of duplicated inputs.

$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE Cheat Sheet,
$(TR $(TH Function Name) $(TH Description))
$(T2 cartesianProduct,
        Computes Cartesian product of two ranges.)
$(T2 largestPartialIntersection,
        Copies out the values that occur most frequently in a range of ranges.)
$(T2 largestPartialIntersectionWeighted,
        Copies out the values that occur most frequently (multiplied by
        per-value weights) in a range of ranges.)
$(T2 multiwayMerge,
        Merges a range of sorted ranges.)
$(T2 multiwayUnion,
        Computes the union of a range of sorted ranges.)
$(T2 setDifference,
        Lazily computes the set difference of two or more sorted ranges.)
$(T2 setIntersection,
        Lazily computes the intersection of two or more sorted ranges.)
$(T2 setSymmetricDifference,
        Lazily computes the symmetric set difference of two or more sorted
        ranges.)
)

Copyright: Andrei Alexandrescu 2008-.

License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).

Authors: $(HTTP erdani.com, Andrei Alexandrescu)

Source: $(PHOBOSSRC std/algorithm/_setops.d)

Macros:
T2=$(TR $(TDNW $(LREF $1)) $(TD $+))
 */
module std.algorithm.setops;

import std.range.primitives;

// FIXME
import std.functional; // : unaryFun, binaryFun;
import std.traits;
// FIXME
import std.meta; // : AliasSeq, staticMap, allSatisfy, anySatisfy;

import std.algorithm.sorting; // : Merge;
import std.typecons : No;

// cartesianProduct
/**
Lazily computes the Cartesian product of two or more ranges. The product is a
_range of tuples of elements from each respective range.

The conditions for the two-range case are as follows:

If both ranges are finite, then one must be (at least) a
$(REF_ALTTEXT forward range, isForwardRange, std,range,primitives) and the
other an $(REF_ALTTEXT input range, isInputRange, std,range,primitives).

If one _range is infinite and the other finite, then the finite _range must
be a forward _range, and the infinite range can be an input _range.

If both ranges are infinite, then both must be forward ranges.

When there are more than two ranges, the above conditions apply to each
adjacent pair of ranges.

Params:
    range1 = The first range
    range2 = The second range
    ranges = Two or more non-infinite forward ranges
    otherRanges = Zero or more non-infinite forward ranges

Returns:
    A forward range of $(REF Tuple, std,typecons) representing elements of the
    cartesian product of the given ranges.
*/
auto cartesianProduct(R1, R2)(R1 range1, R2 range2)
if (!allSatisfy!(isForwardRange, R1, R2) ||
    anySatisfy!(isInfinite, R1, R2))
{
    import std.algorithm.iteration : map, joiner;

    static if (isInfinite!R1 && isInfinite!R2)
    {
        static if (isForwardRange!R1 && isForwardRange!R2)
        {
            import std.range : zip, repeat, take, chain, sequence;

            // This algorithm traverses the cartesian product by alternately
            // covering the right and bottom edges of an increasing square area
            // over the infinite table of combinations. This schedule allows us
            // to require only forward ranges.
            return zip(sequence!"n"(cast(size_t) 0), range1.save, range2.save,
                       repeat(range1), repeat(range2))
                .map!(function(a) => chain(
                    zip(repeat(a[1]), take(a[4].save, a[0])),
                    zip(take(a[3].save, a[0]+1), repeat(a[2]))
                ))()
                .joiner();
        }
        else static assert(0, "cartesianProduct of infinite ranges requires "~
                              "forward ranges");
    }
    else static if (isInputRange!R1 && isForwardRange!R2 && !isInfinite!R2)
    {
        import std.range : zip, repeat;
        return joiner(map!((ElementType!R1 a) => zip(repeat(a), range2.save))
                          (range1));
    }
    else static if (isInputRange!R2 && isForwardRange!R1 && !isInfinite!R1)
    {
        import std.range : zip, repeat;
        return joiner(map!((ElementType!R2 a) => zip(range1.save, repeat(a)))
                          (range2));
    }
    else static assert(0, "cartesianProduct involving finite ranges must "~
                          "have at least one finite forward range");
}

///
@safe unittest
{
    import std.algorithm.searching : canFind;
    import std.range;
    import std.typecons : tuple;

    auto N = sequence!"n"(0);         // the range of natural numbers
    auto N2 = cartesianProduct(N, N); // the range of all pairs of natural numbers

    // Various arbitrary number pairs can be found in the range in finite time.
    assert(canFind(N2, tuple(0, 0)));
    assert(canFind(N2, tuple(123, 321)));
    assert(canFind(N2, tuple(11, 35)));
    assert(canFind(N2, tuple(279, 172)));
}

///
@safe unittest
{
    import std.algorithm.searching : canFind;
    import std.typecons : tuple;

    auto B = [ 1, 2, 3 ];
    auto C = [ 4, 5, 6 ];
    auto BC = cartesianProduct(B, C);

    foreach (n; [[1, 4], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6],
                 [2, 6], [3, 6]])
    {
        assert(canFind(BC, tuple(n[0], n[1])));
    }
}

@safe unittest
{
    // Test cartesian product of two infinite ranges
    import std.algorithm.searching : canFind;
    import std.range;
    import std.typecons : tuple;

    auto Even = sequence!"2*n"(0);
    auto Odd = sequence!"2*n+1"(0);
    auto EvenOdd = cartesianProduct(Even, Odd);

    foreach (pair; [[0, 1], [2, 1], [0, 3], [2, 3], [4, 1], [4, 3], [0, 5],
                    [2, 5], [4, 5], [6, 1], [6, 3], [6, 5]])
    {
        assert(canFind(EvenOdd, tuple(pair[0], pair[1])));
    }

    // This should terminate in finite time
    assert(canFind(EvenOdd, tuple(124, 73)));
    assert(canFind(EvenOdd, tuple(0, 97)));
    assert(canFind(EvenOdd, tuple(42, 1)));
}

@safe unittest
{
    // Test cartesian product of an infinite input range and a finite forward
    // range.
    import std.algorithm.searching : canFind;
    import std.range;
    import std.typecons : tuple;

    auto N = sequence!"n"(0);
    auto M = [100, 200, 300];
    auto NM = cartesianProduct(N,M);

    foreach (pair; [[0, 100], [0, 200], [0, 300], [1, 100], [1, 200], [1, 300],
                    [2, 100], [2, 200], [2, 300], [3, 100], [3, 200],
                    [3, 300]])
    {
        assert(canFind(NM, tuple(pair[0], pair[1])));
    }

    // We can't solve the halting problem, so we can only check a finite
    // initial segment here.
    assert(!canFind(NM.take(100), tuple(100, 0)));
    assert(!canFind(NM.take(100), tuple(1, 1)));
    assert(!canFind(NM.take(100), tuple(100, 200)));

    auto MN = cartesianProduct(M,N);
    foreach (pair; [[100, 0], [200, 0], [300, 0], [100, 1], [200, 1], [300, 1],
                    [100, 2], [200, 2], [300, 2], [100, 3], [200, 3],
                    [300, 3]])
    {
        assert(canFind(MN, tuple(pair[0], pair[1])));
    }

    // We can't solve the halting problem, so we can only check a finite
    // initial segment here.
    assert(!canFind(MN.take(100), tuple(0, 100)));
    assert(!canFind(MN.take(100), tuple(0, 1)));
    assert(!canFind(MN.take(100), tuple(100, 200)));
}

@safe unittest
{
    import std.algorithm.searching : canFind;
    import std.typecons : tuple;

    // Test cartesian product of two finite ranges.
    auto X = [1, 2, 3];
    auto Y = [4, 5, 6];
    auto XY = cartesianProduct(X, Y);
    auto Expected = [[1, 4], [1, 5], [1, 6], [2, 4], [2, 5], [2, 6], [3, 4],
                     [3, 5], [3, 6]];

    // Verify Expected ⊆ XY
    foreach (pair; Expected)
    {
        assert(canFind(XY, tuple(pair[0], pair[1])));
    }

    // Verify XY ⊆ Expected
    foreach (pair; XY)
    {
        assert(canFind(Expected, [pair[0], pair[1]]));
    }

    // And therefore, by set comprehension, XY == Expected
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.algorithm.iteration : map;
    import std.algorithm.searching : canFind;
    import std.typecons : tuple;

    import std.range;
    auto N = sequence!"n"(0);

    // To force the template to fall to the second case, we wrap N in a struct
    // that doesn't allow bidirectional access.
    struct FwdRangeWrapper(R)
    {
        R impl;

        // Input range API
        @property auto front() { return impl.front; }
        void popFront() { impl.popFront(); }
        static if (isInfinite!R)
            enum empty = false;
        else
            @property bool empty() { return impl.empty; }

        // Forward range API
        @property auto save() { return typeof(this)(impl.save); }
    }
    auto fwdWrap(R)(R range) { return FwdRangeWrapper!R(range); }

    // General test: two infinite bidirectional ranges
    auto N2 = cartesianProduct(N, N);

    assert(canFind(N2, tuple(0, 0)));
    assert(canFind(N2, tuple(123, 321)));
    assert(canFind(N2, tuple(11, 35)));
    assert(canFind(N2, tuple(279, 172)));

    // Test first case: forward range with bidirectional range
    auto fwdN = fwdWrap(N);
    auto N2_a = cartesianProduct(fwdN, N);

    assert(canFind(N2_a, tuple(0, 0)));
    assert(canFind(N2_a, tuple(123, 321)));
    assert(canFind(N2_a, tuple(11, 35)));
    assert(canFind(N2_a, tuple(279, 172)));

    // Test second case: bidirectional range with forward range
    auto N2_b = cartesianProduct(N, fwdN);

    assert(canFind(N2_b, tuple(0, 0)));
    assert(canFind(N2_b, tuple(123, 321)));
    assert(canFind(N2_b, tuple(11, 35)));
    assert(canFind(N2_b, tuple(279, 172)));

    // Test third case: finite forward range with (infinite) input range
    static struct InpRangeWrapper(R)
    {
        R impl;

        // Input range API
        @property auto front() { return impl.front; }
        void popFront() { impl.popFront(); }
        static if (isInfinite!R)
            enum empty = false;
        else
            @property bool empty() { return impl.empty; }
    }
    auto inpWrap(R)(R r) { return InpRangeWrapper!R(r); }

    auto inpN = inpWrap(N);
    auto B = [ 1, 2, 3 ];
    auto fwdB = fwdWrap(B);
    auto BN = cartesianProduct(fwdB, inpN);

    assert(equal(map!"[a[0],a[1]]"(BN.take(10)), [[1, 0], [2, 0], [3, 0],
                 [1, 1], [2, 1], [3, 1], [1, 2], [2, 2], [3, 2], [1, 3]]));

    // Test fourth case: (infinite) input range with finite forward range
    auto NB = cartesianProduct(inpN, fwdB);

    assert(equal(map!"[a[0],a[1]]"(NB.take(10)), [[0, 1], [0, 2], [0, 3],
                 [1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1]]));

    // General finite range case
    auto C = [ 4, 5, 6 ];
    auto BC = cartesianProduct(B, C);

    foreach (n; [[1, 4], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6],
                 [2, 6], [3, 6]])
    {
        assert(canFind(BC, tuple(n[0], n[1])));
    }
}

// Issue 13091
pure nothrow @safe @nogc unittest
{
    int[1] a = [1];
    foreach (t; cartesianProduct(a[], a[])) {}
}

/// ditto
auto cartesianProduct(RR...)(RR ranges)
if (ranges.length >= 2 &&
    allSatisfy!(isForwardRange, RR) &&
    !anySatisfy!(isInfinite, RR))
{
    // This overload uses a much less template-heavy implementation when
    // all ranges are finite forward ranges, which is the most common use
    // case, so that we don't run out of resources too quickly.
    //
    // For infinite ranges or non-forward ranges, we fall back to the old
    // implementation which expands an exponential number of templates.
    import std.typecons : tuple;

    static struct Result
    {
        RR ranges;
        RR current;
        bool empty = true;

        this(RR _ranges)
        {
            ranges = _ranges;
            empty = false;
            foreach (i, r; ranges)
            {
                current[i] = r.save;
                if (current[i].empty)
                    empty = true;
            }
        }
        @property auto front()
        {
            import std.algorithm.internal : algoFormat;
            import std.range : iota;
            return mixin(algoFormat("tuple(%(current[%d].front%|,%))",
                                    iota(0, current.length)));
        }
        void popFront()
        {
            foreach_reverse (i, ref r; current)
            {
                r.popFront();
                if (!r.empty) break;

                static if (i == 0)
                    empty = true;
                else
                    r = ranges[i].save; // rollover
            }
        }
        @property Result save()
        {
            Result copy = this;
            foreach (i, r; ranges)
            {
                copy.ranges[i] = r.save;
                copy.current[i] = current[i].save;
            }
            return copy;
        }
    }
    static assert(isForwardRange!Result);

    return Result(ranges);
}

@safe unittest
{
    // Issue 10693: cartesian product of empty ranges should be empty.
    int[] a, b, c, d, e;
    auto cprod = cartesianProduct(a,b,c,d,e);
    assert(cprod.empty);
    foreach (_; cprod) {} // should not crash

    // Test case where only one of the ranges is empty: the result should still
    // be empty.
    int[] p=[1], q=[];
    auto cprod2 = cartesianProduct(p,p,p,q,p);
    assert(cprod2.empty);
    foreach (_; cprod2) {} // should not crash
}

@safe unittest
{
    // .init value of cartesianProduct should be empty
    auto cprod = cartesianProduct([0,0], [1,1], [2,2]);
    assert(!cprod.empty);
    assert(cprod.init.empty);
}

@safe unittest
{
    // Issue 13393
    assert(!cartesianProduct([0],[0],[0]).save.empty);
}

/// ditto
auto cartesianProduct(R1, R2, RR...)(R1 range1, R2 range2, RR otherRanges)
if (!allSatisfy!(isForwardRange, R1, R2, RR) ||
    anySatisfy!(isInfinite, R1, R2, RR))
{
    /* We implement the n-ary cartesian product by recursively invoking the
     * binary cartesian product. To make the resulting range nicer, we denest
     * one level of tuples so that a ternary cartesian product, for example,
     * returns 3-element tuples instead of nested 2-element tuples.
     */
    import std.algorithm.internal : algoFormat;
    import std.algorithm.iteration : map;
    import std.range : iota;

    enum string denest = algoFormat("tuple(a[0], %(a[1][%d]%|,%))",
                                iota(0, otherRanges.length+1));
    return map!denest(
        cartesianProduct(range1, cartesianProduct(range2, otherRanges))
    );
}

@safe unittest
{
    import std.algorithm.searching : canFind;
    import std.range;
    import std.typecons : tuple, Tuple;

    auto N = sequence!"n"(0);
    auto N3 = cartesianProduct(N, N, N);

    // Check that tuples are properly denested
    assert(is(ElementType!(typeof(N3)) == Tuple!(size_t,size_t,size_t)));

    assert(canFind(N3, tuple(0, 27, 7)));
    assert(canFind(N3, tuple(50, 23, 71)));
    assert(canFind(N3, tuple(9, 3, 0)));
}

@safe unittest
{
    import std.algorithm.searching : canFind;
    import std.range;
    import std.typecons : tuple, Tuple;

    auto N = sequence!"n"(0);
    auto N4 = cartesianProduct(N, N, N, N);

    // Check that tuples are properly denested
    assert(is(ElementType!(typeof(N4)) == Tuple!(size_t,size_t,size_t,size_t)));

    assert(canFind(N4, tuple(1, 2, 3, 4)));
    assert(canFind(N4, tuple(4, 3, 2, 1)));
    assert(canFind(N4, tuple(10, 31, 7, 12)));
}

// Issue 9878
///
@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.typecons : tuple;

    auto A = [ 1, 2, 3 ];
    auto B = [ 'a', 'b', 'c' ];
    auto C = [ "x", "y", "z" ];
    auto ABC = cartesianProduct(A, B, C);

    assert(ABC.equal([
        tuple(1, 'a', "x"), tuple(1, 'a', "y"), tuple(1, 'a', "z"),
        tuple(1, 'b', "x"), tuple(1, 'b', "y"), tuple(1, 'b', "z"),
        tuple(1, 'c', "x"), tuple(1, 'c', "y"), tuple(1, 'c', "z"),
        tuple(2, 'a', "x"), tuple(2, 'a', "y"), tuple(2, 'a', "z"),
        tuple(2, 'b', "x"), tuple(2, 'b', "y"), tuple(2, 'b', "z"),
        tuple(2, 'c', "x"), tuple(2, 'c', "y"), tuple(2, 'c', "z"),
        tuple(3, 'a', "x"), tuple(3, 'a', "y"), tuple(3, 'a', "z"),
        tuple(3, 'b', "x"), tuple(3, 'b', "y"), tuple(3, 'b', "z"),
        tuple(3, 'c', "x"), tuple(3, 'c', "y"), tuple(3, 'c', "z")
    ]));
}

pure @safe nothrow @nogc unittest
{
    import std.range.primitives : isForwardRange;
    int[2] A = [1,2];
    auto C = cartesianProduct(A[], A[], A[]);
    assert(isForwardRange!(typeof(C)));

    C.popFront();
    auto front1 = C.front;
    auto D = C.save;
    C.popFront();
    assert(D.front == front1);
}

// Issue 13935
@safe unittest
{
    import std.algorithm.iteration : map;
    auto seq = [1, 2].map!(x => x);
    foreach (pair; cartesianProduct(seq, seq)) {}
}

// largestPartialIntersection
/**
Given a range of sorted $(REF_ALTTEXT forward ranges, isForwardRange, std,range,primitives)
$(D ror), copies to $(D tgt) the elements that are common to most ranges, along with their number
of occurrences. All ranges in $(D ror) are assumed to be sorted by $(D
less). Only the most frequent $(D tgt.length) elements are returned.

Params:
    less = The predicate the ranges are sorted by.
    ror = A range of forward ranges sorted by `less`.
    tgt = The target range to copy common elements to.
    sorted = Whether the elements copied should be in sorted order.

The function $(D largestPartialIntersection) is useful for
e.g. searching an $(LINK2 https://en.wikipedia.org/wiki/Inverted_index,
inverted index) for the documents most
likely to contain some terms of interest. The complexity of the search
is $(BIGOH n * log(tgt.length)), where $(D n) is the sum of lengths of
all input ranges. This approach is faster than keeping an associative
array of the occurrences and then selecting its top items, and also
requires less memory ($(D largestPartialIntersection) builds its
result directly in $(D tgt) and requires no extra memory).

If at least one of the ranges is a multiset, then all occurences
of a duplicate element are taken into account. The result is
equivalent to merging all ranges and picking the most frequent
$(D tgt.length) elements.

Warning: Because $(D largestPartialIntersection) does not allocate
extra memory, it will leave $(D ror) modified. Namely, $(D
largestPartialIntersection) assumes ownership of $(D ror) and
discretionarily swaps and advances elements of it. If you want $(D
ror) to preserve its contents after the call, you may want to pass a
duplicate to $(D largestPartialIntersection) (and perhaps cache the
duplicate in between calls).
 */
void largestPartialIntersection
(alias less = "a < b", RangeOfRanges, Range)
(RangeOfRanges ror, Range tgt, SortOutput sorted = No.sortOutput)
{
    struct UnitWeights
    {
        static int opIndex(ElementType!(ElementType!RangeOfRanges)) { return 1; }
    }
    return largestPartialIntersectionWeighted!less(ror, tgt, UnitWeights(),
            sorted);
}

///
@system unittest
{
    import std.typecons : tuple, Tuple;

    // Figure which number can be found in most arrays of the set of
    // arrays below.
    double[][] a =
    [
        [ 1, 4, 7, 8 ],
        [ 1, 7 ],
        [ 1, 7, 8],
        [ 4 ],
        [ 7 ],
    ];
    auto b = new Tuple!(double, uint)[1];
    // it will modify the input range, hence we need to create a duplicate
    largestPartialIntersection(a.dup, b);
    // First member is the item, second is the occurrence count
    assert(b[0] == tuple(7.0, 4u));
    // 7.0 occurs in 4 out of 5 inputs, more than any other number

    // If more of the top-frequent numbers are needed, just create a larger
    // tgt range
    auto c = new Tuple!(double, uint)[2];
    largestPartialIntersection(a, c);
    assert(c[0] == tuple(1.0, 3u));
    // 1.0 occurs in 3 inputs

    // multiset
    double[][] x =
    [
        [1, 1, 1, 1, 4, 7, 8],
        [1, 7],
        [1, 7, 8],
        [4, 7],
        [7]
    ];
    auto y = new Tuple!(double, uint)[2];
    largestPartialIntersection(x.dup, y);
    // 7.0 occurs 5 times
    assert(y[0] == tuple(7.0, 5u));
    // 1.0 occurs 6 times
    assert(y[1] == tuple(1.0, 6u));
}

import std.algorithm.sorting : SortOutput; // FIXME

// largestPartialIntersectionWeighted
/**
Similar to $(D largestPartialIntersection), but associates a weight
with each distinct element in the intersection.

If at least one of the ranges is a multiset, then all occurences
of a duplicate element are taken into account. The result
is equivalent to merging all input ranges and picking the highest
$(D tgt.length), weight-based ranking elements.

Params:
    less = The predicate the ranges are sorted by.
    ror = A range of $(REF_ALTTEXT forward ranges, isForwardRange, std,range,primitives)
    sorted by `less`.
    tgt = The target range to copy common elements to.
    weights = An associative array mapping elements to weights.
    sorted = Whether the elements copied should be in sorted order.

*/
void largestPartialIntersectionWeighted
(alias less = "a < b", RangeOfRanges, Range, WeightsAA)
(RangeOfRanges ror, Range tgt, WeightsAA weights, SortOutput sorted = No.sortOutput)
{
    import std.algorithm.iteration : group;
    import std.algorithm.sorting : topNCopy;

    if (tgt.empty) return;
    alias InfoType = ElementType!Range;
    bool heapComp(InfoType a, InfoType b)
    {
        return weights[a[0]] * a[1] > weights[b[0]] * b[1];
    }
    topNCopy!heapComp(group(multiwayMerge!less(ror)), tgt, sorted);
}

///
@system unittest
{
    import std.typecons : tuple, Tuple;

    // Figure which number can be found in most arrays of the set of
    // arrays below, with specific per-element weights
    double[][] a =
    [
        [ 1, 4, 7, 8 ],
        [ 1, 7 ],
        [ 1, 7, 8],
        [ 4 ],
        [ 7 ],
    ];
    auto b = new Tuple!(double, uint)[1];
    double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ];
    largestPartialIntersectionWeighted(a, b, weights);
    // First member is the item, second is the occurrence count
    assert(b[0] == tuple(4.0, 2u));
    // 4.0 occurs 2 times -> 4.6 (2 * 2.3)
    // 7.0 occurs 3 times -> 4.4 (3 * 1.1)

   // multiset
    double[][] x =
    [
        [ 1, 1, 1, 4, 7, 8 ],
        [ 1, 7 ],
        [ 1, 7, 8],
        [ 4 ],
        [ 7 ],
    ];
    auto y = new Tuple!(double, uint)[1];
    largestPartialIntersectionWeighted(x, y, weights);
    assert(y[0] == tuple(1.0, 5u));
    // 1.0 occurs 5 times -> 1.2 * 5 = 6
}

@system unittest
{
    import std.conv : text;
    import std.typecons : tuple, Tuple, Yes;

    double[][] a =
        [
            [ 1, 4, 7, 8 ],
            [ 1, 7 ],
            [ 1, 7, 8],
            [ 4 ],
            [ 7 ],
        ];
    auto b = new Tuple!(double, uint)[2];
    largestPartialIntersection(a, b, Yes.sortOutput);
    assert(b == [ tuple(7.0, 4u), tuple(1.0, 3u) ][], text(b));
    assert(a[0].empty);
}

@system unittest
{
    import std.conv : text;
    import std.typecons : tuple, Tuple, Yes;

    string[][] a =
        [
            [ "1", "4", "7", "8" ],
            [ "1", "7" ],
            [ "1", "7", "8"],
            [ "4" ],
            [ "7" ],
        ];
    auto b = new Tuple!(string, uint)[2];
    largestPartialIntersection(a, b, Yes.sortOutput);
    assert(b == [ tuple("7", 4u), tuple("1", 3u) ][], text(b));
}

@system unittest
{
    import std.typecons : tuple, Tuple;

    // Figure which number can be found in most arrays of the set of
    // arrays below, with specific per-element weights
    double[][] a =
        [
            [ 1, 4, 7, 8 ],
            [ 1, 7 ],
            [ 1, 7, 8],
            [ 4 ],
            [ 7 ],
            ];
    auto b = new Tuple!(double, uint)[1];
    double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ];
    largestPartialIntersectionWeighted(a, b, weights);
    // First member is the item, second is the occurrence count
    assert(b[0] == tuple(4.0, 2u));
}

@system unittest
{
    import std.container : Array;
    import std.typecons : Tuple;

    alias T = Tuple!(uint, uint);
    const Array!T arrayOne = Array!T( [ T(1,2), T(3,4) ] );
    const Array!T arrayTwo = Array!T([ T(1,2), T(3,4) ] );

    assert(arrayOne == arrayTwo);
}

// MultiwayMerge
/**
Merges multiple sets. The input sets are passed as a
range of ranges and each is assumed to be sorted by $(D
less). Computation is done lazily, one union element at a time. The
complexity of one $(D popFront) operation is $(BIGOH
log(ror.length)). However, the length of $(D ror) decreases as ranges
in it are exhausted, so the complexity of a full pass through $(D
MultiwayMerge) is dependent on the distribution of the lengths of ranges
contained within $(D ror). If all ranges have the same length $(D n)
(worst case scenario), the complexity of a full pass through $(D
MultiwayMerge) is $(BIGOH n * ror.length * log(ror.length)), i.e., $(D
log(ror.length)) times worse than just spanning all ranges in
turn. The output comes sorted (unstably) by $(D less).

The length of the resulting range is the sum of all lengths of
the ranges passed as input. This means that all elements (duplicates
included) are transferred to the resulting range.

For backward compatibility, `multiwayMerge` is available under
the name `nWayUnion` and `MultiwayMerge` under the name of `NWayUnion` .
Future code should use `multiwayMerge` and `MultiwayMerge` as `nWayUnion`
and `NWayUnion` will be deprecated.

Params:
    less = Predicate the given ranges are sorted by.
    ror = A range of ranges sorted by `less` to compute the union for.

Returns:
    A range of the union of the ranges in `ror`.

Warning: Because $(D MultiwayMerge) does not allocate extra memory, it
will leave $(D ror) modified. Namely, $(D MultiwayMerge) assumes ownership
of $(D ror) and discretionarily swaps and advances elements of it. If
you want $(D ror) to preserve its contents after the call, you may
want to pass a duplicate to $(D MultiwayMerge) (and perhaps cache the
duplicate in between calls).
 */
struct MultiwayMerge(alias less, RangeOfRanges)
{
    import std.container : BinaryHeap;

    private alias ElementType = .ElementType!(.ElementType!RangeOfRanges);
    private alias comp = binaryFun!less;
    private RangeOfRanges _ror;

    ///
    static bool compFront(.ElementType!RangeOfRanges a,
            .ElementType!RangeOfRanges b)
    {
        // revert comparison order so we get the smallest elements first
        return comp(b.front, a.front);
    }
    private BinaryHeap!(RangeOfRanges, compFront) _heap;

    ///
    this(RangeOfRanges ror)
    {
        import std.algorithm.mutation : remove, SwapStrategy;

        // Preemptively get rid of all empty ranges in the input
        // No need for stability either
        _ror = remove!("a.empty", SwapStrategy.unstable)(ror);
        //Build the heap across the range
        _heap.acquire(_ror);
    }

    ///
    @property bool empty() { return _ror.empty; }

    ///
    @property auto ref front()
    {
        return _heap.front.front;
    }

    ///
    void popFront()
    {
        _heap.removeFront();
        // let's look at the guy just popped
        _ror.back.popFront();
        if (_ror.back.empty)
        {
            _ror.popBack();
            // nothing else to do: the empty range is not in the
            // heap and not in _ror
            return;
        }
        // Put the popped range back in the heap
        _heap.conditionalInsert(_ror.back) || assert(false);
    }
}

/// Ditto
MultiwayMerge!(less, RangeOfRanges) multiwayMerge
(alias less = "a < b", RangeOfRanges)
(RangeOfRanges ror)
{
    return typeof(return)(ror);
}

///
@system unittest
{
    import std.algorithm.comparison : equal;

    double[][] a =
    [
        [ 1, 4, 7, 8 ],
        [ 1, 7 ],
        [ 1, 7, 8],
        [ 4 ],
        [ 7 ],
    ];
    auto witness = [
        1, 1, 1, 4, 4, 7, 7, 7, 7, 8, 8
    ];
    assert(equal(multiwayMerge(a), witness));

    double[][] b =
    [
        // range with duplicates
        [ 1, 1, 4, 7, 8 ],
        [ 7 ],
        [ 1, 7, 8],
        [ 4 ],
        [ 7 ],
    ];
    // duplicates are propagated to the resulting range
    assert(equal(multiwayMerge(b), witness));
}

alias nWayUnion = multiwayMerge;
alias NWayUnion = MultiwayMerge;

/**
Computes the union of multiple ranges. The input ranges are passed
as a range of ranges and each is assumed to be sorted by $(D
less). Computation is done lazily, one union element at a time.
`multiwayUnion(ror)` is functionally equivalent to `multiwayMerge(ror).uniq`.

"The output of multiwayUnion has no duplicates even when its inputs contain duplicates."

Params:
    less = Predicate the given ranges are sorted by.
    ror = A range of ranges sorted by `less` to compute the intersection for.

Returns:
    A range of the union of the ranges in `ror`.

See also: $(LREF multiwayMerge)
 */
auto multiwayUnion(alias less = "a < b", RangeOfRanges)(RangeOfRanges ror)
{
    import std.algorithm.iteration : uniq;
    return ror.multiwayMerge.uniq;
}

///
@system unittest
{
    import std.algorithm.comparison : equal;

    // sets
    double[][] a =
    [
        [ 1, 4, 7, 8 ],
        [ 1, 7 ],
        [ 1, 7, 8],
        [ 4 ],
        [ 7 ],
    ];

    auto witness = [1, 4, 7, 8];
    assert(equal(multiwayUnion(a), witness));

    // multisets
    double[][] b =
    [
        [ 1, 1, 1, 4, 7, 8 ],
        [ 1, 7 ],
        [ 1, 7, 7, 8],
        [ 4 ],
        [ 7 ],
    ];
    assert(equal(multiwayUnion(b), witness));
}

/**
Lazily computes the difference of $(D r1) and $(D r2). The two ranges
are assumed to be sorted by $(D less). The element types of the two
ranges must have a common type.


In the case of multisets, considering that element `a` appears `x`
times in $(D r1) and `y` times and $(D r2), the number of occurences
of `a` in the resulting range is going to be `x-y` if x > y or 0 othwerise.

Params:
    less = Predicate the given ranges are sorted by.
    r1 = The first range.
    r2 = The range to subtract from `r1`.

Returns:
    A range of the difference of `r1` and `r2`.

See_also: $(LREF setSymmetricDifference)
 */
struct SetDifference(alias less = "a < b", R1, R2)
if (isInputRange!(R1) && isInputRange!(R2))
{
private:
    R1 r1;
    R2 r2;
    alias comp = binaryFun!(less);

    void adjustPosition()
    {
        while (!r1.empty)
        {
            if (r2.empty || comp(r1.front, r2.front)) break;
            if (comp(r2.front, r1.front))
            {
                r2.popFront();
            }
            else
            {
                // both are equal
                r1.popFront();
                r2.popFront();
            }
        }
    }

public:
    ///
    this(R1 r1, R2 r2)
    {
        this.r1 = r1;
        this.r2 = r2;
        // position to the first element
        adjustPosition();
    }

    ///
    void popFront()
    {
        r1.popFront();
        adjustPosition();
    }

    ///
    @property auto ref front()
    {
        assert(!empty);
        return r1.front;
    }

    static if (isForwardRange!R1 && isForwardRange!R2)
    {
        ///
        @property typeof(this) save()
        {
            auto ret = this;
            ret.r1 = r1.save;
            ret.r2 = r2.save;
            return ret;
        }
    }

    ///
    @property bool empty() { return r1.empty; }
}

/// Ditto
SetDifference!(less, R1, R2) setDifference(alias less = "a < b", R1, R2)
(R1 r1, R2 r2)
{
    return typeof(return)(r1, r2);
}

///
@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.range.primitives : isForwardRange;

    //sets
    int[] a = [ 1, 2, 4, 5, 7, 9 ];
    int[] b = [ 0, 1, 2, 4, 7, 8 ];
    assert(equal(setDifference(a, b), [5, 9]));
    static assert(isForwardRange!(typeof(setDifference(a, b))));

    // multisets
    int[] x = [1, 1, 1, 2, 3];
    int[] y = [1, 1, 2, 4, 5];
    auto r = setDifference(x, y);
    assert(equal(r, [1, 3]));
    assert(setDifference(r, x).empty);
}

@safe unittest // Issue 10460
{
    import std.algorithm.comparison : equal;

    int[] a = [1, 2, 3, 4, 5];
    int[] b = [2, 4];
    foreach (ref e; setDifference(a, b))
        e = 0;
    assert(equal(a, [0, 2, 0, 4, 0]));
}

/**
Lazily computes the intersection of two or more input ranges $(D
ranges). The ranges are assumed to be sorted by $(D less). The element
types of the ranges must have a common type.

In the case of multisets, the range with the minimum number of
occurences of a given element, propagates the number of
occurences of this element to the resulting range.

Params:
    less = Predicate the given ranges are sorted by.
    ranges = The ranges to compute the intersection for.

Returns:
    A range containing the intersection of the given ranges.
 */
struct SetIntersection(alias less = "a < b", Rs...)
if (Rs.length >= 2 && allSatisfy!(isInputRange, Rs) &&
    !is(CommonType!(staticMap!(ElementType, Rs)) == void))
{
private:
    Rs _input;
    alias comp = binaryFun!less;
    alias ElementType = CommonType!(staticMap!(.ElementType, Rs));

    // Positions to the first elements that are all equal
    void adjustPosition()
    {
        if (empty) return;

        size_t done = Rs.length;
        static if (Rs.length > 1) while (true)
        {
            foreach (i, ref r; _input)
            {
                alias next = _input[(i + 1) % Rs.length];

                if (comp(next.front, r.front))
                {
                    do
                    {
                        next.popFront();
                        if (next.empty) return;
                    } while (comp(next.front, r.front));
                    done = Rs.length;
                }
                if (--done == 0) return;
            }
        }
    }

public:
    ///
    this(Rs input)
    {
        this._input = input;
        // position to the first element
        adjustPosition();
    }

    ///
    @property bool empty()
    {
        foreach (ref r; _input)
        {
            if (r.empty) return true;
        }
        return false;
    }

    ///
    void popFront()
    {
        assert(!empty);
        static if (Rs.length > 1) foreach (i, ref r; _input)
        {
            alias next = _input[(i + 1) % Rs.length];
            assert(!comp(r.front, next.front));
        }

        foreach (ref r; _input)
        {
            r.popFront();
        }
        adjustPosition();
    }

    ///
    @property ElementType front()
    {
        assert(!empty);
        return _input[0].front;
    }

    static if (allSatisfy!(isForwardRange, Rs))
    {
        ///
        @property SetIntersection save()
        {
            auto ret = this;
            foreach (i, ref r; _input)
            {
                ret._input[i] = r.save;
            }
            return ret;
        }
    }
}

/// Ditto
SetIntersection!(less, Rs) setIntersection(alias less = "a < b", Rs...)(Rs ranges)
if (Rs.length >= 2 && allSatisfy!(isInputRange, Rs) &&
    !is(CommonType!(staticMap!(ElementType, Rs)) == void))
{
    return typeof(return)(ranges);
}

///
@safe unittest
{
    import std.algorithm.comparison : equal;

    // sets
    int[] a = [ 1, 2, 4, 5, 7, 9 ];
    int[] b = [ 0, 1, 2, 4, 7, 8 ];
    int[] c = [ 0, 1, 4, 5, 7, 8 ];
    assert(equal(setIntersection(a, a), a));
    assert(equal(setIntersection(a, b), [1, 2, 4, 7]));
    assert(equal(setIntersection(a, b, c), [1, 4, 7]));

    // multisets
    int[] d = [ 1, 1, 2, 2, 7, 7 ];
    int[] e = [ 1, 1, 1, 7];
    assert(equal(setIntersection(a, d), [1, 2, 7]));
    assert(equal(setIntersection(d, e), [1, 1, 7]));
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.algorithm.iteration : filter;

    int[] a = [ 1, 2, 4, 5, 7, 9 ];
    int[] b = [ 0, 1, 2, 4, 7, 8 ];
    int[] c = [ 0, 1, 4, 5, 7, 8 ];
    int[] d = [ 1, 3, 4 ];
    int[] e = [ 4, 5 ];

    assert(equal(setIntersection(a, a), a));
    assert(equal(setIntersection(a, a, a), a));
    assert(equal(setIntersection(a, b), [1, 2, 4, 7]));
    assert(equal(setIntersection(a, b, c), [1, 4, 7]));
    assert(equal(setIntersection(a, b, c, d), [1, 4]));
    assert(equal(setIntersection(a, b, c, d, e), [4]));

    auto inpA = a.filter!(_ => true), inpB = b.filter!(_ => true);
    auto inpC = c.filter!(_ => true), inpD = d.filter!(_ => true);
    assert(equal(setIntersection(inpA, inpB, inpC, inpD), [1, 4]));

    assert(equal(setIntersection(a, b, b, a), [1, 2, 4, 7]));
    assert(equal(setIntersection(a, c, b), [1, 4, 7]));
    assert(equal(setIntersection(b, a, c), [1, 4, 7]));
    assert(equal(setIntersection(b, c, a), [1, 4, 7]));
    assert(equal(setIntersection(c, a, b), [1, 4, 7]));
    assert(equal(setIntersection(c, b, a), [1, 4, 7]));
}

/**
Lazily computes the symmetric difference of $(D r1) and $(D r2),
i.e. the elements that are present in exactly one of $(D r1) and $(D
r2). The two ranges are assumed to be sorted by $(D less), and the
output is also sorted by $(D less). The element types of the two
ranges must have a common type.

If both ranges are sets (without duplicated elements), the resulting
range is going to be a set. If at least one of the ranges is a multiset,
the number of occurences of an element `x` in the resulting range is `abs(a-b)`
where `a` is the number of occurences of `x` in $(D r1), `b` is the number of
occurences of `x` in $(D r2), and `abs` is the absolute value.

If both arguments are ranges of L-values of the same type then
$(D SetSymmetricDifference) will also be a range of L-values of
that type.

Params:
    less = Predicate the given ranges are sorted by.
    r1 = The first range.
    r2 = The second range.

Returns:
    A range of the symmetric difference between `r1` and `r2`.

See_also: $(LREF setDifference)
 */
struct SetSymmetricDifference(alias less = "a < b", R1, R2)
if (isInputRange!(R1) && isInputRange!(R2))
{
private:
    R1 r1;
    R2 r2;
    //bool usingR2;
    alias comp = binaryFun!(less);

    void adjustPosition()
    {
        while (!r1.empty && !r2.empty)
        {
            if (comp(r1.front, r2.front) || comp(r2.front, r1.front))
            {
                break;
            }
            // equal, pop both
            r1.popFront();
            r2.popFront();
        }
    }

public:
    ///
    this(R1 r1, R2 r2)
    {
        this.r1 = r1;
        this.r2 = r2;
        // position to the first element
        adjustPosition();
    }

    ///
    void popFront()
    {
        assert(!empty);
        if (r1.empty) r2.popFront();
        else if (r2.empty) r1.popFront();
        else
        {
            // neither is empty
            if (comp(r1.front, r2.front))
            {
                r1.popFront();
            }
            else
            {
                assert(comp(r2.front, r1.front));
                r2.popFront();
            }
        }
        adjustPosition();
    }

    ///
    @property auto ref front()
    {
        assert(!empty);
        immutable chooseR1 = r2.empty || !r1.empty && comp(r1.front, r2.front);
        assert(chooseR1 || r1.empty || comp(r2.front, r1.front));
        return chooseR1 ? r1.front : r2.front;
    }

    static if (isForwardRange!R1 && isForwardRange!R2)
    {
        ///
        @property typeof(this) save()
        {
            auto ret = this;
            ret.r1 = r1.save;
            ret.r2 = r2.save;
            return ret;
        }
    }

    ///
    ref auto opSlice() { return this; }

    ///
    @property bool empty() { return r1.empty && r2.empty; }
}

/// Ditto
SetSymmetricDifference!(less, R1, R2)
setSymmetricDifference(alias less = "a < b", R1, R2)
(R1 r1, R2 r2)
{
    return typeof(return)(r1, r2);
}

///
@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.range.primitives : isForwardRange;

    // sets
    int[] a = [ 1, 2, 4, 5, 7, 9 ];
    int[] b = [ 0, 1, 2, 4, 7, 8 ];
    assert(equal(setSymmetricDifference(a, b), [0, 5, 8, 9][]));
    static assert(isForwardRange!(typeof(setSymmetricDifference(a, b))));

    //mutisets
    int[] c = [1, 1, 1, 1, 2, 2, 2, 4, 5, 6];
    int[] d = [1, 1, 2, 2, 2, 2, 4, 7, 9];
    assert(equal(setSymmetricDifference(c, d), setSymmetricDifference(d, c)));
    assert(equal(setSymmetricDifference(c, d), [1, 1, 2, 5, 6, 7, 9]));
}

@safe unittest // Issue 10460
{
    import std.algorithm.comparison : equal;

    int[] a = [1, 2];
    double[] b = [2.0, 3.0];
    int[] c = [2, 3];

    alias R1 = typeof(setSymmetricDifference(a, b));
    static assert(is(ElementType!R1 == double));
    static assert(!hasLvalueElements!R1);

    alias R2 = typeof(setSymmetricDifference(a, c));
    static assert(is(ElementType!R2 == int));
    static assert(hasLvalueElements!R2);

    assert(equal(setSymmetricDifference(a, b), [1.0, 3.0]));
    assert(equal(setSymmetricDifference(a, c), [1, 3]));
}

/++
TODO: once SetUnion got deprecated we can provide the usual definition
(= merge + filter after uniqs)
See: https://github.com/dlang/phobos/pull/4249
/**
Lazily computes the union of two or more ranges $(D rs). The ranges
are assumed to be sorted by $(D less). Elements in the output are
unique. The element types of all ranges must have a common type.

Params:
    less = Predicate the given ranges are sorted by.
    rs = The ranges to compute the union for.

Returns:
    A range containing the unique union of the given ranges.

See_Also:
   $(REF merge, std,algorithm,sorting)
 */
auto setUnion(alias less = "a < b", Rs...)
(Rs rs)
{
    import std.algorithm.iteration : uniq;
    import std.algorithm.sorting : merge;
    return merge!(less, Rs)(rs).uniq;
}

///
@safe pure nothrow unittest
    ///
{
    import std.algorithm.comparison : equal;

    int[] a = [1, 3, 5];
    int[] b = [2, 3, 4];
    assert(a.setUnion(b).equal([1, 2, 3, 4, 5]));
}

@safe pure nothrow unittest
{
    import std.algorithm.comparison : equal;

    int[] a = [ 1, 2, 4, 5, 7, 9 ];
    int[] b = [ 0, 1, 2, 4, 7, 8 ];
    double[] c = [ 10.5 ];

    assert(equal(setUnion(a, b), [0, 1, 2, 4, 5, 7, 8, 9][]));
    assert(equal(setUnion(a, c, b),
                    [0, 1, 2, 4, 5, 7, 8, 9, 10.5][]));
}

@safe unittest
{
    // save
    import std.range : dropOne;
    int[] a = [0, 1, 2];
    int[] b = [0, 3];
    auto arr = a.setUnion(b);
    assert(arr.front == 0);
    assert(arr.save.dropOne.front == 1);
    assert(arr.front == 0);
}

@nogc @safe pure nothrow unittest
{
    import std.algorithm.comparison : equal;

    static immutable a = [1, 3, 5];
    static immutable b = [2, 4];
    static immutable r = [1, 2, 3, 4, 5];
    assert(a.setUnion(b).equal(r));
}

@safe pure nothrow unittest
{
    import std.algorithm.comparison : equal;
    import std.internal.test.dummyrange;
    import std.range : iota;

    auto dummyResult1 = [1, 1.5, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10];
    auto dummyResult2 = iota(1, 11);
    foreach (DummyType; AllDummyRanges)
    {
        DummyType d;
        assert(d.setUnion([1, 1.5, 5.5]).equal(dummyResult1));
        assert(d.setUnion(d).equal(dummyResult2));
    }
}
++/