// Written in the D programming language.
/**
Bit-level manipulation facilities.
$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE,
$(TR $(TH Category) $(TH Functions))
$(TR $(TD Bit constructs) $(TD
$(LREF BitArray)
$(LREF bitfields)
$(LREF bitsSet)
))
$(TR $(TD Endianness conversion) $(TD
$(LREF bigEndianToNative)
$(LREF littleEndianToNative)
$(LREF nativeToBigEndian)
$(LREF nativeToLittleEndian)
$(LREF swapEndian)
))
$(TR $(TD Integral ranges) $(TD
$(LREF append)
$(LREF peek)
$(LREF read)
$(LREF write)
))
$(TR $(TD Floating-Point manipulation) $(TD
$(LREF DoubleRep)
$(LREF FloatRep)
))
$(TR $(TD Tagging) $(TD
$(LREF taggedClassRef)
$(LREF taggedPointer)
))
)
Copyright: Copyright Digital Mars 2007 - 2011.
License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP digitalmars.com, Walter Bright),
$(HTTP erdani.org, Andrei Alexandrescu),
Jonathan M Davis,
Alex Rønne Petersen,
Damian Ziemba,
Amaury SECHET
Source: $(PHOBOSSRC std/_bitmanip.d)
*/
/*
Copyright Digital Mars 2007 - 2012.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
*/
module std.bitmanip;
//debug = bitarray; // uncomment to turn on debugging printf's
import std.range.primitives;
public import std.system : Endian;
import std.traits;
version (unittest)
{
import std.stdio;
}
private string myToString(ulong n)
{
import core.internal.string : UnsignedStringBuf, unsignedToTempString;
UnsignedStringBuf buf;
auto s = unsignedToTempString(n, buf);
return cast(string) s ~ (n > uint.max ? "UL" : "U");
}
private template createAccessors(
string store, T, string name, size_t len, size_t offset)
{
static if (!name.length)
{
// No need to create any accessor
enum result = "";
}
else static if (len == 0)
{
// Fields of length 0 are always zero
enum result = "enum "~T.stringof~" "~name~" = 0;\n";
}
else
{
enum ulong
maskAllElse = ((~0uL) >> (64 - len)) << offset,
signBitCheck = 1uL << (len - 1);
static if (T.min < 0)
{
enum long minVal = -(1uL << (len - 1));
enum ulong maxVal = (1uL << (len - 1)) - 1;
alias UT = Unsigned!(T);
enum UT extendSign = cast(UT)~((~0uL) >> (64 - len));
}
else
{
enum ulong minVal = 0;
enum ulong maxVal = (~0uL) >> (64 - len);
enum extendSign = 0;
}
static if (is(T == bool))
{
static assert(len == 1);
enum result =
// getter
"@property bool " ~ name ~ "() @safe pure nothrow @nogc const { return "
~"("~store~" & "~myToString(maskAllElse)~") != 0;}\n"
// setter
~"@property void " ~ name ~ "(bool v) @safe pure nothrow @nogc { "
~"if (v) "~store~" |= "~myToString(maskAllElse)~";"
~"else "~store~" &= cast(typeof("~store~"))(-1-cast(typeof("~store~"))"~myToString(maskAllElse)~");}\n";
}
else
{
// getter
enum result = "@property "~T.stringof~" "~name~"() @safe pure nothrow @nogc const { auto result = "
~"("~store~" & "
~ myToString(maskAllElse) ~ ") >>"
~ myToString(offset) ~ ";"
~ (T.min < 0
? "if (result >= " ~ myToString(signBitCheck)
~ ") result |= " ~ myToString(extendSign) ~ ";"
: "")
~ " return cast("~T.stringof~") result;}\n"
// setter
~"@property void "~name~"("~T.stringof~" v) @safe pure nothrow @nogc { "
~"assert(v >= "~name~`_min, "Value is smaller than the minimum value of bitfield '`~name~`'"); `
~"assert(v <= "~name~`_max, "Value is greater than the maximum value of bitfield '`~name~`'"); `
~store~" = cast(typeof("~store~"))"
~" (("~store~" & (-1-cast(typeof("~store~"))"~myToString(maskAllElse)~"))"
~" | ((cast(typeof("~store~")) v << "~myToString(offset)~")"
~" & "~myToString(maskAllElse)~"));}\n"
// constants
~"enum "~T.stringof~" "~name~"_min = cast("~T.stringof~")"
~myToString(minVal)~"; "
~" enum "~T.stringof~" "~name~"_max = cast("~T.stringof~")"
~myToString(maxVal)~"; ";
}
}
}
private template createStoreName(Ts...)
{
static if (Ts.length < 2)
enum createStoreName = "";
else
enum createStoreName = "_" ~ Ts[1] ~ createStoreName!(Ts[3 .. $]);
}
private template createStorageAndFields(Ts...)
{
enum Name = createStoreName!Ts;
enum Size = sizeOfBitField!Ts;
static if (Size == ubyte.sizeof * 8)
alias StoreType = ubyte;
else static if (Size == ushort.sizeof * 8)
alias StoreType = ushort;
else static if (Size == uint.sizeof * 8)
alias StoreType = uint;
else static if (Size == ulong.sizeof * 8)
alias StoreType = ulong;
else
{
static assert(false, "Field widths must sum to 8, 16, 32, or 64");
alias StoreType = ulong; // just to avoid another error msg
}
enum result
= "private " ~ StoreType.stringof ~ " " ~ Name ~ ";"
~ createFields!(Name, 0, Ts).result;
}
private template createFields(string store, size_t offset, Ts...)
{
static if (Ts.length > 0)
enum result
= createAccessors!(store, Ts[0], Ts[1], Ts[2], offset).result
~ createFields!(store, offset + Ts[2], Ts[3 .. $]).result;
else
enum result = "";
}
private ulong getBitsForAlign(ulong a)
{
ulong bits = 0;
while ((a & 0x01) == 0)
{
bits++;
a >>= 1;
}
assert(a == 1, "alignment is not a power of 2");
return bits;
}
private template createReferenceAccessor(string store, T, ulong bits, string name)
{
enum storage = "private void* " ~ store ~ "_ptr;\n";
enum storage_accessor = "@property ref size_t " ~ store ~ "() return @trusted pure nothrow @nogc const { "
~ "return *cast(size_t*) &" ~ store ~ "_ptr;}\n"
~ "@property void " ~ store ~ "(size_t v) @trusted pure nothrow @nogc { "
~ "" ~ store ~ "_ptr = cast(void*) v;}\n";
enum mask = (1UL << bits) - 1;
// getter
enum ref_accessor = "@property "~T.stringof~" "~name~"() @trusted pure nothrow @nogc const { auto result = "
~ "("~store~" & "~myToString(~mask)~"); "
~ "return cast("~T.stringof~") cast(void*) result;}\n"
// setter
~"@property void "~name~"("~T.stringof~" v) @trusted pure nothrow @nogc { "
~"assert(((cast(typeof("~store~")) cast(void*) v) & "~myToString(mask)
~`) == 0, "Value not properly aligned for '`~name~`'"); `
~store~" = cast(typeof("~store~"))"
~" (("~store~" & (cast(typeof("~store~")) "~myToString(mask)~"))"
~" | ((cast(typeof("~store~")) cast(void*) v) & (cast(typeof("~store~")) "~myToString(~mask)~")));}\n";
enum result = storage ~ storage_accessor ~ ref_accessor;
}
private template sizeOfBitField(T...)
{
static if (T.length < 2)
enum sizeOfBitField = 0;
else
enum sizeOfBitField = T[2] + sizeOfBitField!(T[3 .. $]);
}
private template createTaggedReference(T, ulong a, string name, Ts...)
{
static assert(
sizeOfBitField!Ts <= getBitsForAlign(a),
"Fields must fit in the bits know to be zero because of alignment."
);
enum StoreName = createStoreName!(T, name, 0, Ts);
enum result
= createReferenceAccessor!(StoreName, T, sizeOfBitField!Ts, name).result
~ createFields!(StoreName, 0, Ts, size_t, "", T.sizeof * 8 - sizeOfBitField!Ts).result;
}
/**
Allows creating bit fields inside $(D_PARAM struct)s and $(D_PARAM
class)es.
Example:
----
struct A
{
int a;
mixin(bitfields!(
uint, "x", 2,
int, "y", 3,
uint, "z", 2,
bool, "flag", 1));
}
A obj;
obj.x = 2;
obj.z = obj.x;
----
The example above creates a bitfield pack of eight bits, which fit in
one $(D_PARAM ubyte). The bitfields are allocated starting from the
least significant bit, i.e. x occupies the two least significant bits
of the bitfields storage.
The sum of all bit lengths in one $(D_PARAM bitfield) instantiation
must be exactly 8, 16, 32, or 64. If padding is needed, just allocate
one bitfield with an empty name.
Example:
----
struct A
{
mixin(bitfields!(
bool, "flag1", 1,
bool, "flag2", 1,
uint, "", 6));
}
----
The type of a bit field can be any integral type or enumerated
type. The most efficient type to store in bitfields is $(D_PARAM
bool), followed by unsigned types, followed by signed types.
*/
template bitfields(T...)
{
enum { bitfields = createStorageAndFields!T.result }
}
/**
This string mixin generator allows one to create tagged pointers inside $(D_PARAM struct)s and $(D_PARAM class)es.
A tagged pointer uses the bits known to be zero in a normal pointer or class reference to store extra information.
For example, a pointer to an integer must be 4-byte aligned, so there are 2 bits that are always known to be zero.
One can store a 2-bit integer there.
The example above creates a tagged pointer in the struct A. The pointer is of type
$(D uint*) as specified by the first argument, and is named x, as specified by the second
argument.
Following arguments works the same way as $(D bitfield)'s. The bitfield must fit into the
bits known to be zero because of the pointer alignment.
*/
template taggedPointer(T : T*, string name, Ts...) {
enum taggedPointer = createTaggedReference!(T*, T.alignof, name, Ts).result;
}
///
@safe unittest
{
struct A
{
int a;
mixin(taggedPointer!(
uint*, "x",
bool, "b1", 1,
bool, "b2", 1));
}
A obj;
obj.x = new uint;
obj.b1 = true;
obj.b2 = false;
}
/**
This string mixin generator allows one to create tagged class reference inside $(D_PARAM struct)s and $(D_PARAM class)es.
A tagged class reference uses the bits known to be zero in a normal class reference to store extra information.
For example, a pointer to an integer must be 4-byte aligned, so there are 2 bits that are always known to be zero.
One can store a 2-bit integer there.
The example above creates a tagged reference to an Object in the struct A. This expects the same parameters
as $(D taggedPointer), except the first argument which must be a class type instead of a pointer type.
*/
template taggedClassRef(T, string name, Ts...)
if (is(T == class))
{
enum taggedClassRef = createTaggedReference!(T, 8, name, Ts).result;
}
///
@safe unittest
{
struct A
{
int a;
mixin(taggedClassRef!(
Object, "o",
uint, "i", 2));
}
A obj;
obj.o = new Object();
obj.i = 3;
}
@safe pure nothrow @nogc
unittest
{
// Degenerate bitfields (#8474 / #11160) tests mixed with range tests
struct Test1
{
mixin(bitfields!(uint, "a", 32,
uint, "b", 4,
uint, "c", 4,
uint, "d", 8,
uint, "e", 16,));
static assert(Test1.b_min == 0);
static assert(Test1.b_max == 15);
}
struct Test2
{
mixin(bitfields!(bool, "a", 0,
ulong, "b", 64));
static assert(Test2.b_min == ulong.min);
static assert(Test2.b_max == ulong.max);
}
struct Test1b
{
mixin(bitfields!(bool, "a", 0,
int, "b", 8));
}
struct Test2b
{
mixin(bitfields!(int, "a", 32,
int, "b", 4,
int, "c", 4,
int, "d", 8,
int, "e", 16,));
static assert(Test2b.b_min == -8);
static assert(Test2b.b_max == 7);
}
struct Test3b
{
mixin(bitfields!(bool, "a", 0,
long, "b", 64));
static assert(Test3b.b_min == long.min);
static assert(Test3b.b_max == long.max);
}
struct Test4b
{
mixin(bitfields!(long, "a", 32,
int, "b", 32));
}
// Sign extension tests
Test2b t2b;
Test4b t4b;
t2b.b = -5; assert(t2b.b == -5);
t2b.d = -5; assert(t2b.d == -5);
t2b.e = -5; assert(t2b.e == -5);
t4b.a = -5; assert(t4b.a == -5L);
}
@system unittest
{
struct Test5
{
mixin(taggedPointer!(
int*, "a",
uint, "b", 2));
}
Test5 t5;
t5.a = null;
t5.b = 3;
assert(t5.a is null);
assert(t5.b == 3);
int myint = 42;
t5.a = &myint;
assert(t5.a is &myint);
assert(t5.b == 3);
struct Test6
{
mixin(taggedClassRef!(
Object, "o",
bool, "b", 1));
}
Test6 t6;
t6.o = null;
t6.b = false;
assert(t6.o is null);
assert(t6.b == false);
auto o = new Object();
t6.o = o;
t6.b = true;
assert(t6.o is o);
assert(t6.b == true);
}
@safe unittest
{
static assert(!__traits(compiles,
taggedPointer!(
int*, "a",
uint, "b", 3)));
static assert(!__traits(compiles,
taggedClassRef!(
Object, "a",
uint, "b", 4)));
struct S {
mixin(taggedClassRef!(
Object, "a",
bool, "b", 1));
}
const S s;
void bar(S s) {}
static assert(!__traits(compiles, bar(s)));
}
@safe unittest
{
// Bug #6686
union S {
ulong bits = ulong.max;
mixin (bitfields!(
ulong, "back", 31,
ulong, "front", 33)
);
}
S num;
num.bits = ulong.max;
num.back = 1;
assert(num.bits == 0xFFFF_FFFF_8000_0001uL);
}
@safe unittest
{
// Bug #5942
struct S
{
mixin(bitfields!(
int, "a" , 32,
int, "b" , 32
));
}
S data;
data.b = 42;
data.a = 1;
assert(data.b == 42);
}
@safe unittest
{
struct Test
{
mixin(bitfields!(bool, "a", 1,
uint, "b", 3,
short, "c", 4));
}
@safe void test() pure nothrow
{
Test t;
t.a = true;
t.b = 5;
t.c = 2;
assert(t.a);
assert(t.b == 5);
assert(t.c == 2);
}
test();
}
@safe unittest
{
{
static struct Integrals {
bool checkExpectations(bool eb, int ei, short es) { return b == eb && i == ei && s == es; }
mixin(bitfields!(
bool, "b", 1,
uint, "i", 3,
short, "s", 4));
}
Integrals i;
assert(i.checkExpectations(false, 0, 0));
i.b = true;
assert(i.checkExpectations(true, 0, 0));
i.i = 7;
assert(i.checkExpectations(true, 7, 0));
i.s = -8;
assert(i.checkExpectations(true, 7, -8));
i.s = 7;
assert(i.checkExpectations(true, 7, 7));
}
//Bug# 8876
{
struct MoreIntegrals {
bool checkExpectations(uint eu, ushort es, uint ei) { return u == eu && s == es && i == ei; }
mixin(bitfields!(
uint, "u", 24,
short, "s", 16,
int, "i", 24));
}
MoreIntegrals i;
assert(i.checkExpectations(0, 0, 0));
i.s = 20;
assert(i.checkExpectations(0, 20, 0));
i.i = 72;
assert(i.checkExpectations(0, 20, 72));
i.u = 8;
assert(i.checkExpectations(8, 20, 72));
i.s = 7;
assert(i.checkExpectations(8, 7, 72));
}
enum A { True, False }
enum B { One, Two, Three, Four }
static struct Enums {
bool checkExpectations(A ea, B eb) { return a == ea && b == eb; }
mixin(bitfields!(
A, "a", 1,
B, "b", 2,
uint, "", 5));
}
Enums e;
assert(e.checkExpectations(A.True, B.One));
e.a = A.False;
assert(e.checkExpectations(A.False, B.One));
e.b = B.Three;
assert(e.checkExpectations(A.False, B.Three));
static struct SingleMember {
bool checkExpectations(bool eb) { return b == eb; }
mixin(bitfields!(
bool, "b", 1,
uint, "", 7));
}
SingleMember f;
assert(f.checkExpectations(false));
f.b = true;
assert(f.checkExpectations(true));
}
// Issue 12477
@system unittest
{
import core.exception : AssertError;
import std.algorithm.searching : canFind;
import std.bitmanip : bitfields;
static struct S
{
mixin(bitfields!(
uint, "a", 6,
int, "b", 2));
}
S s;
try { s.a = uint.max; assert(0); }
catch (AssertError ae)
{ assert(ae.msg.canFind("Value is greater than the maximum value of bitfield 'a'"), ae.msg); }
try { s.b = int.min; assert(0); }
catch (AssertError ae)
{ assert(ae.msg.canFind("Value is smaller than the minimum value of bitfield 'b'"), ae.msg); }
}
/**
Allows manipulating the fraction, exponent, and sign parts of a
$(D_PARAM float) separately. The definition is:
----
struct FloatRep
{
union
{
float value;
mixin(bitfields!(
uint, "fraction", 23,
ubyte, "exponent", 8,
bool, "sign", 1));
}
enum uint bias = 127, fractionBits = 23, exponentBits = 8, signBits = 1;
}
----
*/
struct FloatRep
{
union
{
float value;
mixin(bitfields!(
uint, "fraction", 23,
ubyte, "exponent", 8,
bool, "sign", 1));
}
enum uint bias = 127, fractionBits = 23, exponentBits = 8, signBits = 1;
}
/**
Allows manipulating the fraction, exponent, and sign parts of a
$(D_PARAM double) separately. The definition is:
----
struct DoubleRep
{
union
{
double value;
mixin(bitfields!(
ulong, "fraction", 52,
ushort, "exponent", 11,
bool, "sign", 1));
}
enum uint bias = 1023, signBits = 1, fractionBits = 52, exponentBits = 11;
}
----
*/
struct DoubleRep
{
union
{
double value;
mixin(bitfields!(
ulong, "fraction", 52,
ushort, "exponent", 11,
bool, "sign", 1));
}
enum uint bias = 1023, signBits = 1, fractionBits = 52, exponentBits = 11;
}
@safe unittest
{
// test reading
DoubleRep x;
x.value = 1.0;
assert(x.fraction == 0 && x.exponent == 1023 && !x.sign);
x.value = -0.5;
assert(x.fraction == 0 && x.exponent == 1022 && x.sign);
x.value = 0.5;
assert(x.fraction == 0 && x.exponent == 1022 && !x.sign);
// test writing
x.fraction = 1125899906842624;
x.exponent = 1025;
x.sign = true;
assert(x.value == -5.0);
// test enums
enum ABC { A, B, C }
struct EnumTest
{
mixin(bitfields!(
ABC, "x", 2,
bool, "y", 1,
ubyte, "z", 5));
}
}
@safe unittest
{
// Issue #15305
struct S {
mixin(bitfields!(
bool, "alice", 1,
ulong, "bob", 63,
));
}
S s;
s.bob = long.max - 1;
s.alice = false;
assert(s.bob == long.max - 1);
}
/**
* An array of bits.
*/
struct BitArray
{
private:
import core.bitop : bts, btr, bsf, bt;
import std.format : FormatSpec;
size_t _len;
size_t* _ptr;
enum bitsPerSizeT = size_t.sizeof * 8;
@property size_t fullWords() const @nogc pure nothrow
{
return _len / bitsPerSizeT;
}
// Number of bits after the last full word
@property size_t endBits() const @nogc pure nothrow
{
return _len % bitsPerSizeT;
}
// Bit mask to extract the bits after the last full word
@property size_t endMask() const @nogc pure nothrow
{
return (size_t(1) << endBits) - 1;
}
static size_t lenToDim(size_t len) @nogc pure nothrow @safe
{
return (len + (bitsPerSizeT-1)) / bitsPerSizeT;
}
public:
/**********************************************
* Gets the amount of native words backing this $(D BitArray).
*/
@property size_t dim() const @nogc pure nothrow @safe
{
return lenToDim(_len);
}
/**********************************************
* Gets the amount of bits in the $(D BitArray).
*/
@property size_t length() const @nogc pure nothrow @safe
{
return _len;
}
/**********************************************
* Sets the amount of bits in the $(D BitArray).
* $(RED Warning: increasing length may overwrite bits in
* final word up to the next word boundary. i.e. D dynamic
* array extension semantics are not followed.)
*/
@property size_t length(size_t newlen) pure nothrow @system
{
if (newlen != _len)
{
size_t olddim = dim;
immutable newdim = lenToDim(newlen);
if (newdim != olddim)
{
// Create a fake array so we can use D's realloc machinery
auto b = _ptr[0 .. olddim];
b.length = newdim; // realloc
_ptr = b.ptr;
}
_len = newlen;
}
return _len;
}
/**********************************************
* Gets the $(D i)'th bit in the $(D BitArray).
*/
bool opIndex(size_t i) const @nogc pure nothrow
in
{
assert(i < _len);
}
body
{
return cast(bool) bt(_ptr, i);
}
@system unittest
{
debug(bitarray) printf("BitArray.opIndex.unittest\n");
void Fun(const BitArray arr)
{
auto x = arr[0];
assert(x == 1);
}
BitArray a;
a.length = 3;
a[0] = 1;
Fun(a);
}
/**********************************************
* Sets the $(D i)'th bit in the $(D BitArray).
*/
bool opIndexAssign(bool b, size_t i) @nogc pure nothrow
in
{
assert(i < _len);
}
body
{
if (b)
bts(_ptr, i);
else
btr(_ptr, i);
return b;
}
/**********************************************
* Duplicates the $(D BitArray) and its contents.
*/
@property BitArray dup() const pure nothrow
{
BitArray ba;
auto b = _ptr[0 .. dim].dup;
ba._len = _len;
ba._ptr = b.ptr;
return ba;
}
@system unittest
{
BitArray a;
BitArray b;
int i;
debug(bitarray) printf("BitArray.dup.unittest\n");
a.length = 3;
a[0] = 1; a[1] = 0; a[2] = 1;
b = a.dup;
assert(b.length == 3);
for (i = 0; i < 3; i++)
{ debug(bitarray) printf("b[%d] = %d\n", i, b[i]);
assert(b[i] == (((i ^ 1) & 1) ? true : false));
}
}
/**********************************************
* Support for $(D foreach) loops for $(D BitArray).
*/
int opApply(scope int delegate(ref bool) dg)
{
int result;
foreach (i; 0 .. _len)
{
bool b = opIndex(i);
result = dg(b);
this[i] = b;
if (result)
break;
}
return result;
}
/** ditto */
int opApply(scope int delegate(bool) dg) const
{
int result;
foreach (i; 0 .. _len)
{
immutable b = opIndex(i);
result = dg(b);
if (result)
break;
}
return result;
}
/** ditto */
int opApply(scope int delegate(size_t, ref bool) dg)
{
int result;
foreach (i; 0 .. _len)
{
bool b = opIndex(i);
result = dg(i, b);
this[i] = b;
if (result)
break;
}
return result;
}
/** ditto */
int opApply(scope int delegate(size_t, bool) dg) const
{
int result;
foreach (i; 0 .. _len)
{
immutable b = opIndex(i);
result = dg(i, b);
if (result)
break;
}
return result;
}
@system unittest
{
debug(bitarray) printf("BitArray.opApply unittest\n");
static bool[] ba = [1,0,1];
auto a = BitArray(ba);
int i;
foreach (b;a)
{
switch (i)
{
case 0: assert(b == true); break;
case 1: assert(b == false); break;
case 2: assert(b == true); break;
default: assert(0);
}
i++;
}
foreach (j,b;a)
{
switch (j)
{
case 0: assert(b == true); break;
case 1: assert(b == false); break;
case 2: assert(b == true); break;
default: assert(0);
}
}
}
/**********************************************
* Reverses the bits of the $(D BitArray).
*/
@property BitArray reverse() @nogc pure nothrow
out (result)
{
assert(result == this);
}
body
{
if (_len >= 2)
{
bool t;
size_t lo, hi;
lo = 0;
hi = _len - 1;
for (; lo < hi; lo++, hi--)
{
t = this[lo];
this[lo] = this[hi];
this[hi] = t;
}
}
return this;
}
@system unittest
{
debug(bitarray) printf("BitArray.reverse.unittest\n");
BitArray b;
static bool[5] data = [1,0,1,1,0];
int i;
b = BitArray(data);
b.reverse;
for (i = 0; i < data.length; i++)
{
assert(b[i] == data[4 - i]);
}
}
/**********************************************
* Sorts the $(D BitArray)'s elements.
*/
@property BitArray sort() @nogc pure nothrow
out (result)
{
assert(result == this);
}
body
{
if (_len >= 2)
{
size_t lo, hi;
lo = 0;
hi = _len - 1;
while (1)
{
while (1)
{
if (lo >= hi)
goto Ldone;
if (this[lo] == true)
break;
lo++;
}
while (1)
{
if (lo >= hi)
goto Ldone;
if (this[hi] == false)
break;
hi--;
}
this[lo] = false;
this[hi] = true;
lo++;
hi--;
}
}
Ldone:
return this;
}
@system unittest
{
debug(bitarray) printf("BitArray.sort.unittest\n");
__gshared size_t x = 0b1100011000;
__gshared ba = BitArray(10, &x);
ba.sort;
for (size_t i = 0; i < 6; i++)
assert(ba[i] == false);
for (size_t i = 6; i < 10; i++)
assert(ba[i] == true);
}
/***************************************
* Support for operators == and != for $(D BitArray).
*/
bool opEquals(const ref BitArray a2) const @nogc pure nothrow
{
if (this.length != a2.length)
return false;
auto p1 = this._ptr;
auto p2 = a2._ptr;
if (p1[0 .. fullWords] != p2[0 .. fullWords])
return false;
if (!endBits)
return true;
auto i = fullWords;
return (p1[i] & endMask) == (p2[i] & endMask);
}
@system unittest
{
debug(bitarray) printf("BitArray.opEquals unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1];
static bool[] bc = [1,0,1,0,1,0,1];
static bool[] bd = [1,0,1,1,1];
static bool[] be = [1,0,1,0,1];
static bool[] bf = [1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
static bool[] bg = [1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
auto a = BitArray(ba);
auto b = BitArray(bb);
auto c = BitArray(bc);
auto d = BitArray(bd);
auto e = BitArray(be);
auto f = BitArray(bf);
auto g = BitArray(bg);
assert(a != b);
assert(a != c);
assert(a != d);
assert(a == e);
assert(f != g);
}
/***************************************
* Supports comparison operators for $(D BitArray).
*/
int opCmp(BitArray a2) const @nogc pure nothrow
{
const lesser = this.length < a2.length ? &this : &a2;
immutable fullWords = lesser.fullWords;
immutable endBits = lesser.endBits;
auto p1 = this._ptr;
auto p2 = a2._ptr;
foreach (i; 0 .. fullWords)
{
if (p1[i] != p2[i])
{
return p1[i] & (size_t(1) << bsf(p1[i] ^ p2[i])) ? 1 : -1;
}
}
if (endBits)
{
immutable i = fullWords;
immutable diff = p1[i] ^ p2[i];
if (diff)
{
immutable index = bsf(diff);
if (index < endBits)
{
return p1[i] & (size_t(1) << index) ? 1 : -1;
}
}
}
// Standard:
// A bool value can be implicitly converted to any integral type,
// with false becoming 0 and true becoming 1
return (this.length > a2.length) - (this.length < a2.length);
}
@system unittest
{
debug(bitarray) printf("BitArray.opCmp unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1];
static bool[] bc = [1,0,1,0,1,0,1];
static bool[] bd = [1,0,1,1,1];
static bool[] be = [1,0,1,0,1];
static bool[] bf = [1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
static bool[] bg = [1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
auto c = BitArray(bc);
auto d = BitArray(bd);
auto e = BitArray(be);
auto f = BitArray(bf);
auto g = BitArray(bg);
assert(a > b);
assert(a >= b);
assert(a < c);
assert(a <= c);
assert(a < d);
assert(a <= d);
assert(a == e);
assert(a <= e);
assert(a >= e);
assert(f < g);
assert(g <= g);
bool[] v;
foreach (i; 1 .. 256)
{
v.length = i;
v[] = false;
auto x = BitArray(v);
v[i-1] = true;
auto y = BitArray(v);
assert(x < y);
assert(x <= y);
}
BitArray a1, a2;
for (size_t len = 4; len <= 256; len <<= 1)
{
a1.length = a2.length = len;
a1[len-2] = a2[len-1] = true;
assert(a1 > a2);
a1[len-2] = a2[len-1] = false;
}
foreach (j; 1 .. a1.length)
{
a1[j-1] = a2[j] = true;
assert(a1 > a2);
a1[j-1] = a2[j] = false;
}
}
/***************************************
* Support for hashing for $(D BitArray).
*/
size_t toHash() const @nogc pure nothrow
{
size_t hash = 3557;
auto fullBytes = _len / 8;
foreach (i; 0 .. fullBytes)
{
hash *= 3559;
hash += (cast(byte*) this._ptr)[i];
}
foreach (i; 8*fullBytes .. _len)
{
hash *= 3571;
hash += this[i];
}
return hash;
}
/***************************************
* Set this $(D BitArray) to the contents of $(D ba).
*/
this(bool[] ba) pure nothrow @system
{
length = ba.length;
foreach (i, b; ba)
{
this[i] = b;
}
}
// Deliberately undocumented: raw initialization of bit array.
this(size_t len, size_t* ptr)
{
_len = len;
_ptr = ptr;
}
/***************************************
* Map the $(D BitArray) onto $(D v), with $(D numbits) being the number of bits
* in the array. Does not copy the data. $(D v.length) must be a multiple of
* $(D size_t.sizeof). If there are unmapped bits in the final mapped word then
* these will be set to 0.
*
* This is the inverse of $(D opCast).
*/
this(void[] v, size_t numbits) pure nothrow
in
{
assert(numbits <= v.length * 8);
assert(v.length % size_t.sizeof == 0);
}
body
{
_ptr = cast(size_t*) v.ptr;
_len = numbits;
if (endBits)
{
// Need to mask away extraneous bits from v.
_ptr[dim - 1] &= endMask;
}
}
@system unittest
{
debug(bitarray) printf("BitArray.init unittest\n");
static bool[] ba = [1,0,1,0,1];
auto a = BitArray(ba);
void[] v;
v = cast(void[]) a;
auto b = BitArray(v, a.length);
assert(b[0] == 1);
assert(b[1] == 0);
assert(b[2] == 1);
assert(b[3] == 0);
assert(b[4] == 1);
a[0] = 0;
assert(b[0] == 0);
assert(a == b);
}
/***************************************
* Convert to $(D void[]).
*/
void[] opCast(T : void[])() @nogc pure nothrow
{
return cast(void[])_ptr[0 .. dim];
}
/***************************************
* Convert to $(D size_t[]).
*/
size_t[] opCast(T : size_t[])() @nogc pure nothrow
{
return _ptr[0 .. dim];
}
@system unittest
{
debug(bitarray) printf("BitArray.opCast unittest\n");
static bool[] ba = [1,0,1,0,1];
auto a = BitArray(ba);
void[] v = cast(void[]) a;
assert(v.length == a.dim * size_t.sizeof);
}
/***************************************
* Support for unary operator ~ for $(D BitArray).
*/
BitArray opCom() const pure nothrow
{
auto dim = this.dim;
BitArray result;
result.length = _len;
result._ptr[0 .. dim] = ~this._ptr[0 .. dim];
// Avoid putting garbage in extra bits
// Remove once we zero on length extension
if (endBits)
result._ptr[dim - 1] &= endMask;
return result;
}
@system unittest
{
debug(bitarray) printf("BitArray.opCom unittest\n");
static bool[] ba = [1,0,1,0,1];
auto a = BitArray(ba);
BitArray b = ~a;
assert(b[0] == 0);
assert(b[1] == 1);
assert(b[2] == 0);
assert(b[3] == 1);
assert(b[4] == 0);
}
/***************************************
* Support for binary bitwise operators for $(D BitArray).
*/
BitArray opBinary(string op)(const BitArray e2) const pure nothrow
if (op == "-" || op == "&" || op == "|" || op == "^")
in
{
assert(_len == e2.length);
}
body
{
auto dim = this.dim;
BitArray result;
result.length = _len;
static if (op == "-")
result._ptr[0 .. dim] = this._ptr[0 .. dim] & ~e2._ptr[0 .. dim];
else
mixin("result._ptr[0 .. dim] = this._ptr[0 .. dim]"~op~" e2._ptr[0 .. dim];");
// Avoid putting garbage in extra bits
// Remove once we zero on length extension
if (endBits)
result._ptr[dim - 1] &= endMask;
return result;
}
@system unittest
{
debug(bitarray) printf("BitArray.opAnd unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
BitArray c = a & b;
assert(c[0] == 1);
assert(c[1] == 0);
assert(c[2] == 1);
assert(c[3] == 0);
assert(c[4] == 0);
}
@system unittest
{
debug(bitarray) printf("BitArray.opOr unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
BitArray c = a | b;
assert(c[0] == 1);
assert(c[1] == 0);
assert(c[2] == 1);
assert(c[3] == 1);
assert(c[4] == 1);
}
@system unittest
{
debug(bitarray) printf("BitArray.opXor unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
BitArray c = a ^ b;
assert(c[0] == 0);
assert(c[1] == 0);
assert(c[2] == 0);
assert(c[3] == 1);
assert(c[4] == 1);
}
@system unittest
{
debug(bitarray) printf("BitArray.opSub unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
BitArray c = a - b;
assert(c[0] == 0);
assert(c[1] == 0);
assert(c[2] == 0);
assert(c[3] == 0);
assert(c[4] == 1);
}
/***************************************
* Support for operator op= for $(D BitArray).
*/
BitArray opOpAssign(string op)(const BitArray e2) @nogc pure nothrow
if (op == "-" || op == "&" || op == "|" || op == "^")
in
{
assert(_len == e2.length);
}
body
{
foreach (i; 0 .. fullWords)
{
static if (op == "-")
_ptr[i] &= ~e2._ptr[i];
else
mixin("_ptr[i] "~op~"= e2._ptr[i];");
}
if (!endBits)
return this;
size_t i = fullWords;
size_t endWord = _ptr[i];
static if (op == "-")
endWord &= ~e2._ptr[i];
else
mixin("endWord "~op~"= e2._ptr[i];");
_ptr[i] = (_ptr[i] & ~endMask) | (endWord & endMask);
return this;
}
@system unittest
{
static bool[] ba = [1,0,1,0,1,1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
BitArray c = a;
c.length = 5;
c &= b;
assert(a[5] == 1);
assert(a[6] == 0);
assert(a[7] == 1);
assert(a[8] == 0);
assert(a[9] == 1);
}
@system unittest
{
debug(bitarray) printf("BitArray.opAndAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
a &= b;
assert(a[0] == 1);
assert(a[1] == 0);
assert(a[2] == 1);
assert(a[3] == 0);
assert(a[4] == 0);
}
@system unittest
{
debug(bitarray) printf("BitArray.opOrAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
a |= b;
assert(a[0] == 1);
assert(a[1] == 0);
assert(a[2] == 1);
assert(a[3] == 1);
assert(a[4] == 1);
}
@system unittest
{
debug(bitarray) printf("BitArray.opXorAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
a ^= b;
assert(a[0] == 0);
assert(a[1] == 0);
assert(a[2] == 0);
assert(a[3] == 1);
assert(a[4] == 1);
}
@system unittest
{
debug(bitarray) printf("BitArray.opSubAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
a -= b;
assert(a[0] == 0);
assert(a[1] == 0);
assert(a[2] == 0);
assert(a[3] == 0);
assert(a[4] == 1);
}
/***************************************
* Support for operator ~= for $(D BitArray).
* $(RED Warning: This will overwrite a bit in the final word
* of the current underlying data regardless of whether it is
* shared between BitArray objects. i.e. D dynamic array
* concatenation semantics are not followed)
*/
BitArray opCatAssign(bool b) pure nothrow
{
length = _len + 1;
this[_len - 1] = b;
return this;
}
@system unittest
{
debug(bitarray) printf("BitArray.opCatAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
auto a = BitArray(ba);
BitArray b;
b = (a ~= true);
assert(a[0] == 1);
assert(a[1] == 0);
assert(a[2] == 1);
assert(a[3] == 0);
assert(a[4] == 1);
assert(a[5] == 1);
assert(b == a);
}
/***************************************
* ditto
*/
BitArray opCatAssign(BitArray b) pure nothrow
{
auto istart = _len;
length = _len + b.length;
for (auto i = istart; i < _len; i++)
this[i] = b[i - istart];
return this;
}
@system unittest
{
debug(bitarray) printf("BitArray.opCatAssign unittest\n");
static bool[] ba = [1,0];
static bool[] bb = [0,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
BitArray c;
c = (a ~= b);
assert(a.length == 5);
assert(a[0] == 1);
assert(a[1] == 0);
assert(a[2] == 0);
assert(a[3] == 1);
assert(a[4] == 0);
assert(c == a);
}
/***************************************
* Support for binary operator ~ for $(D BitArray).
*/
BitArray opCat(bool b) const pure nothrow
{
BitArray r;
r = this.dup;
r.length = _len + 1;
r[_len] = b;
return r;
}
/** ditto */
BitArray opCat_r(bool b) const pure nothrow
{
BitArray r;
r.length = _len + 1;
r[0] = b;
foreach (i; 0 .. _len)
r[1 + i] = this[i];
return r;
}
/** ditto */
BitArray opCat(BitArray b) const pure nothrow
{
BitArray r;
r = this.dup;
r ~= b;
return r;
}
@system unittest
{
debug(bitarray) printf("BitArray.opCat unittest\n");
static bool[] ba = [1,0];
static bool[] bb = [0,1,0];
auto a = BitArray(ba);
auto b = BitArray(bb);
BitArray c;
c = (a ~ b);
assert(c.length == 5);
assert(c[0] == 1);
assert(c[1] == 0);
assert(c[2] == 0);
assert(c[3] == 1);
assert(c[4] == 0);
c = (a ~ true);
assert(c.length == 3);
assert(c[0] == 1);
assert(c[1] == 0);
assert(c[2] == 1);
c = (false ~ a);
assert(c.length == 3);
assert(c[0] == 0);
assert(c[1] == 1);
assert(c[2] == 0);
}
// Rolls double word (upper, lower) to the right by n bits and returns the
// lower word of the result.
private static size_t rollRight()(size_t upper, size_t lower, size_t nbits)
pure @safe nothrow @nogc
in
{
assert(nbits < bitsPerSizeT);
}
body
{
return (upper << (bitsPerSizeT - nbits)) | (lower >> nbits);
}
@safe unittest
{
static if (size_t.sizeof == 8)
{
size_t x = 0x12345678_90ABCDEF;
size_t y = 0xFEDBCA09_87654321;
assert(rollRight(x, y, 32) == 0x90ABCDEF_FEDBCA09);
assert(rollRight(y, x, 4) == 0x11234567_890ABCDE);
}
else static if (size_t.sizeof == 4)
{
size_t x = 0x12345678;
size_t y = 0x90ABCDEF;
assert(rollRight(x, y, 16) == 0x567890AB);
assert(rollRight(y, x, 4) == 0xF1234567);
}
else
static assert(0, "Unsupported size_t width");
}
// Rolls double word (upper, lower) to the left by n bits and returns the
// upper word of the result.
private static size_t rollLeft()(size_t upper, size_t lower, size_t nbits)
pure @safe nothrow @nogc
in
{
assert(nbits < bitsPerSizeT);
}
body
{
return (upper << nbits) | (lower >> (bitsPerSizeT - nbits));
}
@safe unittest
{
static if (size_t.sizeof == 8)
{
size_t x = 0x12345678_90ABCDEF;
size_t y = 0xFEDBCA09_87654321;
assert(rollLeft(x, y, 32) == 0x90ABCDEF_FEDBCA09);
assert(rollLeft(y, x, 4) == 0xEDBCA098_76543211);
}
else static if (size_t.sizeof == 4)
{
size_t x = 0x12345678;
size_t y = 0x90ABCDEF;
assert(rollLeft(x, y, 16) == 0x567890AB);
assert(rollLeft(y, x, 4) == 0x0ABCDEF1);
}
}
/**
* Operator $(D <<=) support.
*
* Shifts all the bits in the array to the left by the given number of
* bits. The leftmost bits are dropped, and 0's are appended to the end
* to fill up the vacant bits.
*
* $(RED Warning: unused bits in the final word up to the next word
* boundary may be overwritten by this operation. It does not attempt to
* preserve bits past the end of the array.)
*/
void opOpAssign(string op)(size_t nbits) @nogc pure nothrow
if (op == "<<")
{
size_t wordsToShift = nbits / bitsPerSizeT;
size_t bitsToShift = nbits % bitsPerSizeT;
if (wordsToShift < dim)
{
foreach_reverse (i; 1 .. dim - wordsToShift)
{
_ptr[i + wordsToShift] = rollLeft(_ptr[i], _ptr[i-1],
bitsToShift);
}
_ptr[wordsToShift] = rollLeft(_ptr[0], 0, bitsToShift);
}
import std.algorithm.comparison : min;
foreach (i; 0 .. min(wordsToShift, dim))
{
_ptr[i] = 0;
}
}
/**
* Operator $(D >>=) support.
*
* Shifts all the bits in the array to the right by the given number of
* bits. The rightmost bits are dropped, and 0's are inserted at the back
* to fill up the vacant bits.
*
* $(RED Warning: unused bits in the final word up to the next word
* boundary may be overwritten by this operation. It does not attempt to
* preserve bits past the end of the array.)
*/
void opOpAssign(string op)(size_t nbits) @nogc pure nothrow
if (op == ">>")
{
size_t wordsToShift = nbits / bitsPerSizeT;
size_t bitsToShift = nbits % bitsPerSizeT;
if (wordsToShift + 1 < dim)
{
foreach (i; 0 .. dim - wordsToShift - 1)
{
_ptr[i] = rollRight(_ptr[i + wordsToShift + 1],
_ptr[i + wordsToShift], bitsToShift);
}
}
// The last word needs some care, as it must shift in 0's from past the
// end of the array.
if (wordsToShift < dim)
{
_ptr[dim - wordsToShift - 1] = rollRight(0, _ptr[dim - 1] & endMask,
bitsToShift);
}
import std.algorithm.comparison : min;
foreach (i; 0 .. min(wordsToShift, dim))
{
_ptr[dim - i - 1] = 0;
}
}
@system unittest
{
import std.format : format;
auto b = BitArray([1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1]);
b <<= 1;
assert(format("%b", b) == "01100_10101101");
b >>= 1;
assert(format("%b", b) == "11001_01011010");
b <<= 4;
assert(format("%b", b) == "00001_10010101");
b >>= 5;
assert(format("%b", b) == "10010_10100000");
b <<= 13;
assert(format("%b", b) == "00000_00000000");
b = BitArray([1, 0, 1, 1, 0, 1, 1, 1]);
b >>= 8;
assert(format("%b", b) == "00000000");
}
// Test multi-word case
@system unittest
{
import std.format : format;
// This has to be long enough to occupy more than one size_t. On 64-bit
// machines, this would be at least 64 bits.
auto b = BitArray([
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1,
]);
b <<= 8;
assert(format("%b", b) ==
"00000000_10000000_"~
"11000000_11100000_"~
"11110000_11111000_"~
"11111100_11111110_"~
"11111111_10101010");
// Test right shift of more than one size_t's worth of bits
b <<= 68;
assert(format("%b", b) ==
"00000000_00000000_"~
"00000000_00000000_"~
"00000000_00000000_"~
"00000000_00000000_"~
"00000000_00001000");
b = BitArray([
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1,
]);
b >>= 8;
assert(format("%b", b) ==
"11000000_11100000_"~
"11110000_11111000_"~
"11111100_11111110_"~
"11111111_10101010_"~
"01010101_00000000");
// Test left shift of more than 1 size_t's worth of bits
b >>= 68;
assert(format("%b", b) ==
"01010000_00000000_"~
"00000000_00000000_"~
"00000000_00000000_"~
"00000000_00000000_"~
"00000000_00000000");
}
/***************************************
* Return a string representation of this BitArray.
*
* Two format specifiers are supported:
* $(LI $(B %s) which prints the bits as an array, and)
* $(LI $(B %b) which prints the bits as 8-bit byte packets)
* separated with an underscore.
*/
void toString(scope void delegate(const(char)[]) sink,
FormatSpec!char fmt) const
{
switch (fmt.spec)
{
case 'b':
return formatBitString(sink);
case 's':
return formatBitArray(sink);
default:
throw new Exception("Unknown format specifier: %" ~ fmt.spec);
}
}
///
@system unittest
{
import std.format : format;
debug(bitarray) printf("BitArray.toString unittest\n");
auto b = BitArray([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]);
auto s1 = format("%s", b);
assert(s1 == "[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]");
auto s2 = format("%b", b);
assert(s2 == "00001111_00001111");
}
/***************************************
* Return a lazy range of the indices of set bits.
*/
@property auto bitsSet() const nothrow
{
import std.algorithm.iteration : filter, map, joiner;
import std.range : iota;
return iota(dim).
filter!(i => _ptr[i])().
map!(i => BitsSet!size_t(_ptr[i], i * bitsPerSizeT))().
joiner();
}
///
@system unittest
{
import std.algorithm.comparison : equal;
auto b1 = BitArray([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]);
assert(b1.bitsSet.equal([4, 5, 6, 7, 12, 13, 14, 15]));
BitArray b2;
b2.length = 1000;
b2[333] = true;
b2[666] = true;
b2[999] = true;
assert(b2.bitsSet.equal([333, 666, 999]));
}
@system unittest
{
import std.algorithm.comparison : equal;
import std.range : iota;
debug(bitarray) printf("BitArray.bitsSet unittest\n");
BitArray b;
enum wordBits = size_t.sizeof * 8;
b = BitArray([size_t.max], 0);
assert(b.bitsSet.empty);
b = BitArray([size_t.max], 1);
assert(b.bitsSet.equal([0]));
b = BitArray([size_t.max], wordBits);
assert(b.bitsSet.equal(iota(wordBits)));
b = BitArray([size_t.max, size_t.max], wordBits);
assert(b.bitsSet.equal(iota(wordBits)));
b = BitArray([size_t.max, size_t.max], wordBits + 1);
assert(b.bitsSet.equal(iota(wordBits + 1)));
b = BitArray([size_t.max, size_t.max], wordBits * 2);
assert(b.bitsSet.equal(iota(wordBits * 2)));
}
private void formatBitString(scope void delegate(const(char)[]) sink) const
{
if (!length)
return;
auto leftover = _len % 8;
foreach (idx; 0 .. leftover)
{
char[1] res = cast(char)(this[idx] + '0');
sink.put(res[]);
}
if (leftover && _len > 8)
sink.put("_");
size_t count;
foreach (idx; leftover .. _len)
{
char[1] res = cast(char)(this[idx] + '0');
sink.put(res[]);
if (++count == 8 && idx != _len - 1)
{
sink.put("_");
count = 0;
}
}
}
private void formatBitArray(scope void delegate(const(char)[]) sink) const
{
sink("[");
foreach (idx; 0 .. _len)
{
char[1] res = cast(char)(this[idx] + '0');
sink(res[]);
if (idx+1 < _len)
sink(", ");
}
sink("]");
}
}
@system unittest
{
import std.format : format;
BitArray b;
b = BitArray([]);
assert(format("%s", b) == "[]");
assert(format("%b", b) is null);
b = BitArray([1]);
assert(format("%s", b) == "[1]");
assert(format("%b", b) == "1");
b = BitArray([0, 0, 0, 0]);
assert(format("%b", b) == "0000");
b = BitArray([0, 0, 0, 0, 1, 1, 1, 1]);
assert(format("%s", b) == "[0, 0, 0, 0, 1, 1, 1, 1]");
assert(format("%b", b) == "00001111");
b = BitArray([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]);
assert(format("%s", b) == "[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]");
assert(format("%b", b) == "00001111_00001111");
b = BitArray([1, 0, 0, 0, 0, 1, 1, 1, 1]);
assert(format("%b", b) == "1_00001111");
b = BitArray([1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]);
assert(format("%b", b) == "1_00001111_00001111");
}
/++
Swaps the endianness of the given integral value or character.
+/
T swapEndian(T)(T val) @safe pure nothrow @nogc
if (isIntegral!T || isSomeChar!T || isBoolean!T)
{
static if (val.sizeof == 1)
return val;
else static if (isUnsigned!T)
return swapEndianImpl(val);
else static if (isIntegral!T)
return cast(T) swapEndianImpl(cast(Unsigned!T) val);
else static if (is(Unqual!T == wchar))
return cast(T) swapEndian(cast(ushort) val);
else static if (is(Unqual!T == dchar))
return cast(T) swapEndian(cast(uint) val);
else
static assert(0, T.stringof ~ " unsupported by swapEndian.");
}
private ushort swapEndianImpl(ushort val) @safe pure nothrow @nogc
{
return ((val & 0xff00U) >> 8) |
((val & 0x00ffU) << 8);
}
private uint swapEndianImpl(uint val) @trusted pure nothrow @nogc
{
import core.bitop : bswap;
return bswap(val);
}
private ulong swapEndianImpl(ulong val) @trusted pure nothrow @nogc
{
import core.bitop : bswap;
immutable ulong res = bswap(cast(uint) val);
return res << 32 | bswap(cast(uint)(val >> 32));
}
@safe unittest
{
import std.meta;
foreach (T; AliasSeq!(bool, byte, ubyte, short, ushort, int, uint, long, ulong, char, wchar, dchar))
{
scope(failure) writefln("Failed type: %s", T.stringof);
T val;
const T cval;
immutable T ival;
assert(swapEndian(swapEndian(val)) == val);
assert(swapEndian(swapEndian(cval)) == cval);
assert(swapEndian(swapEndian(ival)) == ival);
assert(swapEndian(swapEndian(T.min)) == T.min);
assert(swapEndian(swapEndian(T.max)) == T.max);
foreach (i; 2 .. 10)
{
immutable T maxI = cast(T)(T.max / i);
immutable T minI = cast(T)(T.min / i);
assert(swapEndian(swapEndian(maxI)) == maxI);
static if (isSigned!T)
assert(swapEndian(swapEndian(minI)) == minI);
}
static if (isSigned!T)
assert(swapEndian(swapEndian(cast(T) 0)) == 0);
// used to trigger BUG6354
static if (T.sizeof > 1 && isUnsigned!T)
{
T left = 0xffU;
left <<= (T.sizeof - 1) * 8;
T right = 0xffU;
for (size_t i = 1; i < T.sizeof; ++i)
{
assert(swapEndian(left) == right);
assert(swapEndian(right) == left);
left >>= 8;
right <<= 8;
}
}
}
}
private union EndianSwapper(T)
if (canSwapEndianness!T)
{
Unqual!T value;
ubyte[T.sizeof] array;
static if (is(FloatingPointTypeOf!T == float))
uint intValue;
else static if (is(FloatingPointTypeOf!T == double))
ulong intValue;
}
/++
Converts the given value from the native endianness to big endian and
returns it as a $(D ubyte[n]) where $(D n) is the size of the given type.
Returning a $(D ubyte[n]) helps prevent accidentally using a swapped value
as a regular one (and in the case of floating point values, it's necessary,
because the FPU will mess up any swapped floating point values. So, you
can't actually have swapped floating point values as floating point values).
$(D real) is not supported, because its size is implementation-dependent
and therefore could vary from machine to machine (which could make it
unusable if you tried to transfer it to another machine).
+/
auto nativeToBigEndian(T)(T val) @safe pure nothrow @nogc
if (canSwapEndianness!T)
{
return nativeToBigEndianImpl(val);
}
///
@safe unittest
{
int i = 12345;
ubyte[4] swappedI = nativeToBigEndian(i);
assert(i == bigEndianToNative!int(swappedI));
double d = 123.45;
ubyte[8] swappedD = nativeToBigEndian(d);
assert(d == bigEndianToNative!double(swappedD));
}
private auto nativeToBigEndianImpl(T)(T val) @safe pure nothrow @nogc
if (isIntegral!T || isSomeChar!T || isBoolean!T)
{
EndianSwapper!T es = void;
version (LittleEndian)
es.value = swapEndian(val);
else
es.value = val;
return es.array;
}
private auto nativeToBigEndianImpl(T)(T val) @safe pure nothrow @nogc
if (isFloatOrDouble!T)
{
version (LittleEndian)
return floatEndianImpl!(T, true)(val);
else
return floatEndianImpl!(T, false)(val);
}
@safe unittest
{
import std.meta;
foreach (T; AliasSeq!(bool, byte, ubyte, short, ushort, int, uint, long, ulong,
char, wchar, dchar
/* The trouble here is with floats and doubles being compared against nan
* using a bit compare. There are two kinds of nans, quiet and signaling.
* When a nan passes through the x87, it converts signaling to quiet.
* When a nan passes through the XMM, it does not convert signaling to quiet.
* float.init is a signaling nan.
* The binary API sometimes passes the data through the XMM, sometimes through
* the x87, meaning these will fail the 'is' bit compare under some circumstances.
* I cannot think of a fix for this that makes consistent sense.
*/
/*,float, double*/))
{
scope(failure) writefln("Failed type: %s", T.stringof);
T val;
const T cval;
immutable T ival;
//is instead of == because of NaN for floating point values.
assert(bigEndianToNative!T(nativeToBigEndian(val)) is val);
assert(bigEndianToNative!T(nativeToBigEndian(cval)) is cval);
assert(bigEndianToNative!T(nativeToBigEndian(ival)) is ival);
assert(bigEndianToNative!T(nativeToBigEndian(T.min)) == T.min);
assert(bigEndianToNative!T(nativeToBigEndian(T.max)) == T.max);
static if (isSigned!T)
assert(bigEndianToNative!T(nativeToBigEndian(cast(T) 0)) == 0);
static if (!is(T == bool))
{
foreach (i; [2, 4, 6, 7, 9, 11])
{
immutable T maxI = cast(T)(T.max / i);
immutable T minI = cast(T)(T.min / i);
assert(bigEndianToNative!T(nativeToBigEndian(maxI)) == maxI);
static if (T.sizeof > 1)
assert(nativeToBigEndian(maxI) != nativeToLittleEndian(maxI));
else
assert(nativeToBigEndian(maxI) == nativeToLittleEndian(maxI));
static if (isSigned!T)
{
assert(bigEndianToNative!T(nativeToBigEndian(minI)) == minI);
static if (T.sizeof > 1)
assert(nativeToBigEndian(minI) != nativeToLittleEndian(minI));
else
assert(nativeToBigEndian(minI) == nativeToLittleEndian(minI));
}
}
}
static if (isUnsigned!T || T.sizeof == 1 || is(T == wchar))
assert(nativeToBigEndian(T.max) == nativeToLittleEndian(T.max));
else
assert(nativeToBigEndian(T.max) != nativeToLittleEndian(T.max));
static if (isUnsigned!T || T.sizeof == 1 || isSomeChar!T)
assert(nativeToBigEndian(T.min) == nativeToLittleEndian(T.min));
else
assert(nativeToBigEndian(T.min) != nativeToLittleEndian(T.min));
}
}
/++
Converts the given value from big endian to the native endianness and
returns it. The value is given as a $(D ubyte[n]) where $(D n) is the size
of the target type. You must give the target type as a template argument,
because there are multiple types with the same size and so the type of the
argument is not enough to determine the return type.
Taking a $(D ubyte[n]) helps prevent accidentally using a swapped value
as a regular one (and in the case of floating point values, it's necessary,
because the FPU will mess up any swapped floating point values. So, you
can't actually have swapped floating point values as floating point values).
+/
T bigEndianToNative(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if (canSwapEndianness!T && n == T.sizeof)
{
return bigEndianToNativeImpl!(T, n)(val);
}
///
@safe unittest
{
ushort i = 12345;
ubyte[2] swappedI = nativeToBigEndian(i);
assert(i == bigEndianToNative!ushort(swappedI));
dchar c = 'D';
ubyte[4] swappedC = nativeToBigEndian(c);
assert(c == bigEndianToNative!dchar(swappedC));
}
private T bigEndianToNativeImpl(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if ((isIntegral!T || isSomeChar!T || isBoolean!T) &&
n == T.sizeof)
{
EndianSwapper!T es = void;
es.array = val;
version (LittleEndian)
immutable retval = swapEndian(es.value);
else
immutable retval = es.value;
return retval;
}
private T bigEndianToNativeImpl(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if (isFloatOrDouble!T && n == T.sizeof)
{
version (LittleEndian)
return cast(T) floatEndianImpl!(n, true)(val);
else
return cast(T) floatEndianImpl!(n, false)(val);
}
/++
Converts the given value from the native endianness to little endian and
returns it as a $(D ubyte[n]) where $(D n) is the size of the given type.
Returning a $(D ubyte[n]) helps prevent accidentally using a swapped value
as a regular one (and in the case of floating point values, it's necessary,
because the FPU will mess up any swapped floating point values. So, you
can't actually have swapped floating point values as floating point values).
+/
auto nativeToLittleEndian(T)(T val) @safe pure nothrow @nogc
if (canSwapEndianness!T)
{
return nativeToLittleEndianImpl(val);
}
///
@safe unittest
{
int i = 12345;
ubyte[4] swappedI = nativeToLittleEndian(i);
assert(i == littleEndianToNative!int(swappedI));
double d = 123.45;
ubyte[8] swappedD = nativeToLittleEndian(d);
assert(d == littleEndianToNative!double(swappedD));
}
private auto nativeToLittleEndianImpl(T)(T val) @safe pure nothrow @nogc
if (isIntegral!T || isSomeChar!T || isBoolean!T)
{
EndianSwapper!T es = void;
version (BigEndian)
es.value = swapEndian(val);
else
es.value = val;
return es.array;
}
private auto nativeToLittleEndianImpl(T)(T val) @safe pure nothrow @nogc
if (isFloatOrDouble!T)
{
version (BigEndian)
return floatEndianImpl!(T, true)(val);
else
return floatEndianImpl!(T, false)(val);
}
@safe unittest
{
import std.meta;
foreach (T; AliasSeq!(bool, byte, ubyte, short, ushort, int, uint, long, ulong,
char, wchar, dchar/*,
float, double*/))
{
scope(failure) writefln("Failed type: %s", T.stringof);
T val;
const T cval;
immutable T ival;
//is instead of == because of NaN for floating point values.
assert(littleEndianToNative!T(nativeToLittleEndian(val)) is val);
assert(littleEndianToNative!T(nativeToLittleEndian(cval)) is cval);
assert(littleEndianToNative!T(nativeToLittleEndian(ival)) is ival);
assert(littleEndianToNative!T(nativeToLittleEndian(T.min)) == T.min);
assert(littleEndianToNative!T(nativeToLittleEndian(T.max)) == T.max);
static if (isSigned!T)
assert(littleEndianToNative!T(nativeToLittleEndian(cast(T) 0)) == 0);
static if (!is(T == bool))
{
foreach (i; 2 .. 10)
{
immutable T maxI = cast(T)(T.max / i);
immutable T minI = cast(T)(T.min / i);
assert(littleEndianToNative!T(nativeToLittleEndian(maxI)) == maxI);
static if (isSigned!T)
assert(littleEndianToNative!T(nativeToLittleEndian(minI)) == minI);
}
}
}
}
/++
Converts the given value from little endian to the native endianness and
returns it. The value is given as a $(D ubyte[n]) where $(D n) is the size
of the target type. You must give the target type as a template argument,
because there are multiple types with the same size and so the type of the
argument is not enough to determine the return type.
Taking a $(D ubyte[n]) helps prevent accidentally using a swapped value
as a regular one (and in the case of floating point values, it's necessary,
because the FPU will mess up any swapped floating point values. So, you
can't actually have swapped floating point values as floating point values).
$(D real) is not supported, because its size is implementation-dependent
and therefore could vary from machine to machine (which could make it
unusable if you tried to transfer it to another machine).
+/
T littleEndianToNative(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if (canSwapEndianness!T && n == T.sizeof)
{
return littleEndianToNativeImpl!T(val);
}
///
@safe unittest
{
ushort i = 12345;
ubyte[2] swappedI = nativeToLittleEndian(i);
assert(i == littleEndianToNative!ushort(swappedI));
dchar c = 'D';
ubyte[4] swappedC = nativeToLittleEndian(c);
assert(c == littleEndianToNative!dchar(swappedC));
}
private T littleEndianToNativeImpl(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if ((isIntegral!T || isSomeChar!T || isBoolean!T) &&
n == T.sizeof)
{
EndianSwapper!T es = void;
es.array = val;
version (BigEndian)
immutable retval = swapEndian(es.value);
else
immutable retval = es.value;
return retval;
}
private T littleEndianToNativeImpl(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if (((isFloatOrDouble!T) &&
n == T.sizeof))
{
version (BigEndian)
return floatEndianImpl!(n, true)(val);
else
return floatEndianImpl!(n, false)(val);
}
private auto floatEndianImpl(T, bool swap)(T val) @safe pure nothrow @nogc
if (isFloatOrDouble!T)
{
EndianSwapper!T es = void;
es.value = val;
static if (swap)
es.intValue = swapEndian(es.intValue);
return es.array;
}
private auto floatEndianImpl(size_t n, bool swap)(ubyte[n] val) @safe pure nothrow @nogc
if (n == 4 || n == 8)
{
static if (n == 4) EndianSwapper!float es = void;
else static if (n == 8) EndianSwapper!double es = void;
es.array = val;
static if (swap)
es.intValue = swapEndian(es.intValue);
return es.value;
}
private template isFloatOrDouble(T)
{
enum isFloatOrDouble = isFloatingPoint!T &&
!is(Unqual!(FloatingPointTypeOf!T) == real);
}
@safe unittest
{
import std.meta;
foreach (T; AliasSeq!(float, double))
{
static assert(isFloatOrDouble!(T));
static assert(isFloatOrDouble!(const T));
static assert(isFloatOrDouble!(immutable T));
static assert(isFloatOrDouble!(shared T));
static assert(isFloatOrDouble!(shared(const T)));
static assert(isFloatOrDouble!(shared(immutable T)));
}
static assert(!isFloatOrDouble!(real));
static assert(!isFloatOrDouble!(const real));
static assert(!isFloatOrDouble!(immutable real));
static assert(!isFloatOrDouble!(shared real));
static assert(!isFloatOrDouble!(shared(const real)));
static assert(!isFloatOrDouble!(shared(immutable real)));
}
private template canSwapEndianness(T)
{
enum canSwapEndianness = isIntegral!T ||
isSomeChar!T ||
isBoolean!T ||
isFloatOrDouble!T;
}
@safe unittest
{
import std.meta;
foreach (T; AliasSeq!(bool, ubyte, byte, ushort, short, uint, int, ulong,
long, char, wchar, dchar, float, double))
{
static assert(canSwapEndianness!(T));
static assert(canSwapEndianness!(const T));
static assert(canSwapEndianness!(immutable T));
static assert(canSwapEndianness!(shared(T)));
static assert(canSwapEndianness!(shared(const T)));
static assert(canSwapEndianness!(shared(immutable T)));
}
//!
foreach (T; AliasSeq!(real, string, wstring, dstring))
{
static assert(!canSwapEndianness!(T));
static assert(!canSwapEndianness!(const T));
static assert(!canSwapEndianness!(immutable T));
static assert(!canSwapEndianness!(shared(T)));
static assert(!canSwapEndianness!(shared(const T)));
static assert(!canSwapEndianness!(shared(immutable T)));
}
}
/++
Takes a range of $(D ubyte)s and converts the first $(D T.sizeof) bytes to
$(D T). The value returned is converted from the given endianness to the
native endianness. The range is not consumed.
Params:
T = The integral type to convert the first $(D T.sizeof) bytes to.
endianness = The endianness that the bytes are assumed to be in.
range = The range to read from.
index = The index to start reading from (instead of starting at the
front). If index is a pointer, then it is updated to the index
after the bytes read. The overloads with index are only
available if $(D hasSlicing!R) is $(D true).
+/
T peek(T, Endian endianness = Endian.bigEndian, R)(R range)
if (canSwapEndianness!T &&
isForwardRange!R &&
is(ElementType!R : const ubyte))
{
static if (hasSlicing!R)
const ubyte[T.sizeof] bytes = range[0 .. T.sizeof];
else
{
ubyte[T.sizeof] bytes;
//Make sure that range is not consumed, even if it's a class.
range = range.save;
foreach (ref e; bytes)
{
e = range.front;
range.popFront();
}
}
static if (endianness == Endian.bigEndian)
return bigEndianToNative!T(bytes);
else
return littleEndianToNative!T(bytes);
}
/++ Ditto +/
T peek(T, Endian endianness = Endian.bigEndian, R)(R range, size_t index)
if (canSwapEndianness!T &&
isForwardRange!R &&
hasSlicing!R &&
is(ElementType!R : const ubyte))
{
return peek!(T, endianness)(range, &index);
}
/++ Ditto +/
T peek(T, Endian endianness = Endian.bigEndian, R)(R range, size_t* index)
if (canSwapEndianness!T &&
isForwardRange!R &&
hasSlicing!R &&
is(ElementType!R : const ubyte))
{
assert(index);
immutable begin = *index;
immutable end = begin + T.sizeof;
const ubyte[T.sizeof] bytes = range[begin .. end];
*index = end;
static if (endianness == Endian.bigEndian)
return bigEndianToNative!T(bytes);
else
return littleEndianToNative!T(bytes);
}
///
@system unittest
{
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8];
assert(buffer.peek!uint() == 17110537);
assert(buffer.peek!ushort() == 261);
assert(buffer.peek!ubyte() == 1);
assert(buffer.peek!uint(2) == 369700095);
assert(buffer.peek!ushort(2) == 5641);
assert(buffer.peek!ubyte(2) == 22);
size_t index = 0;
assert(buffer.peek!ushort(&index) == 261);
assert(index == 2);
assert(buffer.peek!uint(&index) == 369700095);
assert(index == 6);
assert(buffer.peek!ubyte(&index) == 8);
assert(index == 7);
}
@system unittest
{
{
//bool
ubyte[] buffer = [0, 1];
assert(buffer.peek!bool() == false);
assert(buffer.peek!bool(1) == true);
size_t index = 0;
assert(buffer.peek!bool(&index) == false);
assert(index == 1);
assert(buffer.peek!bool(&index) == true);
assert(index == 2);
}
{
//char (8bit)
ubyte[] buffer = [97, 98, 99, 100];
assert(buffer.peek!char() == 'a');
assert(buffer.peek!char(1) == 'b');
size_t index = 0;
assert(buffer.peek!char(&index) == 'a');
assert(index == 1);
assert(buffer.peek!char(&index) == 'b');
assert(index == 2);
}
{
//wchar (16bit - 2x ubyte)
ubyte[] buffer = [1, 5, 32, 29, 1, 7];
assert(buffer.peek!wchar() == 'ą');
assert(buffer.peek!wchar(2) == '”');
assert(buffer.peek!wchar(4) == 'ć');
size_t index = 0;
assert(buffer.peek!wchar(&index) == 'ą');
assert(index == 2);
assert(buffer.peek!wchar(&index) == '”');
assert(index == 4);
assert(buffer.peek!wchar(&index) == 'ć');
assert(index == 6);
}
{
//dchar (32bit - 4x ubyte)
ubyte[] buffer = [0, 0, 1, 5, 0, 0, 32, 29, 0, 0, 1, 7];
assert(buffer.peek!dchar() == 'ą');
assert(buffer.peek!dchar(4) == '”');
assert(buffer.peek!dchar(8) == 'ć');
size_t index = 0;
assert(buffer.peek!dchar(&index) == 'ą');
assert(index == 4);
assert(buffer.peek!dchar(&index) == '”');
assert(index == 8);
assert(buffer.peek!dchar(&index) == 'ć');
assert(index == 12);
}
{
//float (32bit - 4x ubyte)
ubyte[] buffer = [66, 0, 0, 0, 65, 200, 0, 0];
assert(buffer.peek!float()== 32.0);
assert(buffer.peek!float(4) == 25.0f);
size_t index = 0;
assert(buffer.peek!float(&index) == 32.0f);
assert(index == 4);
assert(buffer.peek!float(&index) == 25.0f);
assert(index == 8);
}
{
//double (64bit - 8x ubyte)
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
assert(buffer.peek!double() == 32.0);
assert(buffer.peek!double(8) == 25.0);
size_t index = 0;
assert(buffer.peek!double(&index) == 32.0);
assert(index == 8);
assert(buffer.peek!double(&index) == 25.0);
assert(index == 16);
}
{
//enum
ubyte[] buffer = [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30];
enum Foo
{
one = 10,
two = 20,
three = 30
}
assert(buffer.peek!Foo() == Foo.one);
assert(buffer.peek!Foo(0) == Foo.one);
assert(buffer.peek!Foo(4) == Foo.two);
assert(buffer.peek!Foo(8) == Foo.three);
size_t index = 0;
assert(buffer.peek!Foo(&index) == Foo.one);
assert(index == 4);
assert(buffer.peek!Foo(&index) == Foo.two);
assert(index == 8);
assert(buffer.peek!Foo(&index) == Foo.three);
assert(index == 12);
}
{
//enum - bool
ubyte[] buffer = [0, 1];
enum Bool: bool
{
bfalse = false,
btrue = true,
}
assert(buffer.peek!Bool() == Bool.bfalse);
assert(buffer.peek!Bool(0) == Bool.bfalse);
assert(buffer.peek!Bool(1) == Bool.btrue);
size_t index = 0;
assert(buffer.peek!Bool(&index) == Bool.bfalse);
assert(index == 1);
assert(buffer.peek!Bool(&index) == Bool.btrue);
assert(index == 2);
}
{
//enum - float
ubyte[] buffer = [66, 0, 0, 0, 65, 200, 0, 0];
enum Float: float
{
one = 32.0f,
two = 25.0f
}
assert(buffer.peek!Float() == Float.one);
assert(buffer.peek!Float(0) == Float.one);
assert(buffer.peek!Float(4) == Float.two);
size_t index = 0;
assert(buffer.peek!Float(&index) == Float.one);
assert(index == 4);
assert(buffer.peek!Float(&index) == Float.two);
assert(index == 8);
}
{
//enum - double
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
enum Double: double
{
one = 32.0,
two = 25.0
}
assert(buffer.peek!Double() == Double.one);
assert(buffer.peek!Double(0) == Double.one);
assert(buffer.peek!Double(8) == Double.two);
size_t index = 0;
assert(buffer.peek!Double(&index) == Double.one);
assert(index == 8);
assert(buffer.peek!Double(&index) == Double.two);
assert(index == 16);
}
{
//enum - real
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
enum Real: real
{
one = 32.0,
two = 25.0
}
static assert(!__traits(compiles, buffer.peek!Real()));
}
}
@safe unittest
{
import std.algorithm.iteration : filter;
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 7];
auto range = filter!"true"(buffer);
assert(range.peek!uint() == 17110537);
assert(range.peek!ushort() == 261);
assert(range.peek!ubyte() == 1);
}
/++
Takes a range of $(D ubyte)s and converts the first $(D T.sizeof) bytes to
$(D T). The value returned is converted from the given endianness to the
native endianness. The $(D T.sizeof) bytes which are read are consumed from
the range.
Params:
T = The integral type to convert the first $(D T.sizeof) bytes to.
endianness = The endianness that the bytes are assumed to be in.
range = The range to read from.
+/
T read(T, Endian endianness = Endian.bigEndian, R)(ref R range)
if (canSwapEndianness!T && isInputRange!R && is(ElementType!R : const ubyte))
{
static if (hasSlicing!R && is(typeof(R.init[0 .. 0]) : const(ubyte)[]))
{
const ubyte[T.sizeof] bytes = range[0 .. T.sizeof];
range.popFrontN(T.sizeof);
}
else
{
ubyte[T.sizeof] bytes;
foreach (ref e; bytes)
{
e = range.front;
range.popFront();
}
}
static if (endianness == Endian.bigEndian)
return bigEndianToNative!T(bytes);
else
return littleEndianToNative!T(bytes);
}
///
@safe unittest
{
import std.range.primitives : empty;
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8];
assert(buffer.length == 7);
assert(buffer.read!ushort() == 261);
assert(buffer.length == 5);
assert(buffer.read!uint() == 369700095);
assert(buffer.length == 1);
assert(buffer.read!ubyte() == 8);
assert(buffer.empty);
}
@safe unittest
{
{
//bool
ubyte[] buffer = [0, 1];
assert(buffer.length == 2);
assert(buffer.read!bool() == false);
assert(buffer.length == 1);
assert(buffer.read!bool() == true);
assert(buffer.empty);
}
{
//char (8bit)
ubyte[] buffer = [97, 98, 99];
assert(buffer.length == 3);
assert(buffer.read!char() == 'a');
assert(buffer.length == 2);
assert(buffer.read!char() == 'b');
assert(buffer.length == 1);
assert(buffer.read!char() == 'c');
assert(buffer.empty);
}
{
//wchar (16bit - 2x ubyte)
ubyte[] buffer = [1, 5, 32, 29, 1, 7];
assert(buffer.length == 6);
assert(buffer.read!wchar() == 'ą');
assert(buffer.length == 4);
assert(buffer.read!wchar() == '”');
assert(buffer.length == 2);
assert(buffer.read!wchar() == 'ć');
assert(buffer.empty);
}
{
//dchar (32bit - 4x ubyte)
ubyte[] buffer = [0, 0, 1, 5, 0, 0, 32, 29, 0, 0, 1, 7];
assert(buffer.length == 12);
assert(buffer.read!dchar() == 'ą');
assert(buffer.length == 8);
assert(buffer.read!dchar() == '”');
assert(buffer.length == 4);
assert(buffer.read!dchar() == 'ć');
assert(buffer.empty);
}
{
//float (32bit - 4x ubyte)
ubyte[] buffer = [66, 0, 0, 0, 65, 200, 0, 0];
assert(buffer.length == 8);
assert(buffer.read!float()== 32.0);
assert(buffer.length == 4);
assert(buffer.read!float() == 25.0f);
assert(buffer.empty);
}
{
//double (64bit - 8x ubyte)
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
assert(buffer.length == 16);
assert(buffer.read!double() == 32.0);
assert(buffer.length == 8);
assert(buffer.read!double() == 25.0);
assert(buffer.empty);
}
{
//enum - uint
ubyte[] buffer = [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30];
assert(buffer.length == 12);
enum Foo
{
one = 10,
two = 20,
three = 30
}
assert(buffer.read!Foo() == Foo.one);
assert(buffer.length == 8);
assert(buffer.read!Foo() == Foo.two);
assert(buffer.length == 4);
assert(buffer.read!Foo() == Foo.three);
assert(buffer.empty);
}
{
//enum - bool
ubyte[] buffer = [0, 1];
assert(buffer.length == 2);
enum Bool: bool
{
bfalse = false,
btrue = true,
}
assert(buffer.read!Bool() == Bool.bfalse);
assert(buffer.length == 1);
assert(buffer.read!Bool() == Bool.btrue);
assert(buffer.empty);
}
{
//enum - float
ubyte[] buffer = [66, 0, 0, 0, 65, 200, 0, 0];
assert(buffer.length == 8);
enum Float: float
{
one = 32.0f,
two = 25.0f
}
assert(buffer.read!Float() == Float.one);
assert(buffer.length == 4);
assert(buffer.read!Float() == Float.two);
assert(buffer.empty);
}
{
//enum - double
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
assert(buffer.length == 16);
enum Double: double
{
one = 32.0,
two = 25.0
}
assert(buffer.read!Double() == Double.one);
assert(buffer.length == 8);
assert(buffer.read!Double() == Double.two);
assert(buffer.empty);
}
{
//enum - real
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
enum Real: real
{
one = 32.0,
two = 25.0
}
static assert(!__traits(compiles, buffer.read!Real()));
}
}
@safe unittest
{
import std.algorithm.iteration : filter;
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8];
auto range = filter!"true"(buffer);
assert(walkLength(range) == 7);
assert(range.read!ushort() == 261);
assert(walkLength(range) == 5);
assert(range.read!uint() == 369700095);
assert(walkLength(range) == 1);
assert(range.read!ubyte() == 8);
assert(range.empty);
}
// issue 17247
@safe unittest
{
struct UbyteRange
{
ubyte[] impl;
@property bool empty() { return impl.empty; }
@property ubyte front() { return impl.front; }
void popFront() { impl.popFront(); }
@property UbyteRange save() { return this; }
// N.B. support slicing but do not return ubyte[] slices.
UbyteRange opSlice(size_t start, size_t end)
{
return UbyteRange(impl[start .. end]);
}
@property size_t length() { return impl.length; }
size_t opDollar() { return impl.length; }
}
static assert(hasSlicing!UbyteRange);
auto r = UbyteRange([0x01, 0x00, 0x00, 0x00]);
int x = r.read!(int, Endian.littleEndian)();
assert(x == 1);
}
/++
Takes an integral value, converts it to the given endianness, and writes it
to the given range of $(D ubyte)s as a sequence of $(D T.sizeof) $(D ubyte)s
starting at index. $(D hasSlicing!R) must be $(D true).
Params:
T = The integral type to convert the first $(D T.sizeof) bytes to.
endianness = The endianness to _write the bytes in.
range = The range to _write to.
value = The value to _write.
index = The index to start writing to. If index is a pointer, then it
is updated to the index after the bytes read.
+/
void write(T, Endian endianness = Endian.bigEndian, R)(R range, T value, size_t index)
if (canSwapEndianness!T &&
isForwardRange!R &&
hasSlicing!R &&
is(ElementType!R : ubyte))
{
write!(T, endianness)(range, value, &index);
}
/++ Ditto +/
void write(T, Endian endianness = Endian.bigEndian, R)(R range, T value, size_t* index)
if (canSwapEndianness!T &&
isForwardRange!R &&
hasSlicing!R &&
is(ElementType!R : ubyte))
{
assert(index);
static if (endianness == Endian.bigEndian)
immutable bytes = nativeToBigEndian!T(value);
else
immutable bytes = nativeToLittleEndian!T(value);
immutable begin = *index;
immutable end = begin + T.sizeof;
*index = end;
range[begin .. end] = bytes[0 .. T.sizeof];
}
///
@system unittest
{
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!uint(29110231u, 0);
assert(buffer == [1, 188, 47, 215, 0, 0, 0, 0]);
buffer.write!ushort(927, 0);
assert(buffer == [3, 159, 47, 215, 0, 0, 0, 0]);
buffer.write!ubyte(42, 0);
assert(buffer == [42, 159, 47, 215, 0, 0, 0, 0]);
}
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!uint(142700095u, 2);
assert(buffer == [0, 0, 8, 129, 110, 63, 0, 0, 0]);
buffer.write!ushort(19839, 2);
assert(buffer == [0, 0, 77, 127, 110, 63, 0, 0, 0]);
buffer.write!ubyte(132, 2);
assert(buffer == [0, 0, 132, 127, 110, 63, 0, 0, 0]);
}
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
size_t index = 0;
buffer.write!ushort(261, &index);
assert(buffer == [1, 5, 0, 0, 0, 0, 0, 0]);
assert(index == 2);
buffer.write!uint(369700095u, &index);
assert(buffer == [1, 5, 22, 9, 44, 255, 0, 0]);
assert(index == 6);
buffer.write!ubyte(8, &index);
assert(buffer == [1, 5, 22, 9, 44, 255, 8, 0]);
assert(index == 7);
}
}
@system unittest
{
{
//bool
ubyte[] buffer = [0, 0];
buffer.write!bool(false, 0);
assert(buffer == [0, 0]);
buffer.write!bool(true, 0);
assert(buffer == [1, 0]);
buffer.write!bool(true, 1);
assert(buffer == [1, 1]);
buffer.write!bool(false, 1);
assert(buffer == [1, 0]);
size_t index = 0;
buffer.write!bool(false, &index);
assert(buffer == [0, 0]);
assert(index == 1);
buffer.write!bool(true, &index);
assert(buffer == [0, 1]);
assert(index == 2);
}
{
//char (8bit)
ubyte[] buffer = [0, 0, 0];
buffer.write!char('a', 0);
assert(buffer == [97, 0, 0]);
buffer.write!char('b', 1);
assert(buffer == [97, 98, 0]);
size_t index = 0;
buffer.write!char('a', &index);
assert(buffer == [97, 98, 0]);
assert(index == 1);
buffer.write!char('b', &index);
assert(buffer == [97, 98, 0]);
assert(index == 2);
buffer.write!char('c', &index);
assert(buffer == [97, 98, 99]);
assert(index == 3);
}
{
//wchar (16bit - 2x ubyte)
ubyte[] buffer = [0, 0, 0, 0];
buffer.write!wchar('ą', 0);
assert(buffer == [1, 5, 0, 0]);
buffer.write!wchar('”', 2);
assert(buffer == [1, 5, 32, 29]);
size_t index = 0;
buffer.write!wchar('ć', &index);
assert(buffer == [1, 7, 32, 29]);
assert(index == 2);
buffer.write!wchar('ą', &index);
assert(buffer == [1, 7, 1, 5]);
assert(index == 4);
}
{
//dchar (32bit - 4x ubyte)
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!dchar('ą', 0);
assert(buffer == [0, 0, 1, 5, 0, 0, 0, 0]);
buffer.write!dchar('”', 4);
assert(buffer == [0, 0, 1, 5, 0, 0, 32, 29]);
size_t index = 0;
buffer.write!dchar('ć', &index);
assert(buffer == [0, 0, 1, 7, 0, 0, 32, 29]);
assert(index == 4);
buffer.write!dchar('ą', &index);
assert(buffer == [0, 0, 1, 7, 0, 0, 1, 5]);
assert(index == 8);
}
{
//float (32bit - 4x ubyte)
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!float(32.0f, 0);
assert(buffer == [66, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!float(25.0f, 4);
assert(buffer == [66, 0, 0, 0, 65, 200, 0, 0]);
size_t index = 0;
buffer.write!float(25.0f, &index);
assert(buffer == [65, 200, 0, 0, 65, 200, 0, 0]);
assert(index == 4);
buffer.write!float(32.0f, &index);
assert(buffer == [65, 200, 0, 0, 66, 0, 0, 0]);
assert(index == 8);
}
{
//double (64bit - 8x ubyte)
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!double(32.0, 0);
assert(buffer == [64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!double(25.0, 8);
assert(buffer == [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
size_t index = 0;
buffer.write!double(25.0, &index);
assert(buffer == [64, 57, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
assert(index == 8);
buffer.write!double(32.0, &index);
assert(buffer == [64, 57, 0, 0, 0, 0, 0, 0, 64, 64, 0, 0, 0, 0, 0, 0]);
assert(index == 16);
}
{
//enum
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
enum Foo
{
one = 10,
two = 20,
three = 30
}
buffer.write!Foo(Foo.one, 0);
assert(buffer == [0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!Foo(Foo.two, 4);
assert(buffer == [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 0]);
buffer.write!Foo(Foo.three, 8);
assert(buffer == [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30]);
size_t index = 0;
buffer.write!Foo(Foo.three, &index);
assert(buffer == [0, 0, 0, 30, 0, 0, 0, 20, 0, 0, 0, 30]);
assert(index == 4);
buffer.write!Foo(Foo.one, &index);
assert(buffer == [0, 0, 0, 30, 0, 0, 0, 10, 0, 0, 0, 30]);
assert(index == 8);
buffer.write!Foo(Foo.two, &index);
assert(buffer == [0, 0, 0, 30, 0, 0, 0, 10, 0, 0, 0, 20]);
assert(index == 12);
}
{
//enum - bool
ubyte[] buffer = [0, 0];
enum Bool: bool
{
bfalse = false,
btrue = true,
}
buffer.write!Bool(Bool.btrue, 0);
assert(buffer == [1, 0]);
buffer.write!Bool(Bool.btrue, 1);
assert(buffer == [1, 1]);
size_t index = 0;
buffer.write!Bool(Bool.bfalse, &index);
assert(buffer == [0, 1]);
assert(index == 1);
buffer.write!Bool(Bool.bfalse, &index);
assert(buffer == [0, 0]);
assert(index == 2);
}
{
//enum - float
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
enum Float: float
{
one = 32.0f,
two = 25.0f
}
buffer.write!Float(Float.one, 0);
assert(buffer == [66, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!Float(Float.two, 4);
assert(buffer == [66, 0, 0, 0, 65, 200, 0, 0]);
size_t index = 0;
buffer.write!Float(Float.two, &index);
assert(buffer == [65, 200, 0, 0, 65, 200, 0, 0]);
assert(index == 4);
buffer.write!Float(Float.one, &index);
assert(buffer == [65, 200, 0, 0, 66, 0, 0, 0]);
assert(index == 8);
}
{
//enum - double
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
enum Double: double
{
one = 32.0,
two = 25.0
}
buffer.write!Double(Double.one, 0);
assert(buffer == [64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!Double(Double.two, 8);
assert(buffer == [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
size_t index = 0;
buffer.write!Double(Double.two, &index);
assert(buffer == [64, 57, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
assert(index == 8);
buffer.write!Double(Double.one, &index);
assert(buffer == [64, 57, 0, 0, 0, 0, 0, 0, 64, 64, 0, 0, 0, 0, 0, 0]);
assert(index == 16);
}
{
//enum - real
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
enum Real: real
{
one = 32.0,
two = 25.0
}
static assert(!__traits(compiles, buffer.write!Real(Real.one)));
}
}
/++
Takes an integral value, converts it to the given endianness, and appends
it to the given range of $(D ubyte)s (using $(D put)) as a sequence of
$(D T.sizeof) $(D ubyte)s starting at index. $(D hasSlicing!R) must be
$(D true).
Params:
T = The integral type to convert the first $(D T.sizeof) bytes to.
endianness = The endianness to write the bytes in.
range = The range to _append to.
value = The value to _append.
+/
void append(T, Endian endianness = Endian.bigEndian, R)(R range, T value)
if (canSwapEndianness!T && isOutputRange!(R, ubyte))
{
static if (endianness == Endian.bigEndian)
immutable bytes = nativeToBigEndian!T(value);
else
immutable bytes = nativeToLittleEndian!T(value);
put(range, bytes[]);
}
///
@safe unittest
{
import std.array;
auto buffer = appender!(const ubyte[])();
buffer.append!ushort(261);
assert(buffer.data == [1, 5]);
buffer.append!uint(369700095u);
assert(buffer.data == [1, 5, 22, 9, 44, 255]);
buffer.append!ubyte(8);
assert(buffer.data == [1, 5, 22, 9, 44, 255, 8]);
}
@safe unittest
{
import std.array;
{
//bool
auto buffer = appender!(const ubyte[])();
buffer.append!bool(true);
assert(buffer.data == [1]);
buffer.append!bool(false);
assert(buffer.data == [1, 0]);
}
{
//char wchar dchar
auto buffer = appender!(const ubyte[])();
buffer.append!char('a');
assert(buffer.data == [97]);
buffer.append!char('b');
assert(buffer.data == [97, 98]);
buffer.append!wchar('ą');
assert(buffer.data == [97, 98, 1, 5]);
buffer.append!dchar('ą');
assert(buffer.data == [97, 98, 1, 5, 0, 0, 1, 5]);
}
{
//float double
auto buffer = appender!(const ubyte[])();
buffer.append!float(32.0f);
assert(buffer.data == [66, 0, 0, 0]);
buffer.append!double(32.0);
assert(buffer.data == [66, 0, 0, 0, 64, 64, 0, 0, 0, 0, 0, 0]);
}
{
//enum
auto buffer = appender!(const ubyte[])();
enum Foo
{
one = 10,
two = 20,
three = 30
}
buffer.append!Foo(Foo.one);
assert(buffer.data == [0, 0, 0, 10]);
buffer.append!Foo(Foo.two);
assert(buffer.data == [0, 0, 0, 10, 0, 0, 0, 20]);
buffer.append!Foo(Foo.three);
assert(buffer.data == [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30]);
}
{
//enum - bool
auto buffer = appender!(const ubyte[])();
enum Bool: bool
{
bfalse = false,
btrue = true,
}
buffer.append!Bool(Bool.btrue);
assert(buffer.data == [1]);
buffer.append!Bool(Bool.bfalse);
assert(buffer.data == [1, 0]);
buffer.append!Bool(Bool.btrue);
assert(buffer.data == [1, 0, 1]);
}
{
//enum - float
auto buffer = appender!(const ubyte[])();
enum Float: float
{
one = 32.0f,
two = 25.0f
}
buffer.append!Float(Float.one);
assert(buffer.data == [66, 0, 0, 0]);
buffer.append!Float(Float.two);
assert(buffer.data == [66, 0, 0, 0, 65, 200, 0, 0]);
}
{
//enum - double
auto buffer = appender!(const ubyte[])();
enum Double: double
{
one = 32.0,
two = 25.0
}
buffer.append!Double(Double.one);
assert(buffer.data == [64, 64, 0, 0, 0, 0, 0, 0]);
buffer.append!Double(Double.two);
assert(buffer.data == [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
}
{
//enum - real
auto buffer = appender!(const ubyte[])();
enum Real: real
{
one = 32.0,
two = 25.0
}
static assert(!__traits(compiles, buffer.append!Real(Real.one)));
}
}
@system unittest
{
import std.array;
import std.format : format;
import std.meta;
foreach (endianness; AliasSeq!(Endian.bigEndian, Endian.littleEndian))
{
auto toWrite = appender!(ubyte[])();
alias Types = AliasSeq!(uint, int, long, ulong, short, ubyte, ushort, byte, uint);
ulong[] values = [42, -11, long.max, 1098911981329L, 16, 255, 19012, 2, 17];
assert(Types.length == values.length);
size_t index = 0;
size_t length = 0;
foreach (T; Types)
{
toWrite.append!(T, endianness)(cast(T) values[index++]);
length += T.sizeof;
}
auto toRead = toWrite.data;
assert(toRead.length == length);
index = 0;
foreach (T; Types)
{
assert(toRead.peek!(T, endianness)() == values[index], format("Failed Index: %s", index));
assert(toRead.peek!(T, endianness)(0) == values[index], format("Failed Index: %s", index));
assert(toRead.length == length,
format("Failed Index [%s], Actual Length: %s", index, toRead.length));
assert(toRead.read!(T, endianness)() == values[index], format("Failed Index: %s", index));
length -= T.sizeof;
assert(toRead.length == length,
format("Failed Index [%s], Actual Length: %s", index, toRead.length));
++index;
}
assert(toRead.empty);
}
}
/**
Counts the number of set bits in the binary representation of $(D value).
For signed integers, the sign bit is included in the count.
*/
private uint countBitsSet(T)(T value) @nogc pure nothrow
if (isIntegral!T)
{
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
static if (T.sizeof == 8)
{
T c = value - ((value >> 1) & 0x55555555_55555555);
c = ((c >> 2) & 0x33333333_33333333) + (c & 0x33333333_33333333);
c = ((c >> 4) + c) & 0x0F0F0F0F_0F0F0F0F;
c = ((c >> 8) + c) & 0x00FF00FF_00FF00FF;
c = ((c >> 16) + c) & 0x0000FFFF_0000FFFF;
c = ((c >> 32) + c) & 0x00000000_FFFFFFFF;
}
else static if (T.sizeof == 4)
{
T c = value - ((value >> 1) & 0x55555555);
c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
c = ((c >> 4) + c) & 0x0F0F0F0F;
c = ((c >> 8) + c) & 0x00FF00FF;
c = ((c >> 16) + c) & 0x0000FFFF;
}
else static if (T.sizeof == 2)
{
uint c = value - ((value >> 1) & 0x5555);
c = ((c >> 2) & 0x3333) + (c & 0X3333);
c = ((c >> 4) + c) & 0x0F0F;
c = ((c >> 8) + c) & 0x00FF;
}
else static if (T.sizeof == 1)
{
uint c = value - ((value >> 1) & 0x55);
c = ((c >> 2) & 0x33) + (c & 0X33);
c = ((c >> 4) + c) & 0x0F;
}
else
{
static assert(false, "countBitsSet only supports 1, 2, 4, or 8 byte sized integers.");
}
return cast(uint) c;
}
@safe unittest
{
assert(countBitsSet(1) == 1);
assert(countBitsSet(0) == 0);
assert(countBitsSet(int.min) == 1);
assert(countBitsSet(uint.max) == 32);
}
@safe unittest
{
import std.meta;
foreach (T; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
assert(countBitsSet(cast(T) 0) == 0);
assert(countBitsSet(cast(T) 1) == 1);
assert(countBitsSet(cast(T) 2) == 1);
assert(countBitsSet(cast(T) 3) == 2);
assert(countBitsSet(cast(T) 4) == 1);
assert(countBitsSet(cast(T) 5) == 2);
assert(countBitsSet(cast(T) 127) == 7);
static if (isSigned!T)
{
assert(countBitsSet(cast(T)-1) == 8 * T.sizeof);
assert(countBitsSet(T.min) == 1);
}
else
{
assert(countBitsSet(T.max) == 8 * T.sizeof);
}
}
assert(countBitsSet(1_000_000) == 7);
foreach (i; 0 .. 63)
assert(countBitsSet(1UL << i) == 1);
}
private struct BitsSet(T)
{
static assert(T.sizeof <= 8, "bitsSet assumes T is no more than 64-bit.");
@nogc pure nothrow:
this(T value, size_t startIndex = 0)
{
_value = value;
// Further calculation is only valid and needed when the range is non-empty.
if (!_value)
return;
import core.bitop : bsf;
immutable trailingZerosCount = bsf(value);
_value >>>= trailingZerosCount;
_index = startIndex + trailingZerosCount;
}
@property size_t front()
{
return _index;
}
@property bool empty() const
{
return !_value;
}
void popFront()
{
assert(_value, "Cannot call popFront on empty range.");
_value >>>= 1;
// Further calculation is only valid and needed when the range is non-empty.
if (!_value)
return;
import core.bitop : bsf;
immutable trailingZerosCount = bsf(_value);
_value >>>= trailingZerosCount;
_index += trailingZerosCount + 1;
}
@property auto save()
{
return this;
}
@property size_t length()
{
return countBitsSet(_value);
}
private T _value;
private size_t _index;
}
/**
Range that iterates the indices of the set bits in $(D value).
Index 0 corresponds to the least significant bit.
For signed integers, the highest index corresponds to the sign bit.
*/
auto bitsSet(T)(T value) @nogc pure nothrow
if (isIntegral!T)
{
return BitsSet!T(value);
}
///
@safe unittest
{
import std.algorithm.comparison : equal;
import std.range : iota;
assert(bitsSet(1).equal([0]));
assert(bitsSet(5).equal([0, 2]));
assert(bitsSet(-1).equal(iota(32)));
assert(bitsSet(int.min).equal([31]));
}
@safe unittest
{
import std.algorithm.comparison : equal;
import std.range : iota;
import std.meta;
foreach (T; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
assert(bitsSet(cast(T) 0).empty);
assert(bitsSet(cast(T) 1).equal([0]));
assert(bitsSet(cast(T) 2).equal([1]));
assert(bitsSet(cast(T) 3).equal([0, 1]));
assert(bitsSet(cast(T) 4).equal([2]));
assert(bitsSet(cast(T) 5).equal([0, 2]));
assert(bitsSet(cast(T) 127).equal(iota(7)));
static if (isSigned!T)
{
assert(bitsSet(cast(T)-1).equal(iota(8 * T.sizeof)));
assert(bitsSet(T.min).equal([8 * T.sizeof - 1]));
}
else
{
assert(bitsSet(T.max).equal(iota(8 * T.sizeof)));
}
}
assert(bitsSet(1_000_000).equal([6, 9, 14, 16, 17, 18, 19]));
foreach (i; 0 .. 63)
assert(bitsSet(1UL << i).equal([i]));
}