// Written in the D programming language.
/**
* Contains the elementary mathematical functions (powers, roots,
* and trigonometric functions), and low-level floating-point operations.
* Mathematical special functions are available in $(D std.mathspecial).
*
$(SCRIPT inhibitQuickIndex = 1;)
$(DIVC quickindex,
$(BOOKTABLE ,
$(TR $(TH Category) $(TH Members) )
$(TR $(TDNW Constants) $(TD
$(MYREF E) $(MYREF PI) $(MYREF PI_2) $(MYREF PI_4) $(MYREF M_1_PI)
$(MYREF M_2_PI) $(MYREF M_2_SQRTPI) $(MYREF LN10) $(MYREF LN2)
$(MYREF LOG2) $(MYREF LOG2E) $(MYREF LOG2T) $(MYREF LOG10E)
$(MYREF SQRT2) $(MYREF SQRT1_2)
))
$(TR $(TDNW Classics) $(TD
$(MYREF abs) $(MYREF fabs) $(MYREF sqrt) $(MYREF cbrt) $(MYREF hypot)
$(MYREF poly) $(MYREF nextPow2) $(MYREF truncPow2)
))
$(TR $(TDNW Trigonometry) $(TD
$(MYREF sin) $(MYREF cos) $(MYREF tan) $(MYREF asin) $(MYREF acos)
$(MYREF atan) $(MYREF atan2) $(MYREF sinh) $(MYREF cosh) $(MYREF tanh)
$(MYREF asinh) $(MYREF acosh) $(MYREF atanh) $(MYREF expi)
))
$(TR $(TDNW Rounding) $(TD
$(MYREF ceil) $(MYREF floor) $(MYREF round) $(MYREF lround)
$(MYREF trunc) $(MYREF rint) $(MYREF lrint) $(MYREF nearbyint)
$(MYREF rndtol) $(MYREF quantize)
))
$(TR $(TDNW Exponentiation & Logarithms) $(TD
$(MYREF pow) $(MYREF exp) $(MYREF exp2) $(MYREF expm1) $(MYREF ldexp)
$(MYREF frexp) $(MYREF log) $(MYREF log2) $(MYREF log10) $(MYREF logb)
$(MYREF ilogb) $(MYREF log1p) $(MYREF scalbn)
))
$(TR $(TDNW Modulus) $(TD
$(MYREF fmod) $(MYREF modf) $(MYREF remainder)
))
$(TR $(TDNW Floating-point operations) $(TD
$(MYREF approxEqual) $(MYREF feqrel) $(MYREF fdim) $(MYREF fmax)
$(MYREF fmin) $(MYREF fma) $(MYREF nextDown) $(MYREF nextUp)
$(MYREF nextafter) $(MYREF NaN) $(MYREF getNaNPayload)
$(MYREF cmp)
))
$(TR $(TDNW Introspection) $(TD
$(MYREF isFinite) $(MYREF isIdentical) $(MYREF isInfinity) $(MYREF isNaN)
$(MYREF isNormal) $(MYREF isSubnormal) $(MYREF signbit) $(MYREF sgn)
$(MYREF copysign) $(MYREF isPowerOf2)
))
$(TR $(TDNW Complex Numbers) $(TD
$(MYREF abs) $(MYREF conj) $(MYREF sin) $(MYREF cos) $(MYREF expi)
))
$(TR $(TDNW Hardware Control) $(TD
$(MYREF IeeeFlags) $(MYREF FloatingPointControl)
))
)
)
* The functionality closely follows the IEEE754-2008 standard for
* floating-point arithmetic, including the use of camelCase names rather
* than C99-style lower case names. All of these functions behave correctly
* when presented with an infinity or NaN.
*
* The following IEEE 'real' formats are currently supported:
* $(UL
* $(LI 64 bit Big-endian 'double' (eg PowerPC))
* $(LI 128 bit Big-endian 'quadruple' (eg SPARC))
* $(LI 64 bit Little-endian 'double' (eg x86-SSE2))
* $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium))
* $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!))
* $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support)
* )
* Unlike C, there is no global 'errno' variable. Consequently, almost all of
* these functions are pure nothrow.
*
* Status:
* The semantics and names of feqrel and approxEqual will be revised.
*
* Macros:
* TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
* <caption>Special Values</caption>
* $0</table>
* SVH = $(TR $(TH $1) $(TH $2))
* SV = $(TR $(TD $1) $(TD $2))
* TH3 = $(TR $(TH $1) $(TH $2) $(TH $3))
* TD3 = $(TR $(TD $1) $(TD $2) $(TD $3))
* TABLE_DOMRG = <table border="1" cellpadding="4" cellspacing="0">
* $(SVH Domain X, Range Y)
$(SV $1, $2)
* </table>
* DOMAIN=$1
* RANGE=$1
* NAN = $(RED NAN)
* SUP = <span style="vertical-align:super;font-size:smaller">$0</span>
* GAMMA = Γ
* THETA = θ
* INTEGRAL = ∫
* INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>)
* POWER = $1<sup>$2</sup>
* SUB = $1<sub>$2</sub>
* BIGSUM = $(BIG Σ <sup>$2</sup><sub>$(SMALL $1)</sub>)
* CHOOSE = $(BIG () <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG ))
* PLUSMN = ±
* INFIN = ∞
* PLUSMNINF = ±∞
* PI = π
* LT = <
* GT = >
* SQRT = √
* HALF = ½
*
* Copyright: Copyright Digital Mars 2000 - 2011.
* D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p,
* log2, floor, ceil and lrint functions are based on the CEPHES math library,
* which is Copyright (C) 2001 Stephen L. Moshier $(LT)steve@moshier.net$(GT)
* and are incorporated herein by permission of the author. The author
* reserves the right to distribute this material elsewhere under different
* copying permissions. These modifications are distributed here under
* the following terms:
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston,
* Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
* Source: $(PHOBOSSRC std/_math.d)
*/
/* NOTE: This file has been patched from the original DMD distribution to
* work with the GDC compiler.
*/
module std.math;
version (Win64)
{
version (D_InlineAsm_X86_64)
version = Win64_DMD_InlineAsm;
}
static import core.math;
static import core.stdc.math;
static import core.stdc.fenv;
import std.traits; // CommonType, isFloatingPoint, isIntegral, isSigned, isUnsigned, Largest, Unqual
version (LDC)
{
import ldc.intrinsics;
}
version (DigitalMars)
{
version = INLINE_YL2X; // x87 has opcodes for these
}
version (X86) version = X86_Any;
version (X86_64) version = X86_Any;
version (PPC) version = PPC_Any;
version (PPC64) version = PPC_Any;
version (MIPS32) version = MIPS_Any;
version (MIPS64) version = MIPS_Any;
version (AArch64) version = ARM_Any;
version (ARM) version = ARM_Any;
version (S390) version = IBMZ_Any;
version (SPARC) version = SPARC_Any;
version (SPARC64) version = SPARC_Any;
version (SystemZ) version = IBMZ_Any;
version (RISCV32) version = RISCV_Any;
version (RISCV64) version = RISCV_Any;
version (D_InlineAsm_X86)
{
version = InlineAsm_X86_Any;
}
else version (D_InlineAsm_X86_64)
{
version = InlineAsm_X86_Any;
}
version (CRuntime_Microsoft)
{
version (InlineAsm_X86_Any)
version = MSVC_InlineAsm;
}
version (X86_64) version = StaticallyHaveSSE;
version (X86) version (OSX) version = StaticallyHaveSSE;
version (StaticallyHaveSSE)
{
private enum bool haveSSE = true;
}
else version (X86)
{
static import core.cpuid;
private alias haveSSE = core.cpuid.sse;
}
version (D_SoftFloat)
{
// Some soft float implementations may support IEEE floating flags.
// The implementation here supports hardware flags only and is so currently
// only available for supported targets.
}
else version (X86_Any) version = IeeeFlagsSupport;
else version (PPC_Any) version = IeeeFlagsSupport;
else version (RISCV_Any) version = IeeeFlagsSupport;
else version (MIPS_Any) version = IeeeFlagsSupport;
else version (ARM_Any) version = IeeeFlagsSupport;
// Struct FloatingPointControl is only available if hardware FP units are available.
version (D_HardFloat)
{
// FloatingPointControl.clearExceptions() depends on version IeeeFlagsSupport
version (IeeeFlagsSupport) version = FloatingPointControlSupport;
}
version (GNU)
{
// The compiler can unexpectedly rearrange floating point operations and
// access to the floating point status flags when optimizing. This means
// ieeeFlags tests cannot be reliably checked in optimized code.
// See https://github.com/ldc-developers/ldc/issues/888
}
else
{
version = IeeeFlagsUnittest;
version = FloatingPointControlUnittest;
}
version (unittest)
{
import core.stdc.stdio; // : sprintf;
static if (real.sizeof > double.sizeof)
enum uint useDigits = 16;
else
enum uint useDigits = 15;
/******************************************
* Compare floating point numbers to n decimal digits of precision.
* Returns:
* 1 match
* 0 nomatch
*/
private bool equalsDigit(real x, real y, uint ndigits)
{
if (signbit(x) != signbit(y))
return 0;
if (isInfinity(x) && isInfinity(y))
return 1;
if (isInfinity(x) || isInfinity(y))
return 0;
if (isNaN(x) && isNaN(y))
return 1;
if (isNaN(x) || isNaN(y))
return 0;
char[30] bufx;
char[30] bufy;
assert(ndigits < bufx.length);
int ix;
int iy;
version (CRuntime_Microsoft)
alias real_t = double;
else
alias real_t = real;
ix = sprintf(bufx.ptr, "%.*Lg", ndigits, cast(real_t) x);
iy = sprintf(bufy.ptr, "%.*Lg", ndigits, cast(real_t) y);
assert(ix < bufx.length && ix > 0);
assert(ix < bufy.length && ix > 0);
return bufx[0 .. ix] == bufy[0 .. iy];
}
}
package:
// The following IEEE 'real' formats are currently supported.
version (LittleEndian)
{
static assert(real.mant_dig == 53 || real.mant_dig == 64
|| real.mant_dig == 113,
"Only 64-bit, 80-bit, and 128-bit reals"~
" are supported for LittleEndian CPUs");
}
else
{
static assert(real.mant_dig == 53 || real.mant_dig == 106
|| real.mant_dig == 113,
"Only 64-bit and 128-bit reals are supported for BigEndian CPUs."~
" double-double reals have partial support");
}
// Underlying format exposed through floatTraits
enum RealFormat
{
ieeeHalf,
ieeeSingle,
ieeeDouble,
ieeeExtended, // x87 80-bit real
ieeeExtended53, // x87 real rounded to precision of double.
ibmExtended, // IBM 128-bit extended
ieeeQuadruple,
}
// Constants used for extracting the components of the representation.
// They supplement the built-in floating point properties.
template floatTraits(T)
{
// EXPMASK is a ushort mask to select the exponent portion (without sign)
// EXPSHIFT is the number of bits the exponent is left-shifted by in its ushort
// EXPBIAS is the exponent bias - 1 (exp == EXPBIAS yields ×2^-1).
// EXPPOS_SHORT is the index of the exponent when represented as a ushort array.
// SIGNPOS_BYTE is the index of the sign when represented as a ubyte array.
// RECIP_EPSILON is the value such that (smallest_subnormal) * RECIP_EPSILON == T.min_normal
enum T RECIP_EPSILON = (1/T.epsilon);
static if (T.mant_dig == 24)
{
// Single precision float
enum ushort EXPMASK = 0x7F80;
enum ushort EXPSHIFT = 7;
enum ushort EXPBIAS = 0x3F00;
enum uint EXPMASK_INT = 0x7F80_0000;
enum uint MANTISSAMASK_INT = 0x007F_FFFF;
enum realFormat = RealFormat.ieeeSingle;
version (LittleEndian)
{
enum EXPPOS_SHORT = 1;
enum SIGNPOS_BYTE = 3;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 53)
{
static if (T.sizeof == 8)
{
// Double precision float, or real == double
enum ushort EXPMASK = 0x7FF0;
enum ushort EXPSHIFT = 4;
enum ushort EXPBIAS = 0x3FE0;
enum uint EXPMASK_INT = 0x7FF0_0000;
enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only
enum realFormat = RealFormat.ieeeDouble;
version (LittleEndian)
{
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.sizeof == 12)
{
// Intel extended real80 rounded to double
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeExtended53;
version (LittleEndian)
{
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else
static assert(false, "No traits support for " ~ T.stringof);
}
else static if (T.mant_dig == 64)
{
// Intel extended real80
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeExtended;
version (LittleEndian)
{
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 113)
{
// Quadruple precision float
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeQuadruple;
version (LittleEndian)
{
enum EXPPOS_SHORT = 7;
enum SIGNPOS_BYTE = 15;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 106)
{
// IBM Extended doubledouble
enum ushort EXPMASK = 0x7FF0;
enum ushort EXPSHIFT = 4;
enum realFormat = RealFormat.ibmExtended;
// For IBM doubledouble the larger magnitude double comes first.
// It's really a double[2] and arrays don't index differently
// between little and big-endian targets.
enum DOUBLEPAIR_MSB = 0;
enum DOUBLEPAIR_LSB = 1;
// The exponent/sign byte is for most significant part.
version (LittleEndian)
{
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else
static assert(false, "No traits support for " ~ T.stringof);
}
// These apply to all floating-point types
version (LittleEndian)
{
enum MANTISSA_LSB = 0;
enum MANTISSA_MSB = 1;
}
else
{
enum MANTISSA_LSB = 1;
enum MANTISSA_MSB = 0;
}
// Common code for math implementations.
// Helper for floor/ceil
T floorImpl(T)(const T x) @trusted pure nothrow @nogc
{
alias F = floatTraits!(T);
// Take care not to trigger library calls from the compiler,
// while ensuring that we don't get defeated by some optimizers.
union floatBits
{
T rv;
ushort[T.sizeof/2] vu;
// Other kinds of extractors for real formats.
static if (F.realFormat == RealFormat.ieeeSingle)
int vi;
}
floatBits y = void;
y.rv = x;
// Find the exponent (power of 2)
// Do this by shifting the raw value so that the exponent lies in the low bits,
// then mask out the sign bit, and subtract the bias.
static if (F.realFormat == RealFormat.ieeeSingle)
{
int exp = ((y.vi >> (T.mant_dig - 1)) & 0xff) - 0x7f;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
int exp = ((y.vu[F.EXPPOS_SHORT] >> 4) & 0x7ff) - 0x3ff;
version (LittleEndian)
int pos = 0;
else
int pos = 3;
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
version (LittleEndian)
int pos = 0;
else
int pos = 4;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
version (LittleEndian)
int pos = 0;
else
int pos = 7;
}
else
static assert(false, "Not implemented for this architecture");
if (exp < 0)
{
if (x < 0.0)
return -1.0;
else
return 0.0;
}
static if (F.realFormat == RealFormat.ieeeSingle)
{
if (exp < (T.mant_dig - 1))
{
// Clear all bits representing the fraction part.
const uint fraction_mask = F.MANTISSAMASK_INT >> exp;
if ((y.vi & fraction_mask) != 0)
{
// If 'x' is negative, then first substract 1.0 from the value.
if (y.vi < 0)
y.vi += 0x00800000 >> exp;
y.vi &= ~fraction_mask;
}
}
}
else
{
exp = (T.mant_dig - 1) - exp;
// Zero 16 bits at a time.
while (exp >= 16)
{
version (LittleEndian)
y.vu[pos++] = 0;
else
y.vu[pos--] = 0;
exp -= 16;
}
// Clear the remaining bits.
if (exp > 0)
y.vu[pos] &= 0xffff ^ ((1 << exp) - 1);
if ((x < 0.0) && (x != y.rv))
y.rv -= 1.0;
}
return y.rv;
}
public:
// Values obtained from Wolfram Alpha. 116 bits ought to be enough for anybody.
// Wolfram Alpha LLC. 2011. Wolfram|Alpha. http://www.wolframalpha.com/input/?i=e+in+base+16 (access July 6, 2011).
enum real E = 0x1.5bf0a8b1457695355fb8ac404e7a8p+1L; /** e = 2.718281... */
enum real LOG2T = 0x1.a934f0979a3715fc9257edfe9b5fbp+1L; /** $(SUB log, 2)10 = 3.321928... */
enum real LOG2E = 0x1.71547652b82fe1777d0ffda0d23a8p+0L; /** $(SUB log, 2)e = 1.442695... */
enum real LOG2 = 0x1.34413509f79fef311f12b35816f92p-2L; /** $(SUB log, 10)2 = 0.301029... */
enum real LOG10E = 0x1.bcb7b1526e50e32a6ab7555f5a67cp-2L; /** $(SUB log, 10)e = 0.434294... */
enum real LN2 = 0x1.62e42fefa39ef35793c7673007e5fp-1L; /** ln 2 = 0.693147... */
enum real LN10 = 0x1.26bb1bbb5551582dd4adac5705a61p+1L; /** ln 10 = 2.302585... */
enum real PI = 0x1.921fb54442d18469898cc51701b84p+1L; /** $(_PI) = 3.141592... */
enum real PI_2 = PI/2; /** $(PI) / 2 = 1.570796... */
enum real PI_4 = PI/4; /** $(PI) / 4 = 0.785398... */
enum real M_1_PI = 0x1.45f306dc9c882a53f84eafa3ea69cp-2L; /** 1 / $(PI) = 0.318309... */
enum real M_2_PI = 2*M_1_PI; /** 2 / $(PI) = 0.636619... */
enum real M_2_SQRTPI = 0x1.20dd750429b6d11ae3a914fed7fd8p+0L; /** 2 / $(SQRT)$(PI) = 1.128379... */
enum real SQRT2 = 0x1.6a09e667f3bcc908b2fb1366ea958p+0L; /** $(SQRT)2 = 1.414213... */
enum real SQRT1_2 = SQRT2/2; /** $(SQRT)$(HALF) = 0.707106... */
// Note: Make sure the magic numbers in compiler backend for x87 match these.
/***********************************
* Calculates the absolute value of a number
*
* Params:
* Num = (template parameter) type of number
* x = real number value
* z = complex number value
* y = imaginary number value
*
* Returns:
* The absolute value of the number. If floating-point or integral,
* the return type will be the same as the input; if complex or
* imaginary, the returned value will be the corresponding floating
* point type.
*
* For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) )
* = hypot(z.re, z.im).
*/
Num abs(Num)(Num x) @safe pure nothrow
if (is(typeof(Num.init >= 0)) && is(typeof(-Num.init)) &&
!(is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
|| is(Num* : const(ireal*))))
{
static if (isFloatingPoint!(Num))
return fabs(x);
else
return x >= 0 ? x : -x;
}
/// ditto
auto abs(Num)(Num z) @safe pure nothrow @nogc
if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*))
|| is(Num* : const(creal*)))
{
return hypot(z.re, z.im);
}
/// ditto
auto abs(Num)(Num y) @safe pure nothrow @nogc
if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
|| is(Num* : const(ireal*)))
{
return fabs(y.im);
}
/// ditto
@safe pure nothrow @nogc unittest
{
assert(isIdentical(abs(-0.0L), 0.0L));
assert(isNaN(abs(real.nan)));
assert(abs(-real.infinity) == real.infinity);
assert(abs(-3.2Li) == 3.2L);
assert(abs(71.6Li) == 71.6L);
assert(abs(-56) == 56);
assert(abs(2321312L) == 2321312L);
assert(abs(-1L+1i) == sqrt(2.0L));
}
@safe pure nothrow @nogc unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(float, double, real))
{
T f = 3;
assert(abs(f) == f);
assert(abs(-f) == f);
}
foreach (T; AliasSeq!(cfloat, cdouble, creal))
{
T f = -12+3i;
assert(abs(f) == hypot(f.re, f.im));
assert(abs(-f) == hypot(f.re, f.im));
}
}
/***********************************
* Complex conjugate
*
* conj(x + iy) = x - iy
*
* Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2)
* is always a real number
*/
auto conj(Num)(Num z) @safe pure nothrow @nogc
if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*))
|| is(Num* : const(creal*)))
{
//FIXME
//Issue 14206
static if (is(Num* : const(cdouble*)))
return cast(cdouble) conj(cast(creal) z);
else
return z.re - z.im*1fi;
}
/** ditto */
auto conj(Num)(Num y) @safe pure nothrow @nogc
if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
|| is(Num* : const(ireal*)))
{
return -y;
}
///
@safe pure nothrow @nogc unittest
{
creal c = 7 + 3Li;
assert(conj(c) == 7-3Li);
ireal z = -3.2Li;
assert(conj(z) == -z);
}
//Issue 14206
@safe pure nothrow @nogc unittest
{
cdouble c = 7 + 3i;
assert(conj(c) == 7-3i);
idouble z = -3.2i;
assert(conj(z) == -z);
}
//Issue 14206
@safe pure nothrow @nogc unittest
{
cfloat c = 7f + 3fi;
assert(conj(c) == 7f-3fi);
ifloat z = -3.2fi;
assert(conj(z) == -z);
}
/***********************************
* Returns cosine of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH cos(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) )
* )
* Bugs:
* Results are undefined if |x| >= $(POWER 2,64).
*/
real cos(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.cos(x); }
//FIXME
///ditto
double cos(double x) @safe pure nothrow @nogc { return cos(cast(real) x); }
//FIXME
///ditto
float cos(float x) @safe pure nothrow @nogc { return cos(cast(real) x); }
@safe unittest
{
real function(real) pcos = &cos;
assert(pcos != null);
}
/***********************************
* Returns $(HTTP en.wikipedia.org/wiki/Sine, sine) of x. x is in $(HTTP en.wikipedia.org/wiki/Radian, radians).
*
* $(TABLE_SV
* $(TH3 x , sin(x) , invalid?)
* $(TD3 $(NAN) , $(NAN) , yes )
* $(TD3 $(PLUSMN)0.0, $(PLUSMN)0.0, no )
* $(TD3 $(PLUSMNINF), $(NAN) , yes )
* )
*
* Params:
* x = angle in radians (not degrees)
* Returns:
* sine of x
* See_Also:
* $(MYREF cos), $(MYREF tan), $(MYREF asin)
* Bugs:
* Results are undefined if |x| >= $(POWER 2,64).
*/
real sin(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.sin(x); }
//FIXME
///ditto
double sin(double x) @safe pure nothrow @nogc { return sin(cast(real) x); }
//FIXME
///ditto
float sin(float x) @safe pure nothrow @nogc { return sin(cast(real) x); }
///
@safe unittest
{
import std.math : sin, PI;
import std.stdio : writefln;
void someFunc()
{
real x = 30.0;
auto result = sin(x * (PI / 180)); // convert degrees to radians
writefln("The sine of %s degrees is %s", x, result);
}
}
@safe unittest
{
real function(real) psin = &sin;
assert(psin != null);
}
/***********************************
* Returns sine for complex and imaginary arguments.
*
* sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i
*
* If both sin($(THETA)) and cos($(THETA)) are required,
* it is most efficient to use expi($(THETA)).
*/
creal sin(creal z) @safe pure nothrow @nogc
{
const creal cs = expi(z.re);
const creal csh = coshisinh(z.im);
return cs.im * csh.re + cs.re * csh.im * 1i;
}
/** ditto */
ireal sin(ireal y) @safe pure nothrow @nogc
{
return cosh(y.im)*1i;
}
///
@safe pure nothrow @nogc unittest
{
assert(sin(0.0+0.0i) == 0.0);
assert(sin(2.0+0.0i) == sin(2.0L) );
}
/***********************************
* cosine, complex and imaginary
*
* cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i
*/
creal cos(creal z) @safe pure nothrow @nogc
{
const creal cs = expi(z.re);
const creal csh = coshisinh(z.im);
return cs.re * csh.re - cs.im * csh.im * 1i;
}
/** ditto */
real cos(ireal y) @safe pure nothrow @nogc
{
return cosh(y.im);
}
///
@safe pure nothrow @nogc unittest
{
assert(cos(0.0+0.0i)==1.0);
assert(cos(1.3L+0.0i)==cos(1.3L));
assert(cos(5.2Li)== cosh(5.2L));
}
/****************************************************************************
* Returns tangent of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH tan(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes))
* )
*/
real tan(real x) @trusted pure nothrow @nogc
{
version (D_InlineAsm_X86)
{
asm pure nothrow @nogc
{
fld x[EBP] ; // load theta
fxam ; // test for oddball values
fstsw AX ;
sahf ;
jc trigerr ; // x is NAN, infinity, or empty
// 387's can handle subnormals
SC18: fptan ;
fstsw AX ;
sahf ;
jnp Clear1 ; // C2 = 1 (x is out of range)
// Do argument reduction to bring x into range
fldpi ;
fxch ;
SC17: fprem1 ;
fstsw AX ;
sahf ;
jp SC17 ;
fstp ST(1) ; // remove pi from stack
jmp SC18 ;
trigerr:
jnp Lret ; // if theta is NAN, return theta
fstp ST(0) ; // dump theta
}
return real.nan;
Clear1: asm pure nothrow @nogc{
fstp ST(0) ; // dump X, which is always 1
}
Lret: {}
}
else version (D_InlineAsm_X86_64)
{
version (Win64)
{
asm pure nothrow @nogc
{
fld real ptr [RCX] ; // load theta
}
}
else
{
asm pure nothrow @nogc
{
fld x[RBP] ; // load theta
}
}
asm pure nothrow @nogc
{
fxam ; // test for oddball values
fstsw AX ;
test AH,1 ;
jnz trigerr ; // x is NAN, infinity, or empty
// 387's can handle subnormals
SC18: fptan ;
fstsw AX ;
test AH,4 ;
jz Clear1 ; // C2 = 1 (x is out of range)
// Do argument reduction to bring x into range
fldpi ;
fxch ;
SC17: fprem1 ;
fstsw AX ;
test AH,4 ;
jnz SC17 ;
fstp ST(1) ; // remove pi from stack
jmp SC18 ;
trigerr:
test AH,4 ;
jz Lret ; // if theta is NAN, return theta
fstp ST(0) ; // dump theta
}
return real.nan;
Clear1: asm pure nothrow @nogc{
fstp ST(0) ; // dump X, which is always 1
}
Lret: {}
}
else
{
// Coefficients for tan(x) and PI/4 split into three parts.
static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
{
static immutable real[6] P = [
2.883414728874239697964612246732416606301E10L,
-2.307030822693734879744223131873392503321E9L,
5.160188250214037865511600561074819366815E7L,
-4.249691853501233575668486667664718192660E5L,
1.272297782199996882828849455156962260810E3L,
-9.889929415807650724957118893791829849557E-1L
];
static immutable real[7] Q = [
8.650244186622719093893836740197250197602E10L,
-4.152206921457208101480801635640958361612E10L,
2.758476078803232151774723646710890525496E9L,
-5.733709132766856723608447733926138506824E7L,
4.529422062441341616231663543669583527923E5L,
-1.317243702830553658702531997959756728291E3L,
1.0
];
enum real P1 =
7.853981633974483067550664827649598009884357452392578125E-1L;
enum real P2 =
2.8605943630549158983813312792950660807511260829685741796657E-18L;
enum real P3 =
2.1679525325309452561992610065108379921905808E-35L;
}
else
{
static immutable real[3] P = [
-1.7956525197648487798769E7L,
1.1535166483858741613983E6L,
-1.3093693918138377764608E4L,
];
static immutable real[5] Q = [
-5.3869575592945462988123E7L,
2.5008380182335791583922E7L,
-1.3208923444021096744731E6L,
1.3681296347069295467845E4L,
1.0000000000000000000000E0L,
];
enum real P1 = 7.853981554508209228515625E-1L;
enum real P2 = 7.946627356147928367136046290398E-9L;
enum real P3 = 3.061616997868382943065164830688E-17L;
}
// Special cases.
if (x == 0.0 || isNaN(x))
return x;
if (isInfinity(x))
return real.nan;
// Make argument positive but save the sign.
bool sign = false;
if (signbit(x))
{
sign = true;
x = -x;
}
// Compute x mod PI/4.
real y = floor(x / PI_4);
// Strip high bits of integer part.
real z = ldexp(y, -4);
// Compute y - 16 * (y / 16).
z = y - ldexp(floor(z), 4);
// Integer and fraction part modulo one octant.
int j = cast(int)(z);
// Map zeros and singularities to origin.
if (j & 1)
{
j += 1;
y += 1.0;
}
z = ((x - y * P1) - y * P2) - y * P3;
const real zz = z * z;
if (zz > 1.0e-20L)
y = z + z * (zz * poly(zz, P) / poly(zz, Q));
else
y = z;
if (j & 2)
y = -1.0 / y;
return (sign) ? -y : y;
}
}
@safe nothrow @nogc unittest
{
static real[2][] vals = // angle,tan
[
[ 0, 0],
[ .5, .5463024898],
[ 1, 1.557407725],
[ 1.5, 14.10141995],
[ 2, -2.185039863],
[ 2.5,-.7470222972],
[ 3, -.1425465431],
[ 3.5, .3745856402],
[ 4, 1.157821282],
[ 4.5, 4.637332055],
[ 5, -3.380515006],
[ 5.5,-.9955840522],
[ 6, -.2910061914],
[ 6.5, .2202772003],
[ 10, .6483608275],
// special angles
[ PI_4, 1],
//[ PI_2, real.infinity], // PI_2 is not _exactly_ pi/2.
[ 3*PI_4, -1],
[ PI, 0],
[ 5*PI_4, 1],
//[ 3*PI_2, -real.infinity],
[ 7*PI_4, -1],
[ 2*PI, 0],
];
int i;
for (i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real r = vals[i][1];
real t = tan(x);
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
if (!isIdentical(r, t)) assert(fabs(r-t) <= .0000001);
x = -x;
r = -r;
t = tan(x);
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
if (!isIdentical(r, t) && !(r != r && t != t)) assert(fabs(r-t) <= .0000001);
}
// overflow
assert(isNaN(tan(real.infinity)));
assert(isNaN(tan(-real.infinity)));
// NaN propagation
assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) ));
}
@system unittest
{
assert(equalsDigit(tan(PI / 3), std.math.sqrt(3.0), useDigits));
}
/***************
* Calculates the arc cosine of x,
* returning a value ranging from 0 to $(PI).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH acos(x)) $(TH invalid?))
* $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* )
*/
real acos(real x) @safe pure nothrow @nogc
{
return atan2(sqrt(1-x*x), x);
}
/// ditto
double acos(double x) @safe pure nothrow @nogc { return acos(cast(real) x); }
/// ditto
float acos(float x) @safe pure nothrow @nogc { return acos(cast(real) x); }
@system unittest
{
assert(equalsDigit(acos(0.5), std.math.PI / 3, useDigits));
}
/***************
* Calculates the arc sine of x,
* returning a value ranging from -$(PI)/2 to $(PI)/2.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH asin(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes))
* )
*/
real asin(real x) @safe pure nothrow @nogc
{
return atan2(x, sqrt(1-x*x));
}
/// ditto
double asin(double x) @safe pure nothrow @nogc { return asin(cast(real) x); }
/// ditto
float asin(float x) @safe pure nothrow @nogc { return asin(cast(real) x); }
@system unittest
{
assert(equalsDigit(asin(0.5), PI / 6, useDigits));
}
/***************
* Calculates the arc tangent of x,
* returning a value ranging from -$(PI)/2 to $(PI)/2.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH atan(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes))
* )
*/
real atan(real x) @safe pure nothrow @nogc
{
version (InlineAsm_X86_Any)
{
return atan2(x, 1.0L);
}
else
{
// Coefficients for atan(x)
static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
{
static immutable real[9] P = [
-6.880597774405940432145577545328795037141E2L,
-2.514829758941713674909996882101723647996E3L,
-3.696264445691821235400930243493001671932E3L,
-2.792272753241044941703278827346430350236E3L,
-1.148164399808514330375280133523543970854E3L,
-2.497759878476618348858065206895055957104E2L,
-2.548067867495502632615671450650071218995E1L,
-8.768423468036849091777415076702113400070E-1L,
-6.635810778635296712545011270011752799963E-4L
];
static immutable real[9] Q = [
2.064179332321782129643673263598686441900E3L,
8.782996876218210302516194604424986107121E3L,
1.547394317752562611786521896296215170819E4L,
1.458510242529987155225086911411015961174E4L,
7.928572347062145288093560392463784743935E3L,
2.494680540950601626662048893678584497900E3L,
4.308348370818927353321556740027020068897E2L,
3.566239794444800849656497338030115886153E1L,
1.0
];
}
else
{
static immutable real[5] P = [
-5.0894116899623603312185E1L,
-9.9988763777265819915721E1L,
-6.3976888655834347413154E1L,
-1.4683508633175792446076E1L,
-8.6863818178092187535440E-1L,
];
static immutable real[6] Q = [
1.5268235069887081006606E2L,
3.9157570175111990631099E2L,
3.6144079386152023162701E2L,
1.4399096122250781605352E2L,
2.2981886733594175366172E1L,
1.0000000000000000000000E0L,
];
}
// tan(PI/8)
enum real TAN_PI_8 = 0.414213562373095048801688724209698078569672L;
// tan(3 * PI/8)
enum real TAN3_PI_8 = 2.414213562373095048801688724209698078569672L;
// Special cases.
if (x == 0.0)
return x;
if (isInfinity(x))
return copysign(PI_2, x);
// Make argument positive but save the sign.
bool sign = false;
if (signbit(x))
{
sign = true;
x = -x;
}
// Range reduction.
real y;
if (x > TAN3_PI_8)
{
y = PI_2;
x = -(1.0 / x);
}
else if (x > TAN_PI_8)
{
y = PI_4;
x = (x - 1.0)/(x + 1.0);
}
else
y = 0.0;
// Rational form in x^^2.
const real z = x * x;
y = y + (poly(z, P) / poly(z, Q)) * z * x + x;
return (sign) ? -y : y;
}
}
/// ditto
double atan(double x) @safe pure nothrow @nogc { return atan(cast(real) x); }
/// ditto
float atan(float x) @safe pure nothrow @nogc { return atan(cast(real) x); }
@system unittest
{
assert(equalsDigit(atan(std.math.sqrt(3.0)), PI / 3, useDigits));
}
/***************
* Calculates the arc tangent of y / x,
* returning a value ranging from -$(PI) to $(PI).
*
* $(TABLE_SV
* $(TR $(TH y) $(TH x) $(TH atan(y, x)))
* $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) )
* $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI)))
* $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI)))
* $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) )
* $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) )
* $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2))
* $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4))
* )
*/
real atan2(real y, real x) @trusted pure nothrow @nogc
{
version (InlineAsm_X86_Any)
{
version (Win64)
{
asm pure nothrow @nogc {
naked;
fld real ptr [RDX]; // y
fld real ptr [RCX]; // x
fpatan;
ret;
}
}
else
{
asm pure nothrow @nogc {
fld y;
fld x;
fpatan;
}
}
}
else
{
// Special cases.
if (isNaN(x) || isNaN(y))
return real.nan;
if (y == 0.0)
{
if (x >= 0 && !signbit(x))
return copysign(0, y);
else
return copysign(PI, y);
}
if (x == 0.0)
return copysign(PI_2, y);
if (isInfinity(x))
{
if (signbit(x))
{
if (isInfinity(y))
return copysign(3*PI_4, y);
else
return copysign(PI, y);
}
else
{
if (isInfinity(y))
return copysign(PI_4, y);
else
return copysign(0.0, y);
}
}
if (isInfinity(y))
return copysign(PI_2, y);
// Call atan and determine the quadrant.
real z = atan(y / x);
if (signbit(x))
{
if (signbit(y))
z = z - PI;
else
z = z + PI;
}
if (z == 0.0)
return copysign(z, y);
return z;
}
}
/// ditto
double atan2(double y, double x) @safe pure nothrow @nogc
{
return atan2(cast(real) y, cast(real) x);
}
/// ditto
float atan2(float y, float x) @safe pure nothrow @nogc
{
return atan2(cast(real) y, cast(real) x);
}
@system unittest
{
assert(equalsDigit(atan2(1.0L, std.math.sqrt(3.0L)), PI / 6, useDigits));
}
/***********************************
* Calculates the hyperbolic cosine of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH cosh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) )
* )
*/
real cosh(real x) @safe pure nothrow @nogc
{
// cosh = (exp(x)+exp(-x))/2.
// The naive implementation works correctly.
const real y = exp(x);
return (y + 1.0/y) * 0.5;
}
/// ditto
double cosh(double x) @safe pure nothrow @nogc { return cosh(cast(real) x); }
/// ditto
float cosh(float x) @safe pure nothrow @nogc { return cosh(cast(real) x); }
@system unittest
{
assert(equalsDigit(cosh(1.0), (E + 1.0 / E) / 2, useDigits));
}
/***********************************
* Calculates the hyperbolic sine of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH sinh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no))
* )
*/
real sinh(real x) @safe pure nothrow @nogc
{
// sinh(x) = (exp(x)-exp(-x))/2;
// Very large arguments could cause an overflow, but
// the maximum value of x for which exp(x) + exp(-x)) != exp(x)
// is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80.
if (fabs(x) > real.mant_dig * LN2)
{
return copysign(0.5 * exp(fabs(x)), x);
}
const real y = expm1(x);
return 0.5 * y / (y+1) * (y+2);
}
/// ditto
double sinh(double x) @safe pure nothrow @nogc { return sinh(cast(real) x); }
/// ditto
float sinh(float x) @safe pure nothrow @nogc { return sinh(cast(real) x); }
@system unittest
{
assert(equalsDigit(sinh(1.0), (E - 1.0 / E) / 2, useDigits));
}
/***********************************
* Calculates the hyperbolic tangent of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH tanh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no))
* )
*/
real tanh(real x) @safe pure nothrow @nogc
{
// tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x))
if (fabs(x) > real.mant_dig * LN2)
{
return copysign(1, x);
}
const real y = expm1(2*x);
return y / (y + 2);
}
/// ditto
double tanh(double x) @safe pure nothrow @nogc { return tanh(cast(real) x); }
/// ditto
float tanh(float x) @safe pure nothrow @nogc { return tanh(cast(real) x); }
@system unittest
{
assert(equalsDigit(tanh(1.0), sinh(1.0) / cosh(1.0), 15));
}
package:
/* Returns cosh(x) + I * sinh(x)
* Only one call to exp() is performed.
*/
creal coshisinh(real x) @safe pure nothrow @nogc
{
// See comments for cosh, sinh.
if (fabs(x) > real.mant_dig * LN2)
{
const real y = exp(fabs(x));
return y * 0.5 + 0.5i * copysign(y, x);
}
else
{
const real y = expm1(x);
return (y + 1.0 + 1.0/(y + 1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2);
}
}
@safe pure nothrow @nogc unittest
{
creal c = coshisinh(3.0L);
assert(c.re == cosh(3.0L));
assert(c.im == sinh(3.0L));
}
public:
/***********************************
* Calculates the inverse hyperbolic cosine of x.
*
* Mathematically, acosh(x) = log(x + sqrt( x*x - 1))
*
* $(TABLE_DOMRG
* $(DOMAIN 1..$(INFIN)),
* $(RANGE 0..$(INFIN))
* )
*
* $(TABLE_SV
* $(SVH x, acosh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(LT)1, $(NAN) )
* $(SV 1, 0 )
* $(SV +$(INFIN),+$(INFIN))
* )
*/
real acosh(real x) @safe pure nothrow @nogc
{
if (x > 1/real.epsilon)
return LN2 + log(x);
else
return log(x + sqrt(x*x - 1));
}
/// ditto
double acosh(double x) @safe pure nothrow @nogc { return acosh(cast(real) x); }
/// ditto
float acosh(float x) @safe pure nothrow @nogc { return acosh(cast(real) x); }
@system unittest
{
assert(isNaN(acosh(0.9)));
assert(isNaN(acosh(real.nan)));
assert(acosh(1.0)==0.0);
assert(acosh(real.infinity) == real.infinity);
assert(isNaN(acosh(0.5)));
assert(equalsDigit(acosh(cosh(3.0)), 3, useDigits));
}
/***********************************
* Calculates the inverse hyperbolic sine of x.
*
* Mathematically,
* ---------------
* asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0
* asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0
* -------------
*
* $(TABLE_SV
* $(SVH x, asinh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(PLUSMN)0, $(PLUSMN)0 )
* $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN))
* )
*/
real asinh(real x) @safe pure nothrow @nogc
{
return (fabs(x) > 1 / real.epsilon)
// beyond this point, x*x + 1 == x*x
? copysign(LN2 + log(fabs(x)), x)
// sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) )
: copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x);
}
/// ditto
double asinh(double x) @safe pure nothrow @nogc { return asinh(cast(real) x); }
/// ditto
float asinh(float x) @safe pure nothrow @nogc { return asinh(cast(real) x); }
@system unittest
{
assert(isIdentical(asinh(0.0), 0.0));
assert(isIdentical(asinh(-0.0), -0.0));
assert(asinh(real.infinity) == real.infinity);
assert(asinh(-real.infinity) == -real.infinity);
assert(isNaN(asinh(real.nan)));
assert(equalsDigit(asinh(sinh(3.0)), 3, useDigits));
}
/***********************************
* Calculates the inverse hyperbolic tangent of x,
* returning a value from ranging from -1 to 1.
*
* Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2
*
* $(TABLE_DOMRG
* $(DOMAIN -$(INFIN)..$(INFIN)),
* $(RANGE -1 .. 1)
* )
* $(BR)
* $(TABLE_SV
* $(SVH x, acosh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(PLUSMN)0, $(PLUSMN)0)
* $(SV -$(INFIN), -0)
* )
*/
real atanh(real x) @safe pure nothrow @nogc
{
// log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) )
return 0.5 * log1p( 2 * x / (1 - x) );
}
/// ditto
double atanh(double x) @safe pure nothrow @nogc { return atanh(cast(real) x); }
/// ditto
float atanh(float x) @safe pure nothrow @nogc { return atanh(cast(real) x); }
@system unittest
{
assert(isIdentical(atanh(0.0), 0.0));
assert(isIdentical(atanh(-0.0),-0.0));
assert(isNaN(atanh(real.nan)));
assert(isNaN(atanh(-real.infinity)));
assert(atanh(0.0) == 0);
assert(equalsDigit(atanh(tanh(0.5L)), 0.5, useDigits));
}
/*****************************************
* Returns x rounded to a long value using the current rounding mode.
* If the integer value of x is
* greater than long.max, the result is
* indeterminate.
*/
long rndtol(real x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.rndtol(x); }
//FIXME
///ditto
long rndtol(double x) @safe pure nothrow @nogc { return rndtol(cast(real) x); }
//FIXME
///ditto
long rndtol(float x) @safe pure nothrow @nogc { return rndtol(cast(real) x); }
@safe unittest
{
long function(real) prndtol = &rndtol;
assert(prndtol != null);
}
/*****************************************
* Returns x rounded to a long value using the FE_TONEAREST rounding mode.
* If the integer value of x is
* greater than long.max, the result is
* indeterminate.
*/
extern (C) real rndtonl(real x);
/***************************************
* Compute square root of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?))
* $(TR $(TD -0.0) $(TD -0.0) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no))
* )
*/
float sqrt(float x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); }
/// ditto
double sqrt(double x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); }
/// ditto
real sqrt(real x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); }
@safe pure nothrow @nogc unittest
{
//ctfe
enum ZX80 = sqrt(7.0f);
enum ZX81 = sqrt(7.0);
enum ZX82 = sqrt(7.0L);
assert(isNaN(sqrt(-1.0f)));
assert(isNaN(sqrt(-1.0)));
assert(isNaN(sqrt(-1.0L)));
}
@safe unittest
{
float function(float) psqrtf = &sqrt;
assert(psqrtf != null);
double function(double) psqrtd = &sqrt;
assert(psqrtd != null);
real function(real) psqrtr = &sqrt;
assert(psqrtr != null);
}
creal sqrt(creal z) @nogc @safe pure nothrow
{
creal c;
real x,y,w,r;
if (z == 0)
{
c = 0 + 0i;
}
else
{
const real z_re = z.re;
const real z_im = z.im;
x = fabs(z_re);
y = fabs(z_im);
if (x >= y)
{
r = y / x;
w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r)));
}
else
{
r = x / y;
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r)));
}
if (z_re >= 0)
{
c = w + (z_im / (w + w)) * 1.0i;
}
else
{
if (z_im < 0)
w = -w;
c = z_im / (w + w) + w * 1.0i;
}
}
return c;
}
/**
* Calculates e$(SUPERSCRIPT x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH e$(SUPERSCRIPT x)) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TR $(TD -$(INFIN)) $(TD +0.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
real exp(real x) @trusted pure nothrow @nogc
{
version (D_InlineAsm_X86)
{
// e^^x = 2^^(LOG2E*x)
// (This is valid because the overflow & underflow limits for exp
// and exp2 are so similar).
return exp2(LOG2E*x);
}
else version (D_InlineAsm_X86_64)
{
// e^^x = 2^^(LOG2E*x)
// (This is valid because the overflow & underflow limits for exp
// and exp2 are so similar).
return exp2(LOG2E*x);
}
else
{
alias F = floatTraits!real;
static if (F.realFormat == RealFormat.ieeeDouble)
{
// Coefficients for exp(x)
static immutable real[3] P = [
9.99999999999999999910E-1L,
3.02994407707441961300E-2L,
1.26177193074810590878E-4L,
];
static immutable real[4] Q = [
2.00000000000000000009E0L,
2.27265548208155028766E-1L,
2.52448340349684104192E-3L,
3.00198505138664455042E-6L,
];
// C1 + C2 = LN2.
enum real C1 = 6.93145751953125E-1;
enum real C2 = 1.42860682030941723212E-6;
// Overflow and Underflow limits.
enum real OF = 7.09782712893383996732E2; // ln((1-2^-53) * 2^1024)
enum real UF = -7.451332191019412076235E2; // ln(2^-1075)
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
// Coefficients for exp(x)
static immutable real[3] P = [
9.9999999999999999991025E-1L,
3.0299440770744196129956E-2L,
1.2617719307481059087798E-4L,
];
static immutable real[4] Q = [
2.0000000000000000000897E0L,
2.2726554820815502876593E-1L,
2.5244834034968410419224E-3L,
3.0019850513866445504159E-6L,
];
// C1 + C2 = LN2.
enum real C1 = 6.9314575195312500000000E-1L;
enum real C2 = 1.4286068203094172321215E-6L;
// Overflow and Underflow limits.
enum real OF = 1.1356523406294143949492E4L; // ln((1-2^-64) * 2^16384)
enum real UF = -1.13994985314888605586758E4L; // ln(2^-16446)
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
// Coefficients for exp(x) - 1
static immutable real[5] P = [
9.999999999999999999999999999999999998502E-1L,
3.508710990737834361215404761139478627390E-2L,
2.708775201978218837374512615596512792224E-4L,
6.141506007208645008909088812338454698548E-7L,
3.279723985560247033712687707263393506266E-10L
];
static immutable real[6] Q = [
2.000000000000000000000000000000000000150E0,
2.368408864814233538909747618894558968880E-1L,
3.611828913847589925056132680618007270344E-3L,
1.504792651814944826817779302637284053660E-5L,
1.771372078166251484503904874657985291164E-8L,
2.980756652081995192255342779918052538681E-12L
];
// C1 + C2 = LN2.
enum real C1 = 6.93145751953125E-1L;
enum real C2 = 1.428606820309417232121458176568075500134E-6L;
// Overflow and Underflow limits.
enum real OF = 1.135583025911358400418251384584930671458833e4L;
enum real UF = -1.143276959615573793352782661133116431383730e4L;
}
else
static assert(0, "Not implemented for this architecture");
// Special cases. Raises an overflow or underflow flag accordingly,
// except in the case for CTFE, where there are no hardware controls.
if (isNaN(x))
return x;
if (x > OF)
return real.infinity;
if (x < UF)
return 0.0;
// Express: e^^x = e^^g * 2^^n
// = e^^g * e^^(n * LOG2E)
// = e^^(g + n * LOG2E)
int n = cast(int) floor(LOG2E * x + 0.5);
x -= n * C1;
x -= n * C2;
// Rational approximation for exponential of the fractional part:
// e^^x = 1 + 2x P(x^^2) / (Q(x^^2) - P(x^^2))
const real xx = x * x;
const real px = x * poly(xx, P);
x = px / (poly(xx, Q) - px);
x = 1.0 + ldexp(x, 1);
// Scale by power of 2.
x = ldexp(x, n);
return x;
}
}
/// ditto
double exp(double x) @safe pure nothrow @nogc { return exp(cast(real) x); }
/// ditto
float exp(float x) @safe pure nothrow @nogc { return exp(cast(real) x); }
@system unittest
{
assert(equalsDigit(exp(3.0L), E * E * E, useDigits));
}
/**
* Calculates the value of the natural logarithm base (e)
* raised to the power of x, minus 1.
*
* For very small x, expm1(x) is more accurate
* than exp(x)-1.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH e$(SUPERSCRIPT x)-1) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TR $(TD -$(INFIN)) $(TD -1.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
real expm1(real x) @trusted pure nothrow @nogc
{
version (D_InlineAsm_X86)
{
enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4
asm pure nothrow @nogc
{
/* expm1() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* expm1(x) = 2^^(rndint(y))* 2^^(y-rndint(y)) - 1 where y = LN2*x.
* = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^^(rndint(y))
* and 2ym1 = (2^^(y-rndint(y))-1).
* If 2rndy < 0.5*real.epsilon, result is -1.
* Implementation is otherwise the same as for exp2()
*/
naked;
fld real ptr [ESP+4] ; // x
mov AX, [ESP+4+8]; // AX = exponent and sign
sub ESP, 12+8; // Create scratch space on the stack
// [ESP,ESP+2] = scratchint
// [ESP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [ESP+8], 0;
mov dword ptr [ESP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fldl2e;
fmulp ST(1), ST; // y = x*log2(e)
fist dword ptr [ESP]; // scratchint = rndint(y)
fisub dword ptr [ESP]; // y - rndint(y)
// and now set scratchreal exponent
mov EAX, [ESP];
add EAX, 0x3fff;
jle short L_largenegative;
cmp EAX,0x8000;
jge short L_largepositive;
mov [ESP+8+8],AX;
f2xm1; // 2ym1 = 2^^(y-rndint(y)) -1
fld real ptr [ESP+8] ; // 2rndy = 2^^rndint(y)
fmul ST(1), ST; // ST=2rndy, ST(1)=2rndy*2ym1
fld1;
fsubp ST(1), ST; // ST = 2rndy-1, ST(1) = 2rndy * 2ym1 - 1
faddp ST(1), ST; // ST = 2rndy * 2ym1 + 2rndy - 1
add ESP,12+8;
ret PARAMSIZE;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x != 0
jz L_was_nan; // if x is NaN, returns x
test AX, 0x0200;
jnz L_largenegative;
L_largepositive:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [ESP+8+8], 0x7FFE;
fstp ST(0);
fld real ptr [ESP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add ESP,12+8;
ret PARAMSIZE;
L_largenegative:
fstp ST(0);
fld1;
fchs; // return -1. Underflow flag is not set.
add ESP,12+8;
ret PARAMSIZE;
}
}
else version (D_InlineAsm_X86_64)
{
asm pure nothrow @nogc
{
naked;
}
version (Win64)
{
asm pure nothrow @nogc
{
fld real ptr [RCX]; // x
mov AX,[RCX+8]; // AX = exponent and sign
}
}
else
{
asm pure nothrow @nogc
{
fld real ptr [RSP+8]; // x
mov AX,[RSP+8+8]; // AX = exponent and sign
}
}
asm pure nothrow @nogc
{
/* expm1() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x.
* = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y))
* and 2ym1 = (2^(y-rndint(y))-1).
* If 2rndy < 0.5*real.epsilon, result is -1.
* Implementation is otherwise the same as for exp2()
*/
sub RSP, 24; // Create scratch space on the stack
// [RSP,RSP+2] = scratchint
// [RSP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [RSP+8], 0;
mov dword ptr [RSP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fldl2e;
fmul ; // y = x*log2(e)
fist dword ptr [RSP]; // scratchint = rndint(y)
fisub dword ptr [RSP]; // y - rndint(y)
// and now set scratchreal exponent
mov EAX, [RSP];
add EAX, 0x3fff;
jle short L_largenegative;
cmp EAX,0x8000;
jge short L_largepositive;
mov [RSP+8+8],AX;
f2xm1; // 2^(y-rndint(y)) -1
fld real ptr [RSP+8] ; // 2^rndint(y)
fmul ST(1), ST;
fld1;
fsubp ST(1), ST;
fadd;
add RSP,24;
ret;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x != 0
jz L_was_nan; // if x is NaN, returns x
test AX, 0x0200;
jnz L_largenegative;
L_largepositive:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [RSP+8+8], 0x7FFE;
fstp ST(0);
fld real ptr [RSP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add RSP,24;
ret;
L_largenegative:
fstp ST(0);
fld1;
fchs; // return -1. Underflow flag is not set.
add RSP,24;
ret;
}
}
else
{
// Coefficients for exp(x) - 1 and overflow/underflow limits.
static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
{
static immutable real[8] P = [
2.943520915569954073888921213330863757240E8L,
-5.722847283900608941516165725053359168840E7L,
8.944630806357575461578107295909719817253E6L,
-7.212432713558031519943281748462837065308E5L,
4.578962475841642634225390068461943438441E4L,
-1.716772506388927649032068540558788106762E3L,
4.401308817383362136048032038528753151144E1L,
-4.888737542888633647784737721812546636240E-1L
];
static immutable real[9] Q = [
1.766112549341972444333352727998584753865E9L,
-7.848989743695296475743081255027098295771E8L,
1.615869009634292424463780387327037251069E8L,
-2.019684072836541751428967854947019415698E7L,
1.682912729190313538934190635536631941751E6L,
-9.615511549171441430850103489315371768998E4L,
3.697714952261803935521187272204485251835E3L,
-8.802340681794263968892934703309274564037E1L,
1.0
];
enum real OF = 1.1356523406294143949491931077970764891253E4L;
enum real UF = -1.143276959615573793352782661133116431383730e4L;
}
else
{
static immutable real[5] P = [
-1.586135578666346600772998894928250240826E4L,
2.642771505685952966904660652518429479531E3L,
-3.423199068835684263987132888286791620673E2L,
1.800826371455042224581246202420972737840E1L,
-5.238523121205561042771939008061958820811E-1L,
];
static immutable real[6] Q = [
-9.516813471998079611319047060563358064497E4L,
3.964866271411091674556850458227710004570E4L,
-7.207678383830091850230366618190187434796E3L,
7.206038318724600171970199625081491823079E2L,
-4.002027679107076077238836622982900945173E1L,
1.0
];
enum real OF = 1.1356523406294143949492E4L;
enum real UF = -4.5054566736396445112120088E1L;
}
// C1 + C2 = LN2.
enum real C1 = 6.9314575195312500000000E-1L;
enum real C2 = 1.428606820309417232121458176568075500134E-6L;
// Special cases. Raises an overflow flag, except in the case
// for CTFE, where there are no hardware controls.
if (x > OF)
return real.infinity;
if (x == 0.0)
return x;
if (x < UF)
return -1.0;
// Express x = LN2 (n + remainder), remainder not exceeding 1/2.
int n = cast(int) floor(0.5 + x / LN2);
x -= n * C1;
x -= n * C2;
// Rational approximation:
// exp(x) - 1 = x + 0.5 x^^2 + x^^3 P(x) / Q(x)
real px = x * poly(x, P);
real qx = poly(x, Q);
const real xx = x * x;
qx = x + (0.5 * xx + xx * px / qx);
// We have qx = exp(remainder LN2) - 1, so:
// exp(x) - 1 = 2^^n (qx + 1) - 1 = 2^^n qx + 2^^n - 1.
px = ldexp(1.0, n);
x = px * qx + (px - 1.0);
return x;
}
}
/**
* Calculates 2$(SUPERSCRIPT x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH exp2(x)) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TR $(TD -$(INFIN)) $(TD +0.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
pragma(inline, true)
real exp2(real x) @nogc @trusted pure nothrow
{
version (InlineAsm_X86_Any)
{
if (!__ctfe)
return exp2Asm(x);
else
return exp2Impl(x);
}
else
{
return exp2Impl(x);
}
}
version (InlineAsm_X86_Any)
private real exp2Asm(real x) @nogc @trusted pure nothrow
{
version (D_InlineAsm_X86)
{
enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4
asm pure nothrow @nogc
{
/* exp2() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* exp2(x) = 2^^(rndint(x))* 2^^(y-rndint(x))
* The trick for high performance is to avoid the fscale(28cycles on core2),
* frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction.
*
* We can do frndint by using fist. BUT we can't use it for huge numbers,
* because it will set the Invalid Operation flag if overflow or NaN occurs.
* Fortunately, whenever this happens the result would be zero or infinity.
*
* We can perform fscale by directly poking into the exponent. BUT this doesn't
* work for the (very rare) cases where the result is subnormal. So we fall back
* to the slow method in that case.
*/
naked;
fld real ptr [ESP+4] ; // x
mov AX, [ESP+4+8]; // AX = exponent and sign
sub ESP, 12+8; // Create scratch space on the stack
// [ESP,ESP+2] = scratchint
// [ESP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [ESP+8], 0;
mov dword ptr [ESP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fist dword ptr [ESP]; // scratchint = rndint(x)
fisub dword ptr [ESP]; // x - rndint(x)
// and now set scratchreal exponent
mov EAX, [ESP];
add EAX, 0x3fff;
jle short L_subnormal;
cmp EAX,0x8000;
jge short L_overflow;
mov [ESP+8+8],AX;
L_normal:
f2xm1;
fld1;
faddp ST(1), ST; // 2^^(x-rndint(x))
fld real ptr [ESP+8] ; // 2^^rndint(x)
add ESP,12+8;
fmulp ST(1), ST;
ret PARAMSIZE;
L_subnormal:
// Result will be subnormal.
// In this rare case, the simple poking method doesn't work.
// The speed doesn't matter, so use the slow fscale method.
fild dword ptr [ESP]; // scratchint
fld1;
fscale;
fstp real ptr [ESP+8]; // scratchreal = 2^^scratchint
fstp ST(0); // drop scratchint
jmp L_normal;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x != 0
jz L_was_nan; // if x is NaN, returns x
// set scratchreal = real.min_normal
// squaring it will return 0, setting underflow flag
mov word ptr [ESP+8+8], 1;
test AX, 0x0200;
jnz L_waslargenegative;
L_overflow:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [ESP+8+8], 0x7FFE;
L_waslargenegative:
fstp ST(0);
fld real ptr [ESP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add ESP,12+8;
ret PARAMSIZE;
}
}
else version (D_InlineAsm_X86_64)
{
asm pure nothrow @nogc
{
naked;
}
version (Win64)
{
asm pure nothrow @nogc
{
fld real ptr [RCX]; // x
mov AX,[RCX+8]; // AX = exponent and sign
}
}
else
{
asm pure nothrow @nogc
{
fld real ptr [RSP+8]; // x
mov AX,[RSP+8+8]; // AX = exponent and sign
}
}
asm pure nothrow @nogc
{
/* exp2() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* exp2(x) = 2^(rndint(x))* 2^(y-rndint(x))
* The trick for high performance is to avoid the fscale(28cycles on core2),
* frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction.
*
* We can do frndint by using fist. BUT we can't use it for huge numbers,
* because it will set the Invalid Operation flag is overflow or NaN occurs.
* Fortunately, whenever this happens the result would be zero or infinity.
*
* We can perform fscale by directly poking into the exponent. BUT this doesn't
* work for the (very rare) cases where the result is subnormal. So we fall back
* to the slow method in that case.
*/
sub RSP, 24; // Create scratch space on the stack
// [RSP,RSP+2] = scratchint
// [RSP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [RSP+8], 0;
mov dword ptr [RSP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fist dword ptr [RSP]; // scratchint = rndint(x)
fisub dword ptr [RSP]; // x - rndint(x)
// and now set scratchreal exponent
mov EAX, [RSP];
add EAX, 0x3fff;
jle short L_subnormal;
cmp EAX,0x8000;
jge short L_overflow;
mov [RSP+8+8],AX;
L_normal:
f2xm1;
fld1;
fadd; // 2^(x-rndint(x))
fld real ptr [RSP+8] ; // 2^rndint(x)
add RSP,24;
fmulp ST(1), ST;
ret;
L_subnormal:
// Result will be subnormal.
// In this rare case, the simple poking method doesn't work.
// The speed doesn't matter, so use the slow fscale method.
fild dword ptr [RSP]; // scratchint
fld1;
fscale;
fstp real ptr [RSP+8]; // scratchreal = 2^scratchint
fstp ST(0); // drop scratchint
jmp L_normal;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x != 0
jz L_was_nan; // if x is NaN, returns x
// set scratchreal = real.min
// squaring it will return 0, setting underflow flag
mov word ptr [RSP+8+8], 1;
test AX, 0x0200;
jnz L_waslargenegative;
L_overflow:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [RSP+8+8], 0x7FFE;
L_waslargenegative:
fstp ST(0);
fld real ptr [RSP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add RSP,24;
ret;
}
}
else
static assert(0);
}
private real exp2Impl(real x) @nogc @trusted pure nothrow
{
// Coefficients for exp2(x)
static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
{
static immutable real[5] P = [
9.079594442980146270952372234833529694788E12L,
1.530625323728429161131811299626419117557E11L,
5.677513871931844661829755443994214173883E8L,
6.185032670011643762127954396427045467506E5L,
1.587171580015525194694938306936721666031E2L
];
static immutable real[6] Q = [
2.619817175234089411411070339065679229869E13L,
1.490560994263653042761789432690793026977E12L,
1.092141473886177435056423606755843616331E10L,
2.186249607051644894762167991800811827835E7L,
1.236602014442099053716561665053645270207E4L,
1.0
];
}
else
{
static immutable real[3] P = [
2.0803843631901852422887E6L,
3.0286971917562792508623E4L,
6.0614853552242266094567E1L,
];
static immutable real[4] Q = [
6.0027204078348487957118E6L,
3.2772515434906797273099E5L,
1.7492876999891839021063E3L,
1.0000000000000000000000E0L,
];
}
// Overflow and Underflow limits.
enum real OF = 16_384.0L;
enum real UF = -16_382.0L;
// Special cases. Raises an overflow or underflow flag accordingly,
// except in the case for CTFE, where there are no hardware controls.
if (isNaN(x))
return x;
if (x > OF)
return real.infinity;
if (x < UF)
return 0.0;
// Separate into integer and fractional parts.
int n = cast(int) floor(x + 0.5);
x -= n;
// Rational approximation:
// exp2(x) = 1.0 + 2x P(x^^2) / (Q(x^^2) - P(x^^2))
const real xx = x * x;
const real px = x * poly(xx, P);
x = px / (poly(xx, Q) - px);
x = 1.0 + ldexp(x, 1);
// Scale by power of 2.
x = ldexp(x, n);
return x;
}
///
@safe unittest
{
assert(feqrel(exp2(0.5L), SQRT2) >= real.mant_dig -1);
assert(exp2(8.0L) == 256.0);
assert(exp2(-9.0L)== 1.0L/512.0);
}
@safe unittest
{
version (CRuntime_Microsoft) {} else // aexp2/exp2f/exp2l not implemented
{
assert( core.stdc.math.exp2f(0.0f) == 1 );
assert( core.stdc.math.exp2 (0.0) == 1 );
assert( core.stdc.math.exp2l(0.0L) == 1 );
}
}
@system unittest
{
version (FloatingPointControlSupport)
{
FloatingPointControl ctrl;
if (FloatingPointControl.hasExceptionTraps)
ctrl.disableExceptions(FloatingPointControl.allExceptions);
ctrl.rounding = FloatingPointControl.roundToNearest;
}
static if (real.mant_dig == 113)
{
static immutable real[2][] exptestpoints =
[ // x exp(x)
[ 1.0L, E ],
[ 0.5L, 0x1.a61298e1e069bc972dfefab6df34p+0L ],
[ 3.0L, E*E*E ],
[ 0x1.6p+13L, 0x1.6e509d45728655cdb4840542acb5p+16250L ], // near overflow
[ 0x1.7p+13L, real.infinity ], // close overflow
[ 0x1p+80L, real.infinity ], // far overflow
[ real.infinity, real.infinity ],
[-0x1.18p+13L, 0x1.5e4bf54b4807034ea97fef0059a6p-12927L ], // near underflow
[-0x1.625p+13L, 0x1.a6bd68a39d11fec3a250cd97f524p-16358L ], // ditto
[-0x1.62dafp+13L, 0x0.cb629e9813b80ed4d639e875be6cp-16382L ], // near underflow - subnormal
[-0x1.6549p+13L, 0x0.0000000000000000000000000001p-16382L ], // ditto
[-0x1.655p+13L, 0 ], // close underflow
[-0x1p+30L, 0 ], // far underflow
];
}
else static if (real.mant_dig == 64) // 80-bit reals
{
static immutable real[2][] exptestpoints =
[ // x exp(x)
[ 1.0L, E ],
[ 0.5L, 0x1.a61298e1e069bc97p+0L ],
[ 3.0L, E*E*E ],
[ 0x1.1p+13L, 0x1.29aeffefc8ec645p+12557L ], // near overflow
[ 0x1.7p+13L, real.infinity ], // close overflow
[ 0x1p+80L, real.infinity ], // far overflow
[ real.infinity, real.infinity ],
[-0x1.18p+13L, 0x1.5e4bf54b4806db9p-12927L ], // near underflow
[-0x1.625p+13L, 0x1.a6bd68a39d11f35cp-16358L ], // ditto
[-0x1.62dafp+13L, 0x1.96c53d30277021dp-16383L ], // near underflow - subnormal
[-0x1.643p+13L, 0x1p-16444L ], // ditto
[-0x1.645p+13L, 0 ], // close underflow
[-0x1p+30L, 0 ], // far underflow
];
}
else static if (real.mant_dig == 53) // 64-bit reals
{
static immutable real[2][] exptestpoints =
[ // x, exp(x)
[ 1.0L, E ],
[ 0.5L, 0x1.a61298e1e069cp+0L ],
[ 3.0L, E*E*E ],
[ 0x1.6p+9L, 0x1.93bf4ec282efbp+1015L ], // near overflow
[ 0x1.7p+9L, real.infinity ], // close overflow
[ 0x1p+80L, real.infinity ], // far overflow
[ real.infinity, real.infinity ],
[-0x1.6p+9L, 0x1.44a3824e5285fp-1016L ], // near underflow
[-0x1.64p+9L, 0x0.06f84920bb2d3p-1022L ], // near underflow - subnormal
[-0x1.743p+9L, 0x0.0000000000001p-1022L ], // ditto
[-0x1.8p+9L, 0 ], // close underflow
[-0x1p30L, 0 ], // far underflow
];
}
else
static assert(0, "No exp() tests for real type!");
const minEqualDecimalDigits = real.dig - 3;
real x;
version (IeeeFlagsSupport) IeeeFlags f;
foreach (ref pair; exptestpoints)
{
version (IeeeFlagsSupport) resetIeeeFlags();
x = exp(pair[0]);
assert(equalsDigit(x, pair[1], minEqualDecimalDigits));
}
// Ideally, exp(0) would not set the inexact flag.
// Unfortunately, fldl2e sets it!
// So it's not realistic to avoid setting it.
assert(exp(0.0L) == 1.0);
// NaN propagation. Doesn't set flags, bcos was already NaN.
version (IeeeFlagsSupport)
{
resetIeeeFlags();
x = exp(real.nan);
f = ieeeFlags;
assert(isIdentical(abs(x), real.nan));
assert(f.flags == 0);
resetIeeeFlags();
x = exp(-real.nan);
f = ieeeFlags;
assert(isIdentical(abs(x), real.nan));
assert(f.flags == 0);
}
else
{
x = exp(real.nan);
assert(isIdentical(abs(x), real.nan));
x = exp(-real.nan);
assert(isIdentical(abs(x), real.nan));
}
x = exp(NaN(0x123));
assert(isIdentical(x, NaN(0x123)));
// High resolution test (verified against GNU MPFR/Mathematica).
assert(exp(0.5L) == 0x1.A612_98E1_E069_BC97_2DFE_FAB6_DF34p+0L);
}
/**
* Calculate cos(y) + i sin(y).
*
* On many CPUs (such as x86), this is a very efficient operation;
* almost twice as fast as calculating sin(y) and cos(y) separately,
* and is the preferred method when both are required.
*/
creal expi(real y) @trusted pure nothrow @nogc
{
version (InlineAsm_X86_Any)
{
version (Win64)
{
asm pure nothrow @nogc
{
naked;
fld real ptr [ECX];
fsincos;
fxch ST(1), ST(0);
ret;
}
}
else
{
asm pure nothrow @nogc
{
fld y;
fsincos;
fxch ST(1), ST(0);
}
}
}
else
{
return cos(y) + sin(y)*1i;
}
}
///
@safe pure nothrow @nogc unittest
{
assert(expi(1.3e5L) == cos(1.3e5L) + sin(1.3e5L) * 1i);
assert(expi(0.0L) == 1L + 0.0Li);
}
/*********************************************************************
* Separate floating point value into significand and exponent.
*
* Returns:
* Calculate and return $(I x) and $(I exp) such that
* value =$(I x)*2$(SUPERSCRIPT exp) and
* .5 $(LT)= |$(I x)| $(LT) 1.0
*
* $(I x) has same sign as value.
*
* $(TABLE_SV
* $(TR $(TH value) $(TH returns) $(TH exp))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD 0))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD int.max))
* $(TR $(TD -$(INFIN)) $(TD -$(INFIN)) $(TD int.min))
* $(TR $(TD $(PLUSMN)$(NAN)) $(TD $(PLUSMN)$(NAN)) $(TD int.min))
* )
*/
T frexp(T)(const T value, out int exp) @trusted pure nothrow @nogc
if (isFloatingPoint!T)
{
Unqual!T vf = value;
ushort* vu = cast(ushort*)&vf;
static if (is(Unqual!T == float))
int* vi = cast(int*)&vf;
else
long* vl = cast(long*)&vf;
int ex;
alias F = floatTraits!T;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
static if (F.realFormat == RealFormat.ieeeExtended)
{
if (ex)
{ // If exponent is non-zero
if (ex == F.EXPMASK) // infinity or NaN
{
if (*vl & 0x7FFF_FFFF_FFFF_FFFF) // NaN
{
*vl |= 0xC000_0000_0000_0000; // convert NaNS to NaNQ
exp = int.min;
}
else if (vu[F.EXPPOS_SHORT] & 0x8000) // negative infinity
exp = int.min;
else // positive infinity
exp = int.max;
}
else
{
exp = ex - F.EXPBIAS;
vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE;
}
}
else if (!*vl)
{
// vf is +-0.0
exp = 0;
}
else
{
// subnormal
vf *= F.RECIP_EPSILON;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ex - F.EXPBIAS - T.mant_dig + 1;
vu[F.EXPPOS_SHORT] = ((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3FFE;
}
return vf;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
if (ex) // If exponent is non-zero
{
if (ex == F.EXPMASK)
{
// infinity or NaN
if (vl[MANTISSA_LSB] |
(vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) // NaN
{
// convert NaNS to NaNQ
vl[MANTISSA_MSB] |= 0x0000_8000_0000_0000;
exp = int.min;
}
else if (vu[F.EXPPOS_SHORT] & 0x8000) // negative infinity
exp = int.min;
else // positive infinity
exp = int.max;
}
else
{
exp = ex - F.EXPBIAS;
vu[F.EXPPOS_SHORT] = F.EXPBIAS | (0x8000 & vu[F.EXPPOS_SHORT]);
}
}
else if ((vl[MANTISSA_LSB] |
(vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0)
{
// vf is +-0.0
exp = 0;
}
else
{
// subnormal
vf *= F.RECIP_EPSILON;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ex - F.EXPBIAS - T.mant_dig + 1;
vu[F.EXPPOS_SHORT] = F.EXPBIAS | (0x8000 & vu[F.EXPPOS_SHORT]);
}
return vf;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
if (ex) // If exponent is non-zero
{
if (ex == F.EXPMASK) // infinity or NaN
{
if (*vl == 0x7FF0_0000_0000_0000) // positive infinity
{
exp = int.max;
}
else if (*vl == 0xFFF0_0000_0000_0000) // negative infinity
exp = int.min;
else
{ // NaN
*vl |= 0x0008_0000_0000_0000; // convert NaNS to NaNQ
exp = int.min;
}
}
else
{
exp = (ex - F.EXPBIAS) >> 4;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x800F & vu[F.EXPPOS_SHORT]) | 0x3FE0);
}
}
else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF))
{
// vf is +-0.0
exp = 0;
}
else
{
// subnormal
vf *= F.RECIP_EPSILON;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1;
vu[F.EXPPOS_SHORT] =
cast(ushort)(((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3FE0);
}
return vf;
}
else static if (F.realFormat == RealFormat.ieeeSingle)
{
if (ex) // If exponent is non-zero
{
if (ex == F.EXPMASK) // infinity or NaN
{
if (*vi == 0x7F80_0000) // positive infinity
{
exp = int.max;
}
else if (*vi == 0xFF80_0000) // negative infinity
exp = int.min;
else
{ // NaN
*vi |= 0x0040_0000; // convert NaNS to NaNQ
exp = int.min;
}
}
else
{
exp = (ex - F.EXPBIAS) >> 7;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x807F & vu[F.EXPPOS_SHORT]) | 0x3F00);
}
}
else if (!(*vi & 0x7FFF_FFFF))
{
// vf is +-0.0
exp = 0;
}
else
{
// subnormal
vf *= F.RECIP_EPSILON;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1;
vu[F.EXPPOS_SHORT] =
cast(ushort)(((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3F00);
}
return vf;
}
else // static if (F.realFormat == RealFormat.ibmExtended)
{
assert(0, "frexp not implemented");
}
}
///
@system unittest
{
int exp;
real mantissa = frexp(123.456L, exp);
// check if values are equal to 19 decimal digits of precision
assert(equalsDigit(mantissa * pow(2.0L, cast(real) exp), 123.456L, 19));
assert(frexp(-real.nan, exp) && exp == int.min);
assert(frexp(real.nan, exp) && exp == int.min);
assert(frexp(-real.infinity, exp) == -real.infinity && exp == int.min);
assert(frexp(real.infinity, exp) == real.infinity && exp == int.max);
assert(frexp(-0.0, exp) == -0.0 && exp == 0);
assert(frexp(0.0, exp) == 0.0 && exp == 0);
}
@safe unittest
{
import std.meta : AliasSeq;
import std.typecons : tuple, Tuple;
foreach (T; AliasSeq!(real, double, float))
{
Tuple!(T, T, int)[] vals = // x,frexp,exp
[
tuple(T(0.0), T( 0.0 ), 0),
tuple(T(-0.0), T( -0.0), 0),
tuple(T(1.0), T( .5 ), 1),
tuple(T(-1.0), T( -.5 ), 1),
tuple(T(2.0), T( .5 ), 2),
tuple(T(float.min_normal/2.0f), T(.5), -126),
tuple(T.infinity, T.infinity, int.max),
tuple(-T.infinity, -T.infinity, int.min),
tuple(T.nan, T.nan, int.min),
tuple(-T.nan, -T.nan, int.min),
// Phobos issue #16026:
tuple(3 * (T.min_normal * T.epsilon), T( .75), (T.min_exp - T.mant_dig) + 2)
];
foreach (elem; vals)
{
T x = elem[0];
T e = elem[1];
int exp = elem[2];
int eptr;
T v = frexp(x, eptr);
assert(isIdentical(e, v));
assert(exp == eptr);
}
static if (floatTraits!(T).realFormat == RealFormat.ieeeExtended)
{
static T[3][] extendedvals = [ // x,frexp,exp
[0x1.a5f1c2eb3fe4efp+73L, 0x1.A5F1C2EB3FE4EFp-1L, 74], // normal
[0x1.fa01712e8f0471ap-1064L, 0x1.fa01712e8f0471ap-1L, -1063],
[T.min_normal, .5, -16381],
[T.min_normal/2.0L, .5, -16382] // subnormal
];
foreach (elem; extendedvals)
{
T x = elem[0];
T e = elem[1];
int exp = cast(int) elem[2];
int eptr;
T v = frexp(x, eptr);
assert(isIdentical(e, v));
assert(exp == eptr);
}
}
}
}
@safe unittest
{
import std.meta : AliasSeq;
void foo() {
foreach (T; AliasSeq!(real, double, float))
{
int exp;
const T a = 1;
immutable T b = 2;
auto c = frexp(a, exp);
auto d = frexp(b, exp);
}
}
}
/******************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is not a special value, the result is the same as
* $(D cast(int) logb(x)).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH ilogb(x)) $(TH Range error?))
* $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max) $(TD no))
* $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD no))
* )
*/
int ilogb(T)(const T x) @trusted pure nothrow @nogc
if (isFloatingPoint!T)
{
import core.bitop : bsr;
alias F = floatTraits!T;
union floatBits
{
T rv;
ushort[T.sizeof/2] vu;
uint[T.sizeof/4] vui;
static if (T.sizeof >= 8)
ulong[T.sizeof/8] vul;
}
floatBits y = void;
y.rv = x;
int ex = y.vu[F.EXPPOS_SHORT] & F.EXPMASK;
static if (F.realFormat == RealFormat.ieeeExtended)
{
if (ex)
{
// If exponent is non-zero
if (ex == F.EXPMASK) // infinity or NaN
{
if (y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF) // NaN
return FP_ILOGBNAN;
else // +-infinity
return int.max;
}
else
{
return ex - F.EXPBIAS - 1;
}
}
else if (!y.vul[0])
{
// vf is +-0.0
return FP_ILOGB0;
}
else
{
// subnormal
return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(y.vul[0]);
}
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
if (ex) // If exponent is non-zero
{
if (ex == F.EXPMASK)
{
// infinity or NaN
if (y.vul[MANTISSA_LSB] | ( y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) // NaN
return FP_ILOGBNAN;
else // +- infinity
return int.max;
}
else
{
return ex - F.EXPBIAS - 1;
}
}
else if ((y.vul[MANTISSA_LSB] | (y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0)
{
// vf is +-0.0
return FP_ILOGB0;
}
else
{
// subnormal
const ulong msb = y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF;
const ulong lsb = y.vul[MANTISSA_LSB];
if (msb)
return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(msb) + 64;
else
return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(lsb);
}
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
if (ex) // If exponent is non-zero
{
if (ex == F.EXPMASK) // infinity or NaN
{
if ((y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF0_0000_0000_0000) // +- infinity
return int.max;
else // NaN
return FP_ILOGBNAN;
}
else
{
return ((ex - F.EXPBIAS) >> 4) - 1;
}
}
else if (!(y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF))
{
// vf is +-0.0
return FP_ILOGB0;
}
else
{
// subnormal
enum MANTISSAMASK_64 = ((cast(ulong) F.MANTISSAMASK_INT) << 32) | 0xFFFF_FFFF;
return ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1 + bsr(y.vul[0] & MANTISSAMASK_64);
}
}
else static if (F.realFormat == RealFormat.ieeeSingle)
{
if (ex) // If exponent is non-zero
{
if (ex == F.EXPMASK) // infinity or NaN
{
if ((y.vui[0] & 0x7FFF_FFFF) == 0x7F80_0000) // +- infinity
return int.max;
else // NaN
return FP_ILOGBNAN;
}
else
{
return ((ex - F.EXPBIAS) >> 7) - 1;
}
}
else if (!(y.vui[0] & 0x7FFF_FFFF))
{
// vf is +-0.0
return FP_ILOGB0;
}
else
{
// subnormal
const uint mantissa = y.vui[0] & F.MANTISSAMASK_INT;
return ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1 + bsr(mantissa);
}
}
else // static if (F.realFormat == RealFormat.ibmExtended)
{
core.stdc.math.ilogbl(x);
}
}
/// ditto
int ilogb(T)(const T x) @safe pure nothrow @nogc
if (isIntegral!T && isUnsigned!T)
{
import core.bitop : bsr;
if (x == 0)
return FP_ILOGB0;
else
{
static assert(T.sizeof <= ulong.sizeof, "integer size too large for the current ilogb implementation");
return bsr(x);
}
}
/// ditto
int ilogb(T)(const T x) @safe pure nothrow @nogc
if (isIntegral!T && isSigned!T)
{
import std.traits : Unsigned;
// Note: abs(x) can not be used because the return type is not Unsigned and
// the return value would be wrong for x == int.min
Unsigned!T absx = x >= 0 ? x : -x;
return ilogb(absx);
}
alias FP_ILOGB0 = core.stdc.math.FP_ILOGB0;
alias FP_ILOGBNAN = core.stdc.math.FP_ILOGBNAN;
@system nothrow @nogc unittest
{
import std.meta : AliasSeq;
import std.typecons : Tuple;
foreach (F; AliasSeq!(float, double, real))
{
alias T = Tuple!(F, int);
T[13] vals = // x, ilogb(x)
[
T( F.nan , FP_ILOGBNAN ),
T( -F.nan , FP_ILOGBNAN ),
T( F.infinity, int.max ),
T( -F.infinity, int.max ),
T( 0.0 , FP_ILOGB0 ),
T( -0.0 , FP_ILOGB0 ),
T( 2.0 , 1 ),
T( 2.0001 , 1 ),
T( 1.9999 , 0 ),
T( 0.5 , -1 ),
T( 123.123 , 6 ),
T( -123.123 , 6 ),
T( 0.123 , -4 ),
];
foreach (elem; vals)
{
assert(ilogb(elem[0]) == elem[1]);
}
}
// min_normal and subnormals
assert(ilogb(-float.min_normal) == -126);
assert(ilogb(nextUp(-float.min_normal)) == -127);
assert(ilogb(nextUp(-float(0.0))) == -149);
assert(ilogb(-double.min_normal) == -1022);
assert(ilogb(nextUp(-double.min_normal)) == -1023);
assert(ilogb(nextUp(-double(0.0))) == -1074);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
assert(ilogb(-real.min_normal) == -16382);
assert(ilogb(nextUp(-real.min_normal)) == -16383);
assert(ilogb(nextUp(-real(0.0))) == -16445);
}
else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
{
assert(ilogb(-real.min_normal) == -1022);
assert(ilogb(nextUp(-real.min_normal)) == -1023);
assert(ilogb(nextUp(-real(0.0))) == -1074);
}
// test integer types
assert(ilogb(0) == FP_ILOGB0);
assert(ilogb(int.max) == 30);
assert(ilogb(int.min) == 31);
assert(ilogb(uint.max) == 31);
assert(ilogb(long.max) == 62);
assert(ilogb(long.min) == 63);
assert(ilogb(ulong.max) == 63);
}
/*******************************************
* Compute n * 2$(SUPERSCRIPT exp)
* References: frexp
*/
real ldexp(real n, int exp) @nogc @safe pure nothrow { pragma(inline, true); return core.math.ldexp(n, exp); }
//FIXME
///ditto
double ldexp(double n, int exp) @safe pure nothrow @nogc { return ldexp(cast(real) n, exp); }
//FIXME
///ditto
float ldexp(float n, int exp) @safe pure nothrow @nogc { return ldexp(cast(real) n, exp); }
///
@nogc @safe pure nothrow unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(float, double, real))
{
T r;
r = ldexp(3.0L, 3);
assert(r == 24);
r = ldexp(cast(T) 3.0, cast(int) 3);
assert(r == 24);
T n = 3.0;
int exp = 3;
r = ldexp(n, exp);
assert(r == 24);
}
}
@safe pure nothrow @nogc unittest
{
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended ||
floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
{
assert(ldexp(1.0L, -16384) == 0x1p-16384L);
assert(ldexp(1.0L, -16382) == 0x1p-16382L);
int x;
real n = frexp(0x1p-16384L, x);
assert(n == 0.5L);
assert(x==-16383);
assert(ldexp(n, x)==0x1p-16384L);
}
else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
{
assert(ldexp(1.0L, -1024) == 0x1p-1024L);
assert(ldexp(1.0L, -1022) == 0x1p-1022L);
int x;
real n = frexp(0x1p-1024L, x);
assert(n == 0.5L);
assert(x==-1023);
assert(ldexp(n, x)==0x1p-1024L);
}
else static assert(false, "Floating point type real not supported");
}
/* workaround Issue 14718, float parsing depends on platform strtold
@safe pure nothrow @nogc unittest
{
assert(ldexp(1.0, -1024) == 0x1p-1024);
assert(ldexp(1.0, -1022) == 0x1p-1022);
int x;
double n = frexp(0x1p-1024, x);
assert(n == 0.5);
assert(x==-1023);
assert(ldexp(n, x)==0x1p-1024);
}
@safe pure nothrow @nogc unittest
{
assert(ldexp(1.0f, -128) == 0x1p-128f);
assert(ldexp(1.0f, -126) == 0x1p-126f);
int x;
float n = frexp(0x1p-128f, x);
assert(n == 0.5f);
assert(x==-127);
assert(ldexp(n, x)==0x1p-128f);
}
*/
@system unittest
{
static real[3][] vals = // value,exp,ldexp
[
[ 0, 0, 0],
[ 1, 0, 1],
[ -1, 0, -1],
[ 1, 1, 2],
[ 123, 10, 125952],
[ real.max, int.max, real.infinity],
[ real.max, -int.max, 0],
[ real.min_normal, -int.max, 0],
];
int i;
for (i = 0; i < vals.length; i++)
{
real x = vals[i][0];
int exp = cast(int) vals[i][1];
real z = vals[i][2];
real l = ldexp(x, exp);
assert(equalsDigit(z, l, 7));
}
real function(real, int) pldexp = &ldexp;
assert(pldexp != null);
}
private
{
version (INLINE_YL2X) {} else
{
static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
{
// Coefficients for log(1 + x) = x - x**2/2 + x**3 P(x)/Q(x)
static immutable real[13] logCoeffsP = [
1.313572404063446165910279910527789794488E4L,
7.771154681358524243729929227226708890930E4L,
2.014652742082537582487669938141683759923E5L,
3.007007295140399532324943111654767187848E5L,
2.854829159639697837788887080758954924001E5L,
1.797628303815655343403735250238293741397E5L,
7.594356839258970405033155585486712125861E4L,
2.128857716871515081352991964243375186031E4L,
3.824952356185897735160588078446136783779E3L,
4.114517881637811823002128927449878962058E2L,
2.321125933898420063925789532045674660756E1L,
4.998469661968096229986658302195402690910E-1L,
1.538612243596254322971797716843006400388E-6L
];
static immutable real[13] logCoeffsQ = [
3.940717212190338497730839731583397586124E4L,
2.626900195321832660448791748036714883242E5L,
7.777690340007566932935753241556479363645E5L,
1.347518538384329112529391120390701166528E6L,
1.514882452993549494932585972882995548426E6L,
1.158019977462989115839826904108208787040E6L,
6.132189329546557743179177159925690841200E5L,
2.248234257620569139969141618556349415120E5L,
5.605842085972455027590989944010492125825E4L,
9.147150349299596453976674231612674085381E3L,
9.104928120962988414618126155557301584078E2L,
4.839208193348159620282142911143429644326E1L,
1.0
];
// Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2)
// where z = 2(x-1)/(x+1)
static immutable real[6] logCoeffsR = [
-8.828896441624934385266096344596648080902E-1L,
8.057002716646055371965756206836056074715E1L,
-2.024301798136027039250415126250455056397E3L,
2.048819892795278657810231591630928516206E4L,
-8.977257995689735303686582344659576526998E4L,
1.418134209872192732479751274970992665513E5L
];
static immutable real[6] logCoeffsS = [
1.701761051846631278975701529965589676574E6L
-1.332535117259762928288745111081235577029E6L,
4.001557694070773974936904547424676279307E5L,
-5.748542087379434595104154610899551484314E4L,
3.998526750980007367835804959888064681098E3L,
-1.186359407982897997337150403816839480438E2L,
1.0
];
}
else
{
// Coefficients for log(1 + x) = x - x**2/2 + x**3 P(x)/Q(x)
static immutable real[7] logCoeffsP = [
2.0039553499201281259648E1L,
5.7112963590585538103336E1L,
6.0949667980987787057556E1L,
2.9911919328553073277375E1L,
6.5787325942061044846969E0L,
4.9854102823193375972212E-1L,
4.5270000862445199635215E-5L,
];
static immutable real[7] logCoeffsQ = [
6.0118660497603843919306E1L,
2.1642788614495947685003E2L,
3.0909872225312059774938E2L,
2.2176239823732856465394E2L,
8.3047565967967209469434E1L,
1.5062909083469192043167E1L,
1.0000000000000000000000E0L,
];
// Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2)
// where z = 2(x-1)/(x+1)
static immutable real[4] logCoeffsR = [
-3.5717684488096787370998E1L,
1.0777257190312272158094E1L,
-7.1990767473014147232598E-1L,
1.9757429581415468984296E-3L,
];
static immutable real[4] logCoeffsS = [
-4.2861221385716144629696E2L,
1.9361891836232102174846E2L,
-2.6201045551331104417768E1L,
1.0000000000000000000000E0L,
];
}
}
}
/**************************************
* Calculate the natural logarithm of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no))
* )
*/
real log(real x) @safe pure nothrow @nogc
{
version (INLINE_YL2X)
return core.math.yl2x(x, LN2);
else
{
// C1 + C2 = LN2.
enum real C1 = 6.93145751953125E-1L;
enum real C2 = 1.428606820309417232121458176568075500134E-6L;
// Special cases.
if (isNaN(x))
return x;
if (isInfinity(x) && !signbit(x))
return x;
if (x == 0.0)
return -real.infinity;
if (x < 0.0)
return real.nan;
// Separate mantissa from exponent.
// Note, frexp is used so that denormal numbers will be handled properly.
real y, z;
int exp;
x = frexp(x, exp);
// Logarithm using log(x) = z + z^^3 R(z) / S(z),
// where z = 2(x - 1)/(x + 1)
if ((exp > 2) || (exp < -2))
{
if (x < SQRT1_2)
{ // 2(2x - 1)/(2x + 1)
exp -= 1;
z = x - 0.5;
y = 0.5 * z + 0.5;
}
else
{ // 2(x - 1)/(x + 1)
z = x - 0.5;
z -= 0.5;
y = 0.5 * x + 0.5;
}
x = z / y;
z = x * x;
z = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS));
z += exp * C2;
z += x;
z += exp * C1;
return z;
}
// Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
if (x < SQRT1_2)
{ // 2x - 1
exp -= 1;
x = ldexp(x, 1) - 1.0;
}
else
{
x = x - 1.0;
}
z = x * x;
y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ));
y += exp * C2;
z = y - ldexp(z, -1);
// Note, the sum of above terms does not exceed x/4,
// so it contributes at most about 1/4 lsb to the error.
z += x;
z += exp * C1;
return z;
}
}
///
@safe pure nothrow @nogc unittest
{
assert(log(E) == 1);
}
/**************************************
* Calculate the base-10 logarithm of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no))
* )
*/
real log10(real x) @safe pure nothrow @nogc
{
version (INLINE_YL2X)
return core.math.yl2x(x, LOG2);
else
{
// log10(2) split into two parts.
enum real L102A = 0.3125L;
enum real L102B = -1.14700043360188047862611052755069732318101185E-2L;
// log10(e) split into two parts.
enum real L10EA = 0.5L;
enum real L10EB = -6.570551809674817234887108108339491770560299E-2L;
// Special cases are the same as for log.
if (isNaN(x))
return x;
if (isInfinity(x) && !signbit(x))
return x;
if (x == 0.0)
return -real.infinity;
if (x < 0.0)
return real.nan;
// Separate mantissa from exponent.
// Note, frexp is used so that denormal numbers will be handled properly.
real y, z;
int exp;
x = frexp(x, exp);
// Logarithm using log(x) = z + z^^3 R(z) / S(z),
// where z = 2(x - 1)/(x + 1)
if ((exp > 2) || (exp < -2))
{
if (x < SQRT1_2)
{ // 2(2x - 1)/(2x + 1)
exp -= 1;
z = x - 0.5;
y = 0.5 * z + 0.5;
}
else
{ // 2(x - 1)/(x + 1)
z = x - 0.5;
z -= 0.5;
y = 0.5 * x + 0.5;
}
x = z / y;
z = x * x;
y = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS));
goto Ldone;
}
// Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
if (x < SQRT1_2)
{ // 2x - 1
exp -= 1;
x = ldexp(x, 1) - 1.0;
}
else
x = x - 1.0;
z = x * x;
y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ));
y = y - ldexp(z, -1);
// Multiply log of fraction by log10(e) and base 2 exponent by log10(2).
// This sequence of operations is critical and it may be horribly
// defeated by some compiler optimizers.
Ldone:
z = y * L10EB;
z += x * L10EB;
z += exp * L102B;
z += y * L10EA;
z += x * L10EA;
z += exp * L102A;
return z;
}
}
///
@safe pure nothrow @nogc unittest
{
assert(fabs(log10(1000) - 3) < .000001);
}
/******************************************
* Calculates the natural logarithm of 1 + x.
*
* For very small x, log1p(x) will be more accurate than
* log(1 + x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no))
* $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no))
* )
*/
real log1p(real x) @safe pure nothrow @nogc
{
version (INLINE_YL2X)
{
// On x87, yl2xp1 is valid if and only if -0.5 <= lg(x) <= 0.5,
// ie if -0.29 <= x <= 0.414
return (fabs(x) <= 0.25) ? core.math.yl2xp1(x, LN2) : core.math.yl2x(x+1, LN2);
}
else
{
// Special cases.
if (isNaN(x) || x == 0.0)
return x;
if (isInfinity(x) && !signbit(x))
return x;
if (x == -1.0)
return -real.infinity;
if (x < -1.0)
return real.nan;
return log(x + 1.0);
}
}
/***************************************
* Calculates the base-2 logarithm of x:
* $(SUB log, 2)x
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) )
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) )
* )
*/
real log2(real x) @safe pure nothrow @nogc
{
version (INLINE_YL2X)
return core.math.yl2x(x, 1);
else
{
// Special cases are the same as for log.
if (isNaN(x))
return x;
if (isInfinity(x) && !signbit(x))
return x;
if (x == 0.0)
return -real.infinity;
if (x < 0.0)
return real.nan;
// Separate mantissa from exponent.
// Note, frexp is used so that denormal numbers will be handled properly.
real y, z;
int exp;
x = frexp(x, exp);
// Logarithm using log(x) = z + z^^3 R(z) / S(z),
// where z = 2(x - 1)/(x + 1)
if ((exp > 2) || (exp < -2))
{
if (x < SQRT1_2)
{ // 2(2x - 1)/(2x + 1)
exp -= 1;
z = x - 0.5;
y = 0.5 * z + 0.5;
}
else
{ // 2(x - 1)/(x + 1)
z = x - 0.5;
z -= 0.5;
y = 0.5 * x + 0.5;
}
x = z / y;
z = x * x;
y = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS));
goto Ldone;
}
// Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
if (x < SQRT1_2)
{ // 2x - 1
exp -= 1;
x = ldexp(x, 1) - 1.0;
}
else
x = x - 1.0;
z = x * x;
y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ));
y = y - ldexp(z, -1);
// Multiply log of fraction by log10(e) and base 2 exponent by log10(2).
// This sequence of operations is critical and it may be horribly
// defeated by some compiler optimizers.
Ldone:
z = y * (LOG2E - 1.0);
z += x * (LOG2E - 1.0);
z += y;
z += x;
z += exp;
return z;
}
}
///
@system unittest
{
// check if values are equal to 19 decimal digits of precision
assert(equalsDigit(log2(1024.0L), 10, 19));
}
/*****************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is subnormal, it is treated as if it were normalized.
* For a positive, finite x:
*
* 1 $(LT)= $(I x) * FLT_RADIX$(SUPERSCRIPT -logb(x)) $(LT) FLT_RADIX
*
* $(TABLE_SV
* $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) )
* )
*/
real logb(real x) @trusted nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fxtract ;
fstp ST(0) ;
ret ;
}
}
else version (MSVC_InlineAsm)
{
asm pure nothrow @nogc
{
fld x ;
fxtract ;
fstp ST(0) ;
}
}
else
return core.stdc.math.logbl(x);
}
/************************************
* Calculates the remainder from the calculation x/y.
* Returns:
* The value of x - i * y, where i is the number of times that y can
* be completely subtracted from x. The result has the same sign as x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH fmod(x, y)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no))
* )
*/
real fmod(real x, real y) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
return x % y;
}
else
return core.stdc.math.fmodl(x, y);
}
/************************************
* Breaks x into an integral part and a fractional part, each of which has
* the same sign as x. The integral part is stored in i.
* Returns:
* The fractional part of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH i (on input)) $(TH modf(x, i)) $(TH i (on return)))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF)))
* )
*/
real modf(real x, ref real i) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
i = trunc(x);
return copysign(isInfinity(x) ? 0.0 : x - i, x);
}
else
return core.stdc.math.modfl(x,&i);
}
/*************************************
* Efficiently calculates x * 2$(SUPERSCRIPT n).
*
* scalbn handles underflow and overflow in
* the same fashion as the basic arithmetic operators.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH scalb(x)))
* $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) )
* )
*/
real scalbn(real x, int n) @trusted nothrow @nogc
{
version (InlineAsm_X86_Any)
{
// scalbnl is not supported on DMD-Windows, so use asm pure nothrow @nogc.
version (Win64)
{
asm pure nothrow @nogc {
naked ;
mov 16[RSP],RCX ;
fild word ptr 16[RSP] ;
fld real ptr [RDX] ;
fscale ;
fstp ST(1) ;
ret ;
}
}
else
{
asm pure nothrow @nogc {
fild n;
fld x;
fscale;
fstp ST(1);
}
}
}
else
{
return core.stdc.math.scalbnl(x, n);
}
}
///
@safe nothrow @nogc unittest
{
assert(scalbn(-real.infinity, 5) == -real.infinity);
}
/***************
* Calculates the cube root of x.
*
* $(TABLE_SV
* $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) )
* )
*/
real cbrt(real x) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
version (INLINE_YL2X)
return copysign(exp2(core.math.yl2x(fabs(x), 1.0L/3.0L)), x);
else
return core.stdc.math.cbrtl(x);
}
else
return core.stdc.math.cbrtl(x);
}
/*******************************
* Returns |x|
*
* $(TABLE_SV
* $(TR $(TH x) $(TH fabs(x)))
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) )
* )
*/
real fabs(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.fabs(x); }
//FIXME
///ditto
double fabs(double x) @safe pure nothrow @nogc { return fabs(cast(real) x); }
//FIXME
///ditto
float fabs(float x) @safe pure nothrow @nogc { return fabs(cast(real) x); }
@safe unittest
{
real function(real) pfabs = &fabs;
assert(pfabs != null);
}
/***********************************************************************
* Calculates the length of the
* hypotenuse of a right-angled triangle with sides of length x and y.
* The hypotenuse is the value of the square root of
* the sums of the squares of x and y:
*
* sqrt($(POWER x, 2) + $(POWER y, 2))
*
* Note that hypot(x, y), hypot(y, x) and
* hypot(x, -y) are equivalent.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?))
* $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no))
* )
*/
real hypot(real x, real y) @safe pure nothrow @nogc
{
// Scale x and y to avoid underflow and overflow.
// If one is huge and the other tiny, return the larger.
// If both are huge, avoid overflow by scaling by 1/sqrt(real.max/2).
// If both are tiny, avoid underflow by scaling by sqrt(real.min_normal*real.epsilon).
enum real SQRTMIN = 0.5 * sqrt(real.min_normal); // This is a power of 2.
enum real SQRTMAX = 1.0L / SQRTMIN; // 2^^((max_exp)/2) = nextUp(sqrt(real.max))
static assert(2*(SQRTMAX/2)*(SQRTMAX/2) <= real.max);
// Proves that sqrt(real.max) ~~ 0.5/sqrt(real.min_normal)
static assert(real.min_normal*real.max > 2 && real.min_normal*real.max <= 4);
real u = fabs(x);
real v = fabs(y);
if (!(u >= v)) // check for NaN as well.
{
v = u;
u = fabs(y);
if (u == real.infinity) return u; // hypot(inf, nan) == inf
if (v == real.infinity) return v; // hypot(nan, inf) == inf
}
// Now u >= v, or else one is NaN.
if (v >= SQRTMAX*0.5)
{
// hypot(huge, huge) -- avoid overflow
u *= SQRTMIN*0.5;
v *= SQRTMIN*0.5;
return sqrt(u*u + v*v) * SQRTMAX * 2.0;
}
if (u <= SQRTMIN)
{
// hypot (tiny, tiny) -- avoid underflow
// This is only necessary to avoid setting the underflow
// flag.
u *= SQRTMAX / real.epsilon;
v *= SQRTMAX / real.epsilon;
return sqrt(u*u + v*v) * SQRTMIN * real.epsilon;
}
if (u * real.epsilon > v)
{
// hypot (huge, tiny) = huge
return u;
}
// both are in the normal range
return sqrt(u*u + v*v);
}
@safe unittest
{
static real[3][] vals = // x,y,hypot
[
[ 0.0, 0.0, 0.0],
[ 0.0, -0.0, 0.0],
[ -0.0, -0.0, 0.0],
[ 3.0, 4.0, 5.0],
[ -300, -400, 500],
[0.0, 7.0, 7.0],
[9.0, 9*real.epsilon, 9.0],
[88/(64*sqrt(real.min_normal)), 105/(64*sqrt(real.min_normal)), 137/(64*sqrt(real.min_normal))],
[88/(128*sqrt(real.min_normal)), 105/(128*sqrt(real.min_normal)), 137/(128*sqrt(real.min_normal))],
[3*real.min_normal*real.epsilon, 4*real.min_normal*real.epsilon, 5*real.min_normal*real.epsilon],
[ real.min_normal, real.min_normal, sqrt(2.0L)*real.min_normal],
[ real.max/sqrt(2.0L), real.max/sqrt(2.0L), real.max],
[ real.infinity, real.nan, real.infinity],
[ real.nan, real.infinity, real.infinity],
[ real.nan, real.nan, real.nan],
[ real.nan, real.max, real.nan],
[ real.max, real.nan, real.nan],
];
for (int i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real y = vals[i][1];
real z = vals[i][2];
real h = hypot(x, y);
assert(isIdentical(z,h) || feqrel(z, h) >= real.mant_dig - 1);
}
}
/**************************************
* Returns the value of x rounded upward to the next integer
* (toward positive infinity).
*/
real ceil(real x) @trusted pure nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fstcw 8[RSP] ;
mov AL,9[RSP] ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x08 ; // round to +infinity
mov 9[RSP],AL ;
fldcw 8[RSP] ;
frndint ;
mov 9[RSP],DL ;
fldcw 8[RSP] ;
ret ;
}
}
else version (MSVC_InlineAsm)
{
short cw;
asm pure nothrow @nogc
{
fld x ;
fstcw cw ;
mov AL,byte ptr cw+1 ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x08 ; // round to +infinity
mov byte ptr cw+1,AL ;
fldcw cw ;
frndint ;
mov byte ptr cw+1,DL ;
fldcw cw ;
}
}
else
{
// Special cases.
if (isNaN(x) || isInfinity(x))
return x;
real y = floorImpl(x);
if (y < x)
y += 1.0;
return y;
}
}
///
@safe pure nothrow @nogc unittest
{
assert(ceil(+123.456L) == +124);
assert(ceil(-123.456L) == -123);
assert(ceil(-1.234L) == -1);
assert(ceil(-0.123L) == 0);
assert(ceil(0.0L) == 0);
assert(ceil(+0.123L) == 1);
assert(ceil(+1.234L) == 2);
assert(ceil(real.infinity) == real.infinity);
assert(isNaN(ceil(real.nan)));
assert(isNaN(ceil(real.init)));
}
// ditto
double ceil(double x) @trusted pure nothrow @nogc
{
// Special cases.
if (isNaN(x) || isInfinity(x))
return x;
double y = floorImpl(x);
if (y < x)
y += 1.0;
return y;
}
@safe pure nothrow @nogc unittest
{
assert(ceil(+123.456) == +124);
assert(ceil(-123.456) == -123);
assert(ceil(-1.234) == -1);
assert(ceil(-0.123) == 0);
assert(ceil(0.0) == 0);
assert(ceil(+0.123) == 1);
assert(ceil(+1.234) == 2);
assert(ceil(double.infinity) == double.infinity);
assert(isNaN(ceil(double.nan)));
assert(isNaN(ceil(double.init)));
}
// ditto
float ceil(float x) @trusted pure nothrow @nogc
{
// Special cases.
if (isNaN(x) || isInfinity(x))
return x;
float y = floorImpl(x);
if (y < x)
y += 1.0;
return y;
}
@safe pure nothrow @nogc unittest
{
assert(ceil(+123.456f) == +124);
assert(ceil(-123.456f) == -123);
assert(ceil(-1.234f) == -1);
assert(ceil(-0.123f) == 0);
assert(ceil(0.0f) == 0);
assert(ceil(+0.123f) == 1);
assert(ceil(+1.234f) == 2);
assert(ceil(float.infinity) == float.infinity);
assert(isNaN(ceil(float.nan)));
assert(isNaN(ceil(float.init)));
}
/**************************************
* Returns the value of x rounded downward to the next integer
* (toward negative infinity).
*/
real floor(real x) @trusted pure nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fstcw 8[RSP] ;
mov AL,9[RSP] ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x04 ; // round to -infinity
mov 9[RSP],AL ;
fldcw 8[RSP] ;
frndint ;
mov 9[RSP],DL ;
fldcw 8[RSP] ;
ret ;
}
}
else version (MSVC_InlineAsm)
{
short cw;
asm pure nothrow @nogc
{
fld x ;
fstcw cw ;
mov AL,byte ptr cw+1 ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x04 ; // round to -infinity
mov byte ptr cw+1,AL ;
fldcw cw ;
frndint ;
mov byte ptr cw+1,DL ;
fldcw cw ;
}
}
else
{
// Special cases.
if (isNaN(x) || isInfinity(x) || x == 0.0)
return x;
return floorImpl(x);
}
}
///
@safe pure nothrow @nogc unittest
{
assert(floor(+123.456L) == +123);
assert(floor(-123.456L) == -124);
assert(floor(-1.234L) == -2);
assert(floor(-0.123L) == -1);
assert(floor(0.0L) == 0);
assert(floor(+0.123L) == 0);
assert(floor(+1.234L) == 1);
assert(floor(real.infinity) == real.infinity);
assert(isNaN(floor(real.nan)));
assert(isNaN(floor(real.init)));
}
// ditto
double floor(double x) @trusted pure nothrow @nogc
{
// Special cases.
if (isNaN(x) || isInfinity(x) || x == 0.0)
return x;
return floorImpl(x);
}
@safe pure nothrow @nogc unittest
{
assert(floor(+123.456) == +123);
assert(floor(-123.456) == -124);
assert(floor(-1.234) == -2);
assert(floor(-0.123) == -1);
assert(floor(0.0) == 0);
assert(floor(+0.123) == 0);
assert(floor(+1.234) == 1);
assert(floor(double.infinity) == double.infinity);
assert(isNaN(floor(double.nan)));
assert(isNaN(floor(double.init)));
}
// ditto
float floor(float x) @trusted pure nothrow @nogc
{
// Special cases.
if (isNaN(x) || isInfinity(x) || x == 0.0)
return x;
return floorImpl(x);
}
@safe pure nothrow @nogc unittest
{
assert(floor(+123.456f) == +123);
assert(floor(-123.456f) == -124);
assert(floor(-1.234f) == -2);
assert(floor(-0.123f) == -1);
assert(floor(0.0f) == 0);
assert(floor(+0.123f) == 0);
assert(floor(+1.234f) == 1);
assert(floor(float.infinity) == float.infinity);
assert(isNaN(floor(float.nan)));
assert(isNaN(floor(float.init)));
}
/**
* Round `val` to a multiple of `unit`. `rfunc` specifies the rounding
* function to use; by default this is `rint`, which uses the current
* rounding mode.
*/
Unqual!F quantize(alias rfunc = rint, F)(const F val, const F unit)
if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F)
{
typeof(return) ret = val;
if (unit != 0)
{
const scaled = val / unit;
if (!scaled.isInfinity)
ret = rfunc(scaled) * unit;
}
return ret;
}
///
@safe pure nothrow @nogc unittest
{
assert(12345.6789L.quantize(0.01L) == 12345.68L);
assert(12345.6789L.quantize!floor(0.01L) == 12345.67L);
assert(12345.6789L.quantize(22.0L) == 12342.0L);
}
///
@safe pure nothrow @nogc unittest
{
assert(12345.6789L.quantize(0) == 12345.6789L);
assert(12345.6789L.quantize(real.infinity).isNaN);
assert(12345.6789L.quantize(real.nan).isNaN);
assert(real.infinity.quantize(0.01L) == real.infinity);
assert(real.infinity.quantize(real.nan).isNaN);
assert(real.nan.quantize(0.01L).isNaN);
assert(real.nan.quantize(real.infinity).isNaN);
assert(real.nan.quantize(real.nan).isNaN);
}
/**
* Round `val` to a multiple of `pow(base, exp)`. `rfunc` specifies the
* rounding function to use; by default this is `rint`, which uses the
* current rounding mode.
*/
Unqual!F quantize(real base, alias rfunc = rint, F, E)(const F val, const E exp)
if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F && isIntegral!E)
{
// TODO: Compile-time optimization for power-of-two bases?
return quantize!rfunc(val, pow(cast(F) base, exp));
}
/// ditto
Unqual!F quantize(real base, long exp = 1, alias rfunc = rint, F)(const F val)
if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F)
{
enum unit = cast(F) pow(base, exp);
return quantize!rfunc(val, unit);
}
///
@safe pure nothrow @nogc unittest
{
assert(12345.6789L.quantize!10(-2) == 12345.68L);
assert(12345.6789L.quantize!(10, -2) == 12345.68L);
assert(12345.6789L.quantize!(10, floor)(-2) == 12345.67L);
assert(12345.6789L.quantize!(10, -2, floor) == 12345.67L);
assert(12345.6789L.quantize!22(1) == 12342.0L);
assert(12345.6789L.quantize!22 == 12342.0L);
}
@safe pure nothrow @nogc unittest
{
import std.meta : AliasSeq;
foreach (F; AliasSeq!(real, double, float))
{
const maxL10 = cast(int) F.max.log10.floor;
const maxR10 = pow(cast(F) 10, maxL10);
assert((cast(F) 0.9L * maxR10).quantize!10(maxL10) == maxR10);
assert((cast(F)-0.9L * maxR10).quantize!10(maxL10) == -maxR10);
assert(F.max.quantize(F.min_normal) == F.max);
assert((-F.max).quantize(F.min_normal) == -F.max);
assert(F.min_normal.quantize(F.max) == 0);
assert((-F.min_normal).quantize(F.max) == 0);
assert(F.min_normal.quantize(F.min_normal) == F.min_normal);
assert((-F.min_normal).quantize(F.min_normal) == -F.min_normal);
}
}
/******************************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
*
* Unlike the rint functions, nearbyint does not raise the
* FE_INEXACT exception.
*/
real nearbyint(real x) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
assert(0); // not implemented in C library
}
else
return core.stdc.math.nearbyintl(x);
}
/**********************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
* If the return value is not equal to x, the FE_INEXACT
* exception is raised.
* $(B nearbyint) performs
* the same operation, but does not set the FE_INEXACT exception.
*/
real rint(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.rint(x); }
//FIXME
///ditto
double rint(double x) @safe pure nothrow @nogc { return rint(cast(real) x); }
//FIXME
///ditto
float rint(float x) @safe pure nothrow @nogc { return rint(cast(real) x); }
@safe unittest
{
real function(real) print = &rint;
assert(print != null);
}
/***************************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
*
* This is generally the fastest method to convert a floating-point number
* to an integer. Note that the results from this function
* depend on the rounding mode, if the fractional part of x is exactly 0.5.
* If using the default rounding mode (ties round to even integers)
* lrint(4.5) == 4, lrint(5.5)==6.
*/
long lrint(real x) @trusted pure nothrow @nogc
{
version (InlineAsm_X86_Any)
{
version (Win64)
{
asm pure nothrow @nogc
{
naked;
fld real ptr [RCX];
fistp qword ptr 8[RSP];
mov RAX,8[RSP];
ret;
}
}
else
{
long n;
asm pure nothrow @nogc
{
fld x;
fistp n;
}
return n;
}
}
else
{
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeDouble)
{
long result;
// Rounding limit when casting from real(double) to ulong.
enum real OF = 4.50359962737049600000E15L;
uint* vi = cast(uint*)(&x);
// Find the exponent and sign
uint msb = vi[MANTISSA_MSB];
uint lsb = vi[MANTISSA_LSB];
int exp = ((msb >> 20) & 0x7ff) - 0x3ff;
const int sign = msb >> 31;
msb &= 0xfffff;
msb |= 0x100000;
if (exp < 63)
{
if (exp >= 52)
result = (cast(long) msb << (exp - 20)) | (lsb << (exp - 52));
else
{
// Adjust x and check result.
const real j = sign ? -OF : OF;
x = (j + x) - j;
msb = vi[MANTISSA_MSB];
lsb = vi[MANTISSA_LSB];
exp = ((msb >> 20) & 0x7ff) - 0x3ff;
msb &= 0xfffff;
msb |= 0x100000;
if (exp < 0)
result = 0;
else if (exp < 20)
result = cast(long) msb >> (20 - exp);
else if (exp == 20)
result = cast(long) msb;
else
result = (cast(long) msb << (exp - 20)) | (lsb >> (52 - exp));
}
}
else
{
// It is left implementation defined when the number is too large.
return cast(long) x;
}
return sign ? -result : result;
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
long result;
// Rounding limit when casting from real(80-bit) to ulong.
enum real OF = 9.22337203685477580800E18L;
ushort* vu = cast(ushort*)(&x);
uint* vi = cast(uint*)(&x);
// Find the exponent and sign
int exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
const int sign = (vu[F.EXPPOS_SHORT] >> 15) & 1;
if (exp < 63)
{
// Adjust x and check result.
const real j = sign ? -OF : OF;
x = (j + x) - j;
exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
version (LittleEndian)
{
if (exp < 0)
result = 0;
else if (exp <= 31)
result = vi[1] >> (31 - exp);
else
result = (cast(long) vi[1] << (exp - 31)) | (vi[0] >> (63 - exp));
}
else
{
if (exp < 0)
result = 0;
else if (exp <= 31)
result = vi[1] >> (31 - exp);
else
result = (cast(long) vi[1] << (exp - 31)) | (vi[2] >> (63 - exp));
}
}
else
{
// It is left implementation defined when the number is too large
// to fit in a 64bit long.
return cast(long) x;
}
return sign ? -result : result;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
const vu = cast(ushort*)(&x);
// Find the exponent and sign
const sign = (vu[F.EXPPOS_SHORT] >> 15) & 1;
if ((vu[F.EXPPOS_SHORT] & F.EXPMASK) - (F.EXPBIAS + 1) > 63)
{
// The result is left implementation defined when the number is
// too large to fit in a 64 bit long.
return cast(long) x;
}
// Force rounding of lower bits according to current rounding
// mode by adding ±2^-112 and subtracting it again.
enum OF = 5.19229685853482762853049632922009600E33L;
const j = sign ? -OF : OF;
x = (j + x) - j;
const exp = (vu[F.EXPPOS_SHORT] & F.EXPMASK) - (F.EXPBIAS + 1);
const implicitOne = 1UL << 48;
auto vl = cast(ulong*)(&x);
vl[MANTISSA_MSB] &= implicitOne - 1;
vl[MANTISSA_MSB] |= implicitOne;
long result;
if (exp < 0)
result = 0;
else if (exp <= 48)
result = vl[MANTISSA_MSB] >> (48 - exp);
else
result = (vl[MANTISSA_MSB] << (exp - 48)) | (vl[MANTISSA_LSB] >> (112 - exp));
return sign ? -result : result;
}
else
{
static assert(false, "real type not supported by lrint()");
}
}
}
///
@safe pure nothrow @nogc unittest
{
assert(lrint(4.5) == 4);
assert(lrint(5.5) == 6);
assert(lrint(-4.5) == -4);
assert(lrint(-5.5) == -6);
assert(lrint(int.max - 0.5) == 2147483646L);
assert(lrint(int.max + 0.5) == 2147483648L);
assert(lrint(int.min - 0.5) == -2147483648L);
assert(lrint(int.min + 0.5) == -2147483648L);
}
static if (real.mant_dig >= long.sizeof * 8)
{
@safe pure nothrow @nogc unittest
{
assert(lrint(long.max - 1.5L) == long.max - 1);
assert(lrint(long.max - 0.5L) == long.max - 1);
assert(lrint(long.min + 0.5L) == long.min);
assert(lrint(long.min + 1.5L) == long.min + 2);
}
}
/*******************************************
* Return the value of x rounded to the nearest integer.
* If the fractional part of x is exactly 0.5, the return value is
* rounded away from zero.
*/
real round(real x) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
auto old = FloatingPointControl.getControlState();
FloatingPointControl.setControlState(
(old & ~FloatingPointControl.roundingMask) | FloatingPointControl.roundToZero
);
x = rint((x >= 0) ? x + 0.5 : x - 0.5);
FloatingPointControl.setControlState(old);
return x;
}
else
return core.stdc.math.roundl(x);
}
/**********************************************
* Return the value of x rounded to the nearest integer.
*
* If the fractional part of x is exactly 0.5, the return value is rounded
* away from zero.
*
* $(BLUE This function is Posix-Only.)
*/
long lround(real x) @trusted nothrow @nogc
{
version (Posix)
return core.stdc.math.llroundl(x);
else
assert(0, "lround not implemented");
}
version (Posix)
{
@safe nothrow @nogc unittest
{
assert(lround(0.49) == 0);
assert(lround(0.5) == 1);
assert(lround(1.5) == 2);
}
}
/****************************************************
* Returns the integer portion of x, dropping the fractional portion.
*
* This is also known as "chop" rounding.
*/
real trunc(real x) @trusted nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fstcw 8[RSP] ;
mov AL,9[RSP] ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x0C ; // round to 0
mov 9[RSP],AL ;
fldcw 8[RSP] ;
frndint ;
mov 9[RSP],DL ;
fldcw 8[RSP] ;
ret ;
}
}
else version (MSVC_InlineAsm)
{
short cw;
asm pure nothrow @nogc
{
fld x ;
fstcw cw ;
mov AL,byte ptr cw+1 ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x0C ; // round to 0
mov byte ptr cw+1,AL ;
fldcw cw ;
frndint ;
mov byte ptr cw+1,DL ;
fldcw cw ;
}
}
else
return core.stdc.math.truncl(x);
}
/****************************************************
* Calculate the remainder x REM y, following IEC 60559.
*
* REM is the value of x - y * n, where n is the integer nearest the exact
* value of x / y.
* If |n - x / y| == 0.5, n is even.
* If the result is zero, it has the same sign as x.
* Otherwise, the sign of the result is the sign of x / y.
* Precision mode has no effect on the remainder functions.
*
* remquo returns n in the parameter n.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD ?) $(TD yes))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD ?) $(TD yes))
* $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no))
* )
*
* $(BLUE `remquo` and `remainder` not supported on Windows.)
*/
real remainder(real x, real y) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
int n;
return remquo(x, y, n);
}
else
return core.stdc.math.remainderl(x, y);
}
real remquo(real x, real y, out int n) @trusted nothrow @nogc /// ditto
{
version (Posix)
return core.stdc.math.remquol(x, y, &n);
else
assert(0, "remquo not implemented");
}
version (IeeeFlagsSupport)
{
/** IEEE exception status flags ('sticky bits')
These flags indicate that an exceptional floating-point condition has occurred.
They indicate that a NaN or an infinity has been generated, that a result
is inexact, or that a signalling NaN has been encountered. If floating-point
exceptions are enabled (unmasked), a hardware exception will be generated
instead of setting these flags.
*/
struct IeeeFlags
{
private:
// The x87 FPU status register is 16 bits.
// The Pentium SSE2 status register is 32 bits.
// The ARM and PowerPC FPSCR is a 32-bit register.
// The SPARC FSR is a 32bit register (64 bits for SPARC 7 & 8, but high bits are uninteresting).
// The RISC-V (32 & 64 bit) fcsr is 32-bit register.
uint flags;
version (CRuntime_Microsoft)
{
// Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv).
// Applies to both x87 status word (16 bits) and SSE2 status word(32 bits).
enum : int
{
INEXACT_MASK = 0x20,
UNDERFLOW_MASK = 0x10,
OVERFLOW_MASK = 0x08,
DIVBYZERO_MASK = 0x04,
INVALID_MASK = 0x01,
EXCEPTIONS_MASK = 0b11_1111
}
// Don't bother about subnormals, they are not supported on most CPUs.
// SUBNORMAL_MASK = 0x02;
}
else
{
enum : int
{
INEXACT_MASK = core.stdc.fenv.FE_INEXACT,
UNDERFLOW_MASK = core.stdc.fenv.FE_UNDERFLOW,
OVERFLOW_MASK = core.stdc.fenv.FE_OVERFLOW,
DIVBYZERO_MASK = core.stdc.fenv.FE_DIVBYZERO,
INVALID_MASK = core.stdc.fenv.FE_INVALID,
EXCEPTIONS_MASK = core.stdc.fenv.FE_ALL_EXCEPT,
}
}
private:
static uint getIeeeFlags()
{
version (GNU)
{
version (X86_Any)
{
ushort sw;
asm pure nothrow @nogc
{
"fstsw %0" : "=a" (sw);
}
// OR the result with the SSE2 status register (MXCSR).
if (haveSSE)
{
uint mxcsr;
asm pure nothrow @nogc
{
"stmxcsr %0" : "=m" (mxcsr);
}
return (sw | mxcsr) & EXCEPTIONS_MASK;
}
else
return sw & EXCEPTIONS_MASK;
}
else version (ARM)
{
version (ARM_SoftFloat)
return 0;
else
{
uint result = void;
asm pure nothrow @nogc
{
"vmrs %0, FPSCR; and %0, %0, #0x1F;" : "=r" (result);
}
return result;
}
}
else version (RISCV_Any)
{
version (D_SoftFloat)
return 0;
else
{
uint result = void;
asm pure nothrow @nogc
{
"frflags %0" : "=r" (result);
}
return result;
}
}
else
assert(0, "Not yet supported");
}
else
version (InlineAsm_X86_Any)
{
ushort sw;
asm pure nothrow @nogc { fstsw sw; }
// OR the result with the SSE2 status register (MXCSR).
if (haveSSE)
{
uint mxcsr;
asm pure nothrow @nogc { stmxcsr mxcsr; }
return (sw | mxcsr) & EXCEPTIONS_MASK;
}
else return sw & EXCEPTIONS_MASK;
}
else version (SPARC)
{
/*
int retval;
asm pure nothrow @nogc { st %fsr, retval; }
return retval;
*/
assert(0, "Not yet supported");
}
else version (ARM)
{
assert(false, "Not yet supported.");
}
else
assert(0, "Not yet supported");
}
static void resetIeeeFlags() @nogc
{
version (GNU)
{
version (X86_Any)
{
asm nothrow @nogc
{
"fnclex";
}
// Also clear exception flags in MXCSR, SSE's control register.
if (haveSSE)
{
uint mxcsr;
asm nothrow @nogc
{
"stmxcsr %0" : "=m" (mxcsr);
}
mxcsr &= ~EXCEPTIONS_MASK;
asm nothrow @nogc
{
"ldmxcsr %0" : : "m" (mxcsr);
}
}
}
else version (ARM)
{
version (ARM_SoftFloat)
return;
else
{
uint old = FloatingPointControl.getControlState();
old &= ~0b11111; // http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408i/Chdfifdc.html
asm nothrow @nogc
{
"vmsr FPSCR, %0" : : "r" (old);
}
}
}
else version (RISCV_Any)
{
version (D_SoftFloat)
return;
else
{
uint newValues = 0x0;
asm nothrow @nogc
{
"fsflags %0" : : "r" (newValues);
}
}
}
else
assert(0, "Not yet supported");
}
else
version (InlineAsm_X86_Any)
{
asm nothrow @nogc
{
fnclex;
}
// Also clear exception flags in MXCSR, SSE's control register.
if (haveSSE)
{
uint mxcsr;
asm nothrow @nogc { stmxcsr mxcsr; }
mxcsr &= ~EXCEPTIONS_MASK;
asm nothrow @nogc { ldmxcsr mxcsr; }
}
}
else
{
/* SPARC:
int tmpval;
asm pure nothrow @nogc { st %fsr, tmpval; }
tmpval &=0xFFFF_FC00;
asm pure nothrow @nogc { ld tmpval, %fsr; }
*/
assert(0, "Not yet supported");
}
}
public:
version (IeeeFlagsSupport)
{
/**
* The result cannot be represented exactly, so rounding occurred.
* Example: `x = sin(0.1);`
*/
@property bool inexact() const { return (flags & INEXACT_MASK) != 0; }
/**
* A zero was generated by underflow
* Example: `x = real.min*real.epsilon/2;`
*/
@property bool underflow() const { return (flags & UNDERFLOW_MASK) != 0; }
/**
* An infinity was generated by overflow
* Example: `x = real.max*2;`
*/
@property bool overflow() const { return (flags & OVERFLOW_MASK) != 0; }
/**
* An infinity was generated by division by zero
* Example: `x = 3/0.0;`
*/
@property bool divByZero() const { return (flags & DIVBYZERO_MASK) != 0; }
/**
* A machine NaN was generated.
* Example: `x = real.infinity * 0.0;`
*/
@property bool invalid() const { return (flags & INVALID_MASK) != 0; }
}
}
///
version (IeeeFlagsUnittest)
@system unittest
{
static void func() {
int a = 10 * 10;
}
pragma(inline, false) static void blockopt(ref real x) {}
real a = 3.5;
// Set all the flags to zero
resetIeeeFlags();
assert(!ieeeFlags.divByZero);
blockopt(a); // avoid constant propagation by the optimizer
// Perform a division by zero.
a /= 0.0L;
assert(a == real.infinity);
assert(ieeeFlags.divByZero);
blockopt(a); // avoid constant propagation by the optimizer
// Create a NaN
a *= 0.0L;
assert(ieeeFlags.invalid);
assert(isNaN(a));
// Check that calling func() has no effect on the
// status flags.
IeeeFlags f = ieeeFlags;
func();
assert(ieeeFlags == f);
}
version (IeeeFlagsUnittest)
@system unittest
{
import std.meta : AliasSeq;
static struct Test
{
void delegate() action;
bool function() ieeeCheck;
}
foreach (T; AliasSeq!(float, double, real))
{
T x; /* Needs to be here to trick -O. It would optimize away the
calculations if x were local to the function literals. */
auto tests = [
Test(
() { x = 1; x += 0.1; },
() => ieeeFlags.inexact
),
Test(
() { x = T.min_normal; x /= T.max; },
() => ieeeFlags.underflow
),
Test(
() { x = T.max; x += T.max; },
() => ieeeFlags.overflow
),
Test(
() { x = 1; x /= 0; },
() => ieeeFlags.divByZero
),
Test(
() { x = 0; x /= 0; },
() => ieeeFlags.invalid
)
];
foreach (test; tests)
{
resetIeeeFlags();
assert(!test.ieeeCheck());
test.action();
assert(test.ieeeCheck());
}
}
}
/// Set all of the floating-point status flags to false.
void resetIeeeFlags() @nogc { IeeeFlags.resetIeeeFlags(); }
/// Returns: snapshot of the current state of the floating-point status flags
@property IeeeFlags ieeeFlags()
{
return IeeeFlags(IeeeFlags.getIeeeFlags());
}
} // IeeeFlagsSupport
version (FloatingPointControlSupport)
{
/** Control the Floating point hardware
Change the IEEE754 floating-point rounding mode and the floating-point
hardware exceptions.
By default, the rounding mode is roundToNearest and all hardware exceptions
are disabled. For most applications, debugging is easier if the $(I division
by zero), $(I overflow), and $(I invalid operation) exceptions are enabled.
These three are combined into a $(I severeExceptions) value for convenience.
Note in particular that if $(I invalidException) is enabled, a hardware trap
will be generated whenever an uninitialized floating-point variable is used.
All changes are temporary. The previous state is restored at the
end of the scope.
Example:
----
{
FloatingPointControl fpctrl;
// Enable hardware exceptions for division by zero, overflow to infinity,
// invalid operations, and uninitialized floating-point variables.
fpctrl.enableExceptions(FloatingPointControl.severeExceptions);
// This will generate a hardware exception, if x is a
// default-initialized floating point variable:
real x; // Add `= 0` or even `= real.nan` to not throw the exception.
real y = x * 3.0;
// The exception is only thrown for default-uninitialized NaN-s.
// NaN-s with other payload are valid:
real z = y * real.nan; // ok
// Changing the rounding mode:
fpctrl.rounding = FloatingPointControl.roundUp;
assert(rint(1.1) == 2);
// The set hardware exceptions will be disabled when leaving this scope.
// The original rounding mode will also be restored.
}
// Ensure previous values are returned:
assert(!FloatingPointControl.enabledExceptions);
assert(FloatingPointControl.rounding == FloatingPointControl.roundToNearest);
assert(rint(1.1) == 1);
----
*/
struct FloatingPointControl
{
alias RoundingMode = uint; ///
version (StdDdoc)
{
enum : RoundingMode
{
/** IEEE rounding modes.
* The default mode is roundToNearest.
*
* roundingMask = A mask of all rounding modes.
*/
roundToNearest,
roundDown, /// ditto
roundUp, /// ditto
roundToZero, /// ditto
roundingMask, /// ditto
}
}
else version (CRuntime_Microsoft)
{
// Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv).
enum : RoundingMode
{
roundToNearest = 0x0000,
roundDown = 0x0400,
roundUp = 0x0800,
roundToZero = 0x0C00,
roundingMask = roundToNearest | roundDown
| roundUp | roundToZero,
}
}
else
{
enum : RoundingMode
{
roundToNearest = core.stdc.fenv.FE_TONEAREST,
roundDown = core.stdc.fenv.FE_DOWNWARD,
roundUp = core.stdc.fenv.FE_UPWARD,
roundToZero = core.stdc.fenv.FE_TOWARDZERO,
roundingMask = roundToNearest | roundDown
| roundUp | roundToZero,
}
}
//// Change the floating-point hardware rounding mode
@property void rounding(RoundingMode newMode) @nogc
{
initialize();
setControlState(cast(ushort)((getControlState() & (-1 - roundingMask)) | (newMode & roundingMask)));
}
/// Returns: the currently active rounding mode
@property static RoundingMode rounding() @nogc
{
return cast(RoundingMode)(getControlState() & roundingMask);
}
alias ExceptionMask = uint; ///
version (StdDdoc)
{
enum : ExceptionMask
{
/** IEEE hardware exceptions.
* By default, all exceptions are masked (disabled).
*
* severeExceptions = The overflow, division by zero, and invalid
* exceptions.
*/
subnormalException,
inexactException, /// ditto
underflowException, /// ditto
overflowException, /// ditto
divByZeroException, /// ditto
invalidException, /// ditto
severeExceptions, /// ditto
allExceptions, /// ditto
}
}
else version (ARM_Any)
{
enum : ExceptionMask
{
subnormalException = 0x8000,
inexactException = 0x1000,
underflowException = 0x0800,
overflowException = 0x0400,
divByZeroException = 0x0200,
invalidException = 0x0100,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException | subnormalException,
}
}
else version (PPC_Any)
{
enum : ExceptionMask
{
inexactException = 0x0008,
divByZeroException = 0x0010,
underflowException = 0x0020,
overflowException = 0x0040,
invalidException = 0x0080,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (HPPA)
{
enum : ExceptionMask
{
inexactException = 0x01,
underflowException = 0x02,
overflowException = 0x04,
divByZeroException = 0x08,
invalidException = 0x10,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (MIPS_Any)
{
enum : ExceptionMask
{
inexactException = 0x0080,
divByZeroException = 0x0400,
overflowException = 0x0200,
underflowException = 0x0100,
invalidException = 0x0800,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (SPARC_Any)
{
enum : ExceptionMask
{
inexactException = 0x0800000,
divByZeroException = 0x1000000,
overflowException = 0x4000000,
underflowException = 0x2000000,
invalidException = 0x8000000,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (IBMZ_Any)
{
enum : ExceptionMask
{
inexactException = 0x08000000,
divByZeroException = 0x40000000,
overflowException = 0x20000000,
underflowException = 0x10000000,
invalidException = 0x80000000,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (RISCV_Any)
{
enum : ExceptionMask
{
inexactException = 0x01,
divByZeroException = 0x02,
underflowException = 0x04,
overflowException = 0x08,
invalidException = 0x10,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (X86_Any)
{
enum : ExceptionMask
{
inexactException = 0x20,
underflowException = 0x10,
overflowException = 0x08,
divByZeroException = 0x04,
subnormalException = 0x02,
invalidException = 0x01,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException | subnormalException,
}
}
else
static assert(false, "Not implemented for this architecture");
public:
/// Returns: true if the current FPU supports exception trapping
@property static bool hasExceptionTraps() @safe nothrow @nogc
{
version (X86_Any)
return true;
else version (PPC_Any)
return true;
else version (MIPS_Any)
return true;
else version (ARM_Any)
{
auto oldState = getControlState();
// If exceptions are not supported, we set the bit but read it back as zero
// https://sourceware.org/ml/libc-ports/2012-06/msg00091.html
setControlState(oldState | divByZeroException);
immutable result = (getControlState() & allExceptions) != 0;
setControlState(oldState);
return result;
}
else
assert(0, "Not yet supported");
}
/// Enable (unmask) specific hardware exceptions. Multiple exceptions may be ORed together.
void enableExceptions(ExceptionMask exceptions) @nogc
{
assert(hasExceptionTraps);
initialize();
version (X86_Any)
setControlState(getControlState() & ~(exceptions & allExceptions));
else
setControlState(getControlState() | (exceptions & allExceptions));
}
/// Disable (mask) specific hardware exceptions. Multiple exceptions may be ORed together.
void disableExceptions(ExceptionMask exceptions) @nogc
{
assert(hasExceptionTraps);
initialize();
version (X86_Any)
setControlState(getControlState() | (exceptions & allExceptions));
else
setControlState(getControlState() & ~(exceptions & allExceptions));
}
/// Returns: the exceptions which are currently enabled (unmasked)
@property static ExceptionMask enabledExceptions() @nogc
{
assert(hasExceptionTraps);
version (X86_Any)
return (getControlState() & allExceptions) ^ allExceptions;
else
return (getControlState() & allExceptions);
}
/// Clear all pending exceptions, then restore the original exception state and rounding mode.
~this() @nogc
{
clearExceptions();
if (initialized)
setControlState(savedState);
}
private:
ControlState savedState;
bool initialized = false;
version (ARM_Any)
{
alias ControlState = uint;
}
else version (HPPA)
{
alias ControlState = uint;
}
else version (PPC_Any)
{
alias ControlState = uint;
}
else version (MIPS_Any)
{
alias ControlState = uint;
}
else version (SPARC_Any)
{
alias ControlState = ulong;
}
else version (IBMZ_Any)
{
alias ControlState = uint;
}
else version (RISCV_Any)
{
alias ControlState = uint;
}
else version (X86_Any)
{
alias ControlState = ushort;
}
else
static assert(false, "Not implemented for this architecture");
void initialize() @nogc
{
// BUG: This works around the absence of this() constructors.
if (initialized) return;
clearExceptions();
savedState = getControlState();
initialized = true;
}
// Clear all pending exceptions
static void clearExceptions() @nogc
{
version (IeeeFlagsSupport)
resetIeeeFlags();
else
static assert(false, "Not implemented for this architecture");
}
// Read from the control register
static ControlState getControlState() @trusted nothrow @nogc
{
version (GNU)
{
version (X86_Any)
{
ControlState cont;
asm pure nothrow @nogc
{
"fstcw %0" : "=m" (cont);
}
return cont;
}
else version (AArch64)
{
ControlState cont;
asm pure nothrow @nogc
{
"mrs %0, FPCR;" : "=r" (cont);
}
return cont;
}
else version (ARM)
{
ControlState cont;
version (ARM_SoftFloat)
cont = 0;
else
{
asm pure nothrow @nogc
{
"vmrs %0, FPSCR" : "=r" (cont);
}
}
return cont;
}
else version (RISCV_Any)
{
version (D_SoftFloat)
return 0;
else
{
ControlState cont;
asm pure nothrow @nogc
{
"frcsr %0" : "=r" (cont);
}
return cont;
}
}
else
assert(0, "Not yet supported");
}
else
version (D_InlineAsm_X86)
{
short cont;
asm pure nothrow @nogc
{
xor EAX, EAX;
fstcw cont;
}
return cont;
}
else
version (D_InlineAsm_X86_64)
{
short cont;
asm pure nothrow @nogc
{
xor RAX, RAX;
fstcw cont;
}
return cont;
}
else
assert(0, "Not yet supported");
}
// Set the control register
static void setControlState(ControlState newState) @trusted nothrow @nogc
{
version (GNU)
{
version (X86_Any)
{
asm nothrow @nogc
{
"fclex; fldcw %0" : : "m" (newState);
}
// Also update MXCSR, SSE's control register.
if (haveSSE)
{
uint mxcsr;
asm nothrow @nogc
{
"stmxcsr %0" : "=m" (mxcsr);
}
/* In the FPU control register, rounding mode is in bits 10 and
11. In MXCSR it's in bits 13 and 14. */
mxcsr &= ~(roundingMask << 3); // delete old rounding mode
mxcsr |= (newState & roundingMask) << 3; // write new rounding mode
/* In the FPU control register, masks are bits 0 through 5.
In MXCSR they're 7 through 12. */
mxcsr &= ~(allExceptions << 7); // delete old masks
mxcsr |= (newState & allExceptions) << 7; // write new exception masks
asm nothrow @nogc
{
"ldmxcsr %0" : : "m" (mxcsr);
}
}
}
else version (AArch64)
{
asm nothrow @nogc
{
"msr FPCR, %0;" : : "r" (newState);
}
}
else version (ARM)
{
version (ARM_SoftFloat)
return;
else
{
asm nothrow @nogc
{
"vmsr FPSCR, %0" : : "r" (newState);
}
}
}
else version (RISCV_Any)
{
version (D_SoftFloat)
return;
else
{
asm nothrow @nogc
{
"fscsr %0" : : "r" (newState);
}
}
}
else
assert(0, "Not yet supported");
}
else
version (InlineAsm_X86_Any)
{
asm nothrow @nogc
{
fclex;
fldcw newState;
}
// Also update MXCSR, SSE's control register.
if (haveSSE)
{
uint mxcsr;
asm nothrow @nogc { stmxcsr mxcsr; }
/* In the FPU control register, rounding mode is in bits 10 and
11. In MXCSR it's in bits 13 and 14. */
mxcsr &= ~(roundingMask << 3); // delete old rounding mode
mxcsr |= (newState & roundingMask) << 3; // write new rounding mode
/* In the FPU control register, masks are bits 0 through 5.
In MXCSR they're 7 through 12. */
mxcsr &= ~(allExceptions << 7); // delete old masks
mxcsr |= (newState & allExceptions) << 7; // write new exception masks
asm nothrow @nogc { ldmxcsr mxcsr; }
}
}
else
assert(0, "Not yet supported");
}
}
@system unittest
{
void ensureDefaults()
{
assert(FloatingPointControl.rounding
== FloatingPointControl.roundToNearest);
if (FloatingPointControl.hasExceptionTraps)
assert(FloatingPointControl.enabledExceptions == 0);
}
{
FloatingPointControl ctrl;
}
ensureDefaults();
{
FloatingPointControl ctrl;
ctrl.rounding = FloatingPointControl.roundDown;
assert(FloatingPointControl.rounding == FloatingPointControl.roundDown);
}
ensureDefaults();
if (FloatingPointControl.hasExceptionTraps)
{
FloatingPointControl ctrl;
ctrl.enableExceptions(FloatingPointControl.divByZeroException
| FloatingPointControl.overflowException);
assert(ctrl.enabledExceptions ==
(FloatingPointControl.divByZeroException
| FloatingPointControl.overflowException));
ctrl.rounding = FloatingPointControl.roundUp;
assert(FloatingPointControl.rounding == FloatingPointControl.roundUp);
}
ensureDefaults();
}
version (FloatingPointControlUnittest)
@system unittest // rounding
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(float, double, real))
{
/* Be careful with changing the rounding mode, it interferes
* with common subexpressions. Changing rounding modes should
* be done with separate functions that are not inlined.
*/
{
static T addRound(T)(uint rm)
{
pragma(inline, false) static void blockopt(ref T x) {}
pragma(inline, false);
FloatingPointControl fpctrl;
fpctrl.rounding = rm;
T x = 1;
blockopt(x); // avoid constant propagation by the optimizer
x += 0.1;
return x;
}
T u = addRound!(T)(FloatingPointControl.roundUp);
T d = addRound!(T)(FloatingPointControl.roundDown);
T z = addRound!(T)(FloatingPointControl.roundToZero);
assert(u > d);
assert(z == d);
}
{
static T subRound(T)(uint rm)
{
pragma(inline, false) static void blockopt(ref T x) {}
pragma(inline, false);
FloatingPointControl fpctrl;
fpctrl.rounding = rm;
T x = -1;
blockopt(x); // avoid constant propagation by the optimizer
x -= 0.1;
return x;
}
T u = subRound!(T)(FloatingPointControl.roundUp);
T d = subRound!(T)(FloatingPointControl.roundDown);
T z = subRound!(T)(FloatingPointControl.roundToZero);
assert(u > d);
assert(z == u);
}
}
}
} // FloatingPointControlSupport
/*********************************
* Determines if $(D_PARAM x) is NaN.
* Params:
* x = a floating point number.
* Returns:
* $(D true) if $(D_PARAM x) is Nan.
*/
bool isNaN(X)(X x) @nogc @trusted pure nothrow
if (isFloatingPoint!(X))
{
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ieeeSingle)
{
const uint p = *cast(uint *)&x;
return ((p & 0x7F80_0000) == 0x7F80_0000)
&& p & 0x007F_FFFF; // not infinity
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
const ulong p = *cast(ulong *)&x;
return ((p & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000)
&& p & 0x000F_FFFF_FFFF_FFFF; // not infinity
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
const ulong ps = *cast(ulong *)&x;
return e == F.EXPMASK &&
ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
const ulong psLsb = (cast(ulong *)&x)[MANTISSA_LSB];
const ulong psMsb = (cast(ulong *)&x)[MANTISSA_MSB];
return e == F.EXPMASK &&
(psLsb | (psMsb& 0x0000_FFFF_FFFF_FFFF)) != 0;
}
else
{
return x != x;
}
}
///
@safe pure nothrow @nogc unittest
{
assert( isNaN(float.init));
assert( isNaN(-double.init));
assert( isNaN(real.nan));
assert( isNaN(-real.nan));
assert(!isNaN(cast(float) 53.6));
assert(!isNaN(cast(real)-53.6));
}
@safe pure nothrow @nogc unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(float, double, real))
{
// CTFE-able tests
assert(isNaN(T.init));
assert(isNaN(-T.init));
assert(isNaN(T.nan));
assert(isNaN(-T.nan));
assert(!isNaN(T.infinity));
assert(!isNaN(-T.infinity));
assert(!isNaN(cast(T) 53.6));
assert(!isNaN(cast(T)-53.6));
// Runtime tests
shared T f;
f = T.init;
assert(isNaN(f));
assert(isNaN(-f));
f = T.nan;
assert(isNaN(f));
assert(isNaN(-f));
f = T.infinity;
assert(!isNaN(f));
assert(!isNaN(-f));
f = cast(T) 53.6;
assert(!isNaN(f));
assert(!isNaN(-f));
}
}
/*********************************
* Determines if $(D_PARAM x) is finite.
* Params:
* x = a floating point number.
* Returns:
* $(D true) if $(D_PARAM x) is finite.
*/
bool isFinite(X)(X x) @trusted pure nothrow @nogc
{
alias F = floatTraits!(X);
ushort* pe = cast(ushort *)&x;
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK;
}
///
@safe pure nothrow @nogc unittest
{
assert( isFinite(1.23f));
assert( isFinite(float.max));
assert( isFinite(float.min_normal));
assert(!isFinite(float.nan));
assert(!isFinite(float.infinity));
}
@safe pure nothrow @nogc unittest
{
assert(isFinite(1.23));
assert(isFinite(double.max));
assert(isFinite(double.min_normal));
assert(!isFinite(double.nan));
assert(!isFinite(double.infinity));
assert(isFinite(1.23L));
assert(isFinite(real.max));
assert(isFinite(real.min_normal));
assert(!isFinite(real.nan));
assert(!isFinite(real.infinity));
}
/*********************************
* Determines if $(D_PARAM x) is normalized.
*
* A normalized number must not be zero, subnormal, infinite nor $(NAN).
*
* Params:
* x = a floating point number.
* Returns:
* $(D true) if $(D_PARAM x) is normalized.
*/
/* Need one for each format because subnormal floats might
* be converted to normal reals.
*/
bool isNormal(X)(X x) @trusted pure nothrow @nogc
{
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ibmExtended)
{
// doubledouble is normal if the least significant part is normal.
return isNormal((cast(double*)&x)[MANTISSA_LSB]);
}
else
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
return (e != F.EXPMASK && e != 0);
}
}
///
@safe pure nothrow @nogc unittest
{
float f = 3;
double d = 500;
real e = 10e+48;
assert(isNormal(f));
assert(isNormal(d));
assert(isNormal(e));
f = d = e = 0;
assert(!isNormal(f));
assert(!isNormal(d));
assert(!isNormal(e));
assert(!isNormal(real.infinity));
assert(isNormal(-real.max));
assert(!isNormal(real.min_normal/4));
}
/*********************************
* Determines if $(D_PARAM x) is subnormal.
*
* Subnormals (also known as "denormal number"), have a 0 exponent
* and a 0 most significant mantissa bit.
*
* Params:
* x = a floating point number.
* Returns:
* $(D true) if $(D_PARAM x) is a denormal number.
*/
bool isSubnormal(X)(X x) @trusted pure nothrow @nogc
{
/*
Need one for each format because subnormal floats might
be converted to normal reals.
*/
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ieeeSingle)
{
uint *p = cast(uint *)&x;
return (*p & F.EXPMASK_INT) == 0 && *p & F.MANTISSAMASK_INT;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
uint *p = cast(uint *)&x;
return (p[MANTISSA_MSB] & F.EXPMASK_INT) == 0
&& (p[MANTISSA_LSB] || p[MANTISSA_MSB] & F.MANTISSAMASK_INT);
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
long* ps = cast(long *)&x;
return (e == 0 &&
((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF)) != 0));
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
ushort* pe = cast(ushort *)&x;
long* ps = cast(long *)&x;
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0;
}
else static if (F.realFormat == RealFormat.ibmExtended)
{
return isSubnormal((cast(double*)&x)[MANTISSA_MSB]);
}
else
{
static assert(false, "Not implemented for this architecture");
}
}
///
@safe pure nothrow @nogc unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(float, double, real))
{
T f;
for (f = 1.0; !isSubnormal(f); f /= 2)
assert(f != 0);
}
}
/*********************************
* Determines if $(D_PARAM x) is $(PLUSMN)$(INFIN).
* Params:
* x = a floating point number.
* Returns:
* $(D true) if $(D_PARAM x) is $(PLUSMN)$(INFIN).
*/
bool isInfinity(X)(X x) @nogc @trusted pure nothrow
if (isFloatingPoint!(X))
{
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ieeeSingle)
{
return ((*cast(uint *)&x) & 0x7FFF_FFFF) == 0x7F80_0000;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF)
== 0x7FF0_0000_0000_0000;
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
const ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]);
const ulong ps = *cast(ulong *)&x;
// On Motorola 68K, infinity can have hidden bit = 1 or 0. On x86, it is always 1.
return e == F.EXPMASK && (ps & 0x7FFF_FFFF_FFFF_FFFF) == 0;
}
else static if (F.realFormat == RealFormat.ibmExtended)
{
return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF)
== 0x7FF8_0000_0000_0000;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
const long psLsb = (cast(long *)&x)[MANTISSA_LSB];
const long psMsb = (cast(long *)&x)[MANTISSA_MSB];
return (psLsb == 0)
&& (psMsb & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000;
}
else
{
return (x < -X.max) || (X.max < x);
}
}
///
@nogc @safe pure nothrow unittest
{
assert(!isInfinity(float.init));
assert(!isInfinity(-float.init));
assert(!isInfinity(float.nan));
assert(!isInfinity(-float.nan));
assert(isInfinity(float.infinity));
assert(isInfinity(-float.infinity));
assert(isInfinity(-1.0f / 0.0f));
}
@safe pure nothrow @nogc unittest
{
// CTFE-able tests
assert(!isInfinity(double.init));
assert(!isInfinity(-double.init));
assert(!isInfinity(double.nan));
assert(!isInfinity(-double.nan));
assert(isInfinity(double.infinity));
assert(isInfinity(-double.infinity));
assert(isInfinity(-1.0 / 0.0));
assert(!isInfinity(real.init));
assert(!isInfinity(-real.init));
assert(!isInfinity(real.nan));
assert(!isInfinity(-real.nan));
assert(isInfinity(real.infinity));
assert(isInfinity(-real.infinity));
assert(isInfinity(-1.0L / 0.0L));
// Runtime tests
shared float f;
f = float.init;
assert(!isInfinity(f));
assert(!isInfinity(-f));
f = float.nan;
assert(!isInfinity(f));
assert(!isInfinity(-f));
f = float.infinity;
assert(isInfinity(f));
assert(isInfinity(-f));
f = (-1.0f / 0.0f);
assert(isInfinity(f));
shared double d;
d = double.init;
assert(!isInfinity(d));
assert(!isInfinity(-d));
d = double.nan;
assert(!isInfinity(d));
assert(!isInfinity(-d));
d = double.infinity;
assert(isInfinity(d));
assert(isInfinity(-d));
d = (-1.0 / 0.0);
assert(isInfinity(d));
shared real e;
e = real.init;
assert(!isInfinity(e));
assert(!isInfinity(-e));
e = real.nan;
assert(!isInfinity(e));
assert(!isInfinity(-e));
e = real.infinity;
assert(isInfinity(e));
assert(isInfinity(-e));
e = (-1.0L / 0.0L);
assert(isInfinity(e));
}
/*********************************
* Is the binary representation of x identical to y?
*
* Same as ==, except that positive and negative zero are not identical,
* and two $(NAN)s are identical if they have the same 'payload'.
*/
bool isIdentical(real x, real y) @trusted pure nothrow @nogc
{
// We're doing a bitwise comparison so the endianness is irrelevant.
long* pxs = cast(long *)&x;
long* pys = cast(long *)&y;
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeDouble)
{
return pxs[0] == pys[0];
}
else static if (F.realFormat == RealFormat.ieeeQuadruple
|| F.realFormat == RealFormat.ibmExtended)
{
return pxs[0] == pys[0] && pxs[1] == pys[1];
}
else
{
ushort* pxe = cast(ushort *)&x;
ushort* pye = cast(ushort *)&y;
return pxe[4] == pye[4] && pxs[0] == pys[0];
}
}
/*********************************
* Return 1 if sign bit of e is set, 0 if not.
*/
int signbit(X)(X x) @nogc @trusted pure nothrow
{
alias F = floatTraits!(X);
return ((cast(ubyte *)&x)[F.SIGNPOS_BYTE] & 0x80) != 0;
}
///
@nogc @safe pure nothrow unittest
{
assert(!signbit(float.nan));
assert(signbit(-float.nan));
assert(!signbit(168.1234f));
assert(signbit(-168.1234f));
assert(!signbit(0.0f));
assert(signbit(-0.0f));
assert(signbit(-float.max));
assert(!signbit(float.max));
assert(!signbit(double.nan));
assert(signbit(-double.nan));
assert(!signbit(168.1234));
assert(signbit(-168.1234));
assert(!signbit(0.0));
assert(signbit(-0.0));
assert(signbit(-double.max));
assert(!signbit(double.max));
assert(!signbit(real.nan));
assert(signbit(-real.nan));
assert(!signbit(168.1234L));
assert(signbit(-168.1234L));
assert(!signbit(0.0L));
assert(signbit(-0.0L));
assert(signbit(-real.max));
assert(!signbit(real.max));
}
/*********************************
* Return a value composed of to with from's sign bit.
*/
R copysign(R, X)(R to, X from) @trusted pure nothrow @nogc
if (isFloatingPoint!(R) && isFloatingPoint!(X))
{
ubyte* pto = cast(ubyte *)&to;
const ubyte* pfrom = cast(ubyte *)&from;
alias T = floatTraits!(R);
alias F = floatTraits!(X);
pto[T.SIGNPOS_BYTE] &= 0x7F;
pto[T.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80;
return to;
}
// ditto
R copysign(R, X)(X to, R from) @trusted pure nothrow @nogc
if (isIntegral!(X) && isFloatingPoint!(R))
{
return copysign(cast(R) to, from);
}
@safe pure nothrow @nogc unittest
{
import std.meta : AliasSeq;
foreach (X; AliasSeq!(float, double, real, int, long))
{
foreach (Y; AliasSeq!(float, double, real))
(){ // avoid slow optimizations for large functions @@@BUG@@@ 2396
X x = 21;
Y y = 23.8;
Y e = void;
e = copysign(x, y);
assert(e == 21.0);
e = copysign(-x, y);
assert(e == 21.0);
e = copysign(x, -y);
assert(e == -21.0);
e = copysign(-x, -y);
assert(e == -21.0);
static if (isFloatingPoint!X)
{
e = copysign(X.nan, y);
assert(isNaN(e) && !signbit(e));
e = copysign(X.nan, -y);
assert(isNaN(e) && signbit(e));
}
}();
}
}
/*********************************
Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if
$(D x > 0), and $(NAN) if x==$(NAN).
*/
F sgn(F)(F x) @safe pure nothrow @nogc
{
// @@@TODO@@@: make this faster
return x > 0 ? 1 : x < 0 ? -1 : x;
}
///
@safe pure nothrow @nogc unittest
{
assert(sgn(168.1234) == 1);
assert(sgn(-168.1234) == -1);
assert(sgn(0.0) == 0);
assert(sgn(-0.0) == 0);
}
// Functions for NaN payloads
/*
* A 'payload' can be stored in the significand of a $(NAN). One bit is required
* to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits
* of payload for a float; 51 bits for a double; 62 bits for an 80-bit real;
* and 111 bits for a 128-bit quad.
*/
/**
* Create a quiet $(NAN), storing an integer inside the payload.
*
* For floats, the largest possible payload is 0x3F_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
*/
real NaN(ulong payload) @trusted pure nothrow @nogc
{
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeExtended)
{
// real80 (in x86 real format, the implied bit is actually
// not implied but a real bit which is stored in the real)
ulong v = 3; // implied bit = 1, quiet bit = 1
}
else
{
ulong v = 1; // no implied bit. quiet bit = 1
}
ulong a = payload;
// 22 Float bits
ulong w = a & 0x3F_FFFF;
a -= w;
v <<=22;
v |= w;
a >>=22;
// 29 Double bits
v <<=29;
w = a & 0xFFF_FFFF;
v |= w;
a -= w;
a >>=29;
static if (F.realFormat == RealFormat.ieeeDouble)
{
v |= 0x7FF0_0000_0000_0000;
real x;
* cast(ulong *)(&x) = v;
return x;
}
else
{
v <<=11;
a &= 0x7FF;
v |= a;
real x = real.nan;
// Extended real bits
static if (F.realFormat == RealFormat.ieeeQuadruple)
{
v <<= 1; // there's no implicit bit
version (LittleEndian)
{
*cast(ulong*)(6+cast(ubyte*)(&x)) = v;
}
else
{
*cast(ulong*)(2+cast(ubyte*)(&x)) = v;
}
}
else
{
*cast(ulong *)(&x) = v;
}
return x;
}
}
@system pure nothrow @nogc unittest // not @safe because taking address of local.
{
static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
{
auto x = NaN(1);
auto xl = *cast(ulong*)&x;
assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52
assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set
}
}
/**
* Extract an integral payload from a $(NAN).
*
* Returns:
* the integer payload as a ulong.
*
* For floats, the largest possible payload is 0x3F_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
*/
ulong getNaNPayload(real x) @trusted pure nothrow @nogc
{
// assert(isNaN(x));
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeDouble)
{
ulong m = *cast(ulong *)(&x);
// Make it look like an 80-bit significand.
// Skip exponent, and quiet bit
m &= 0x0007_FFFF_FFFF_FFFF;
m <<= 11;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
version (LittleEndian)
{
ulong m = *cast(ulong*)(6+cast(ubyte*)(&x));
}
else
{
ulong m = *cast(ulong*)(2+cast(ubyte*)(&x));
}
m >>= 1; // there's no implicit bit
}
else
{
ulong m = *cast(ulong *)(&x);
}
// ignore implicit bit and quiet bit
const ulong f = m & 0x3FFF_FF00_0000_0000L;
ulong w = f >>> 40;
w |= (m & 0x00FF_FFFF_F800L) << (22 - 11);
w |= (m & 0x7FF) << 51;
return w;
}
debug(UnitTest)
{
@safe pure nothrow @nogc unittest
{
real nan4 = NaN(0x789_ABCD_EF12_3456);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended
|| floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
{
assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456);
}
else
{
assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456);
}
double nan5 = nan4;
assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456);
float nan6 = nan4;
assert(getNaNPayload(nan6) == 0x12_3456);
nan4 = NaN(0xFABCD);
assert(getNaNPayload(nan4) == 0xFABCD);
nan6 = nan4;
assert(getNaNPayload(nan6) == 0xFABCD);
nan5 = NaN(0x100_0000_0000_3456);
assert(getNaNPayload(nan5) == 0x0000_0000_3456);
}
}
/**
* Calculate the next largest floating point value after x.
*
* Return the least number greater than x that is representable as a real;
* thus, it gives the next point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextUp(x) )
* $(SV -$(INFIN), -real.max )
* $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon )
* $(SV real.max, $(INFIN) )
* $(SV $(INFIN), $(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*/
real nextUp(real x) @trusted pure nothrow @nogc
{
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeDouble)
{
return nextUp(cast(double) x);
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
if (e == F.EXPMASK)
{
// NaN or Infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
auto ps = cast(ulong *)&x;
if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000)
{
// Negative number
if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000)
{
// it was negative zero, change to smallest subnormal
ps[MANTISSA_LSB] = 1;
ps[MANTISSA_MSB] = 0;
return x;
}
if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB];
--ps[MANTISSA_LSB];
}
else
{
// Positive number
++ps[MANTISSA_LSB];
if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB];
}
return x;
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
// For 80-bit reals, the "implied bit" is a nuisance...
ushort *pe = cast(ushort *)&x;
ulong *ps = cast(ulong *)&x;
if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK)
{
// First, deal with NANs and infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
if (pe[F.EXPPOS_SHORT] & 0x8000)
{
// Negative number -- need to decrease the significand
--*ps;
// Need to mask with 0x7FFF... so subnormals are treated correctly.
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF)
{
if (pe[F.EXPPOS_SHORT] == 0x8000) // it was negative zero
{
*ps = 1;
pe[F.EXPPOS_SHORT] = 0; // smallest subnormal.
return x;
}
--pe[F.EXPPOS_SHORT];
if (pe[F.EXPPOS_SHORT] == 0x8000)
return x; // it's become a subnormal, implied bit stays low.
*ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit
return x;
}
return x;
}
else
{
// Positive number -- need to increase the significand.
// Works automatically for positive zero.
++*ps;
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0)
{
// change in exponent
++pe[F.EXPPOS_SHORT];
*ps = 0x8000_0000_0000_0000; // set the high bit
}
}
return x;
}
else // static if (F.realFormat == RealFormat.ibmExtended)
{
assert(0, "nextUp not implemented");
}
}
/** ditto */
double nextUp(double x) @trusted pure nothrow @nogc
{
ulong *ps = cast(ulong *)&x;
if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000)
{
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (*ps & 0x8000_0000_0000_0000) // Negative number
{
if (*ps == 0x8000_0000_0000_0000) // it was negative zero
{
*ps = 0x0000_0000_0000_0001; // change to smallest subnormal
return x;
}
--*ps;
}
else
{ // Positive number
++*ps;
}
return x;
}
/** ditto */
float nextUp(float x) @trusted pure nothrow @nogc
{
uint *ps = cast(uint *)&x;
if ((*ps & 0x7F80_0000) == 0x7F80_0000)
{
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (*ps & 0x8000_0000) // Negative number
{
if (*ps == 0x8000_0000) // it was negative zero
{
*ps = 0x0000_0001; // change to smallest subnormal
return x;
}
--*ps;
}
else
{
// Positive number
++*ps;
}
return x;
}
/**
* Calculate the next smallest floating point value before x.
*
* Return the greatest number less than x that is representable as a real;
* thus, it gives the previous point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextDown(x) )
* $(SV $(INFIN), real.max )
* $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon )
* $(SV -real.max, -$(INFIN) )
* $(SV -$(INFIN), -$(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*/
real nextDown(real x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
/** ditto */
double nextDown(double x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
/** ditto */
float nextDown(float x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
///
@safe pure nothrow @nogc unittest
{
assert( nextDown(1.0 + real.epsilon) == 1.0);
}
@safe pure nothrow @nogc unittest
{
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
// Tests for 80-bit reals
assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC)));
// negative numbers
assert( nextUp(-real.infinity) == -real.max );
assert( nextUp(-1.0L-real.epsilon) == -1.0 );
assert( nextUp(-2.0L) == -2.0 + real.epsilon);
// subnormals and zero
assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) );
assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) );
assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) );
assert( nextUp(-0.0L) == real.min_normal*real.epsilon );
assert( nextUp(0.0L) == real.min_normal*real.epsilon );
assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal );
assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) );
// positive numbers
assert( nextUp(1.0L) == 1.0 + real.epsilon );
assert( nextUp(2.0L-real.epsilon) == 2.0 );
assert( nextUp(real.max) == real.infinity );
assert( nextUp(real.infinity)==real.infinity );
}
double n = NaN(0xABC);
assert(isIdentical(nextUp(n), n));
// negative numbers
assert( nextUp(-double.infinity) == -double.max );
assert( nextUp(-1-double.epsilon) == -1.0 );
assert( nextUp(-2.0) == -2.0 + double.epsilon);
// subnormals and zero
assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) );
assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) );
assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) );
assert( nextUp(0.0) == double.min_normal*double.epsilon );
assert( nextUp(-0.0) == double.min_normal*double.epsilon );
assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal );
assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) );
// positive numbers
assert( nextUp(1.0) == 1.0 + double.epsilon );
assert( nextUp(2.0-double.epsilon) == 2.0 );
assert( nextUp(double.max) == double.infinity );
float fn = NaN(0xABC);
assert(isIdentical(nextUp(fn), fn));
float f = -float.min_normal*(1-float.epsilon);
float f1 = -float.min_normal;
assert( nextUp(f1) == f);
f = 1.0f+float.epsilon;
f1 = 1.0f;
assert( nextUp(f1) == f );
f1 = -0.0f;
assert( nextUp(f1) == float.min_normal*float.epsilon);
assert( nextUp(float.infinity)==float.infinity );
assert(nextDown(1.0L+real.epsilon)==1.0);
assert(nextDown(1.0+double.epsilon)==1.0);
f = 1.0f+float.epsilon;
assert(nextDown(f)==1.0);
assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0);
}
/******************************************
* Calculates the next representable value after x in the direction of y.
*
* If y > x, the result will be the next largest floating-point value;
* if y < x, the result will be the next smallest value.
* If x == y, the result is y.
*
* Remarks:
* This function is not generally very useful; it's almost always better to use
* the faster functions nextUp() or nextDown() instead.
*
* The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and
* the function result is infinite. The FE_INEXACT and FE_UNDERFLOW
* exceptions will be raised if the function value is subnormal, and x is
* not equal to y.
*/
T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc
{
if (x == y) return y;
return ((y>x) ? nextUp(x) : nextDown(x));
}
///
@safe pure nothrow @nogc unittest
{
float a = 1;
assert(is(typeof(nextafter(a, a)) == float));
assert(nextafter(a, a.infinity) > a);
double b = 2;
assert(is(typeof(nextafter(b, b)) == double));
assert(nextafter(b, b.infinity) > b);
real c = 3;
assert(is(typeof(nextafter(c, c)) == real));
assert(nextafter(c, c.infinity) > c);
}
//real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); }
/*******************************************
* Returns the positive difference between x and y.
* Returns:
* $(TABLE_SV
* $(TR $(TH x, y) $(TH fdim(x, y)))
* $(TR $(TD x $(GT) y) $(TD x - y))
* $(TR $(TD x $(LT)= y) $(TD +0.0))
* )
*/
real fdim(real x, real y) @safe pure nothrow @nogc { return (x > y) ? x - y : +0.0; }
/****************************************
* Returns the larger of x and y.
*/
real fmax(real x, real y) @safe pure nothrow @nogc { return x > y ? x : y; }
/****************************************
* Returns the smaller of x and y.
*/
real fmin(real x, real y) @safe pure nothrow @nogc { return x < y ? x : y; }
/**************************************
* Returns (x * y) + z, rounding only once according to the
* current rounding mode.
*
* BUGS: Not currently implemented - rounds twice.
*/
real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; }
/*******************************************************************
* Compute the value of x $(SUPERSCRIPT n), where n is an integer
*/
Unqual!F pow(F, G)(F x, G n) @nogc @trusted pure nothrow
if (isFloatingPoint!(F) && isIntegral!(G))
{
import std.traits : Unsigned;
real p = 1.0, v = void;
Unsigned!(Unqual!G) m = n;
if (n < 0)
{
switch (n)
{
case -1:
return 1 / x;
case -2:
return 1 / (x * x);
default:
}
m = cast(typeof(m))(0 - n);
v = p / x;
}
else
{
switch (n)
{
case 0:
return 1.0;
case 1:
return x;
case 2:
return x * x;
default:
}
v = x;
}
while (1)
{
if (m & 1)
p *= v;
m >>= 1;
if (!m)
break;
v *= v;
}
return p;
}
@safe pure nothrow @nogc unittest
{
// Make sure it instantiates and works properly on immutable values and
// with various integer and float types.
immutable real x = 46;
immutable float xf = x;
immutable double xd = x;
immutable uint one = 1;
immutable ushort two = 2;
immutable ubyte three = 3;
immutable ulong eight = 8;
immutable int neg1 = -1;
immutable short neg2 = -2;
immutable byte neg3 = -3;
immutable long neg8 = -8;
assert(pow(x,0) == 1.0);
assert(pow(xd,one) == x);
assert(pow(xf,two) == x * x);
assert(pow(x,three) == x * x * x);
assert(pow(x,eight) == (x * x) * (x * x) * (x * x) * (x * x));
assert(pow(x, neg1) == 1 / x);
// Test disabled on most targets.
// See https://issues.dlang.org/show_bug.cgi?id=5628
version (X86_64) enum BUG5628 = false;
else version (ARM) enum BUG5628 = false;
else version (GNU) enum BUG5628 = false;
else enum BUG5628 = true;
static if (BUG5628)
{
assert(pow(xd, neg2) == 1 / (x * x));
assert(pow(xf, neg8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x)));
}
assert(feqrel(pow(x, neg3), 1 / (x * x * x)) >= real.mant_dig - 1);
}
@system unittest
{
assert(equalsDigit(pow(2.0L, 10.0L), 1024, 19));
}
/** Compute the value of an integer x, raised to the power of a positive
* integer n.
*
* If both x and n are 0, the result is 1.
* If n is negative, an integer divide error will occur at runtime,
* regardless of the value of x.
*/
typeof(Unqual!(F).init * Unqual!(G).init) pow(F, G)(F x, G n) @nogc @trusted pure nothrow
if (isIntegral!(F) && isIntegral!(G))
{
if (n<0) return x/0; // Only support positive powers
typeof(return) p, v = void;
Unqual!G m = n;
switch (m)
{
case 0:
p = 1;
break;
case 1:
p = x;
break;
case 2:
p = x * x;
break;
default:
v = x;
p = 1;
while (1)
{
if (m & 1)
p *= v;
m >>= 1;
if (!m)
break;
v *= v;
}
break;
}
return p;
}
///
@safe pure nothrow @nogc unittest
{
immutable int one = 1;
immutable byte two = 2;
immutable ubyte three = 3;
immutable short four = 4;
immutable long ten = 10;
assert(pow(two, three) == 8);
assert(pow(two, ten) == 1024);
assert(pow(one, ten) == 1);
assert(pow(ten, four) == 10_000);
assert(pow(four, 10) == 1_048_576);
assert(pow(three, four) == 81);
}
/**Computes integer to floating point powers.*/
real pow(I, F)(I x, F y) @nogc @trusted pure nothrow
if (isIntegral!I && isFloatingPoint!F)
{
return pow(cast(real) x, cast(Unqual!F) y);
}
/*********************************************
* Calculates x$(SUPERSCRIPT y).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH pow(x, y))
* $(TH div 0) $(TH invalid?))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN))
* $(TD no) $(TD no))
* $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0)
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN))
* $(TD no) $(TD yes) )
* $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN))
* $(TD no) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF))
* $(TD yes) $(TD no) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN))
* $(TD yes) $(TD no))
* $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0)
* $(TD no) $(TD no) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0)
* $(TD no) $(TD no) )
* )
*/
Unqual!(Largest!(F, G)) pow(F, G)(F x, G y) @nogc @trusted pure nothrow
if (isFloatingPoint!(F) && isFloatingPoint!(G))
{
alias Float = typeof(return);
static real impl(real x, real y) @nogc pure nothrow
{
// Special cases.
if (isNaN(y))
return y;
if (isNaN(x) && y != 0.0)
return x;
// Even if x is NaN.
if (y == 0.0)
return 1.0;
if (y == 1.0)
return x;
if (isInfinity(y))
{
if (fabs(x) > 1)
{
if (signbit(y))
return +0.0;
else
return F.infinity;
}
else if (fabs(x) == 1)
{
return y * 0; // generate NaN.
}
else // < 1
{
if (signbit(y))
return F.infinity;
else
return +0.0;
}
}
if (isInfinity(x))
{
if (signbit(x))
{
long i = cast(long) y;
if (y > 0.0)
{
if (i == y && i & 1)
return -F.infinity;
else
return F.infinity;
}
else if (y < 0.0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
}
else
{
if (y > 0.0)
return F.infinity;
else if (y < 0.0)
return +0.0;
}
}
if (x == 0.0)
{
if (signbit(x))
{
long i = cast(long) y;
if (y > 0.0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
else if (y < 0.0)
{
if (i == y && i & 1)
return -F.infinity;
else
return F.infinity;
}
}
else
{
if (y > 0.0)
return +0.0;
else if (y < 0.0)
return F.infinity;
}
}
if (x == 1.0)
return 1.0;
if (y >= F.max)
{
if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0))
return 0.0;
if (x > 1.0 || x < -1.0)
return F.infinity;
}
if (y <= -F.max)
{
if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0))
return F.infinity;
if (x > 1.0 || x < -1.0)
return 0.0;
}
if (x >= F.max)
{
if (y > 0.0)
return F.infinity;
else
return 0.0;
}
if (x <= -F.max)
{
long i = cast(long) y;
if (y > 0.0)
{
if (i == y && i & 1)
return -F.infinity;
else
return F.infinity;
}
else if (y < 0.0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
}
// Integer power of x.
long iy = cast(long) y;
if (iy == y && fabs(y) < 32_768.0)
return pow(x, iy);
real sign = 1.0;
if (x < 0)
{
// Result is real only if y is an integer
// Check for a non-zero fractional part
enum maxOdd = pow(2.0L, real.mant_dig) - 1.0L;
static if (maxOdd > ulong.max)
{
// Generic method, for any FP type
if (floor(y) != y)
return sqrt(x); // Complex result -- create a NaN
const hy = ldexp(y, -1);
if (floor(hy) != hy)
sign = -1.0;
}
else
{
// Much faster, if ulong has enough precision
const absY = fabs(y);
if (absY <= maxOdd)
{
const uy = cast(ulong) absY;
if (uy != absY)
return sqrt(x); // Complex result -- create a NaN
if (uy & 1)
sign = -1.0;
}
}
x = -x;
}
version (INLINE_YL2X)
{
// If x > 0, x ^^ y == 2 ^^ ( y * log2(x) )
// TODO: This is not accurate in practice. A fast and accurate
// (though complicated) method is described in:
// "An efficient rounding boundary test for pow(x, y)
// in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007).
return sign * exp2( core.math.yl2x(x, y) );
}
else
{
// If x > 0, x ^^ y == 2 ^^ ( y * log2(x) )
// TODO: This is not accurate in practice. A fast and accurate
// (though complicated) method is described in:
// "An efficient rounding boundary test for pow(x, y)
// in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007).
Float w = exp2(y * log2(x));
return sign * w;
}
}
return impl(x, y);
}
@safe pure nothrow @nogc unittest
{
// Test all the special values. These unittests can be run on Windows
// by temporarily changing the version (linux) to version (all).
immutable float zero = 0;
immutable real one = 1;
immutable double two = 2;
immutable float three = 3;
immutable float fnan = float.nan;
immutable double dnan = double.nan;
immutable real rnan = real.nan;
immutable dinf = double.infinity;
immutable rninf = -real.infinity;
assert(pow(fnan, zero) == 1);
assert(pow(dnan, zero) == 1);
assert(pow(rnan, zero) == 1);
assert(pow(two, dinf) == double.infinity);
assert(isIdentical(pow(0.2f, dinf), +0.0));
assert(pow(0.99999999L, rninf) == real.infinity);
assert(isIdentical(pow(1.000000001, rninf), +0.0));
assert(pow(dinf, 0.001) == dinf);
assert(isIdentical(pow(dinf, -0.001), +0.0));
assert(pow(rninf, 3.0L) == rninf);
assert(pow(rninf, 2.0L) == real.infinity);
assert(isIdentical(pow(rninf, -3.0), -0.0));
assert(isIdentical(pow(rninf, -2.0), +0.0));
// @@@BUG@@@ somewhere
version (OSX) {} else assert(isNaN(pow(one, dinf)));
version (OSX) {} else assert(isNaN(pow(-one, dinf)));
assert(isNaN(pow(-0.2, PI)));
// boundary cases. Note that epsilon == 2^^-n for some n,
// so 1/epsilon == 2^^n is always even.
assert(pow(-1.0L, 1/real.epsilon - 1.0L) == -1.0L);
assert(pow(-1.0L, 1/real.epsilon) == 1.0L);
assert(isNaN(pow(-1.0L, 1/real.epsilon-0.5L)));
assert(isNaN(pow(-1.0L, -1/real.epsilon+0.5L)));
assert(pow(0.0, -3.0) == double.infinity);
assert(pow(-0.0, -3.0) == -double.infinity);
assert(pow(0.0, -PI) == double.infinity);
assert(pow(-0.0, -PI) == double.infinity);
assert(isIdentical(pow(0.0, 5.0), 0.0));
assert(isIdentical(pow(-0.0, 5.0), -0.0));
assert(isIdentical(pow(0.0, 6.0), 0.0));
assert(isIdentical(pow(-0.0, 6.0), 0.0));
// Issue #14786 fixed
immutable real maxOdd = pow(2.0L, real.mant_dig) - 1.0L;
assert(pow(-1.0L, maxOdd) == -1.0L);
assert(pow(-1.0L, -maxOdd) == -1.0L);
assert(pow(-1.0L, maxOdd + 1.0L) == 1.0L);
assert(pow(-1.0L, -maxOdd + 1.0L) == 1.0L);
assert(pow(-1.0L, maxOdd - 1.0L) == 1.0L);
assert(pow(-1.0L, -maxOdd - 1.0L) == 1.0L);
// Now, actual numbers.
assert(approxEqual(pow(two, three), 8.0));
assert(approxEqual(pow(two, -2.5), 0.1767767));
// Test integer to float power.
immutable uint twoI = 2;
assert(approxEqual(pow(twoI, three), 8.0));
}
/**************************************
* To what precision is x equal to y?
*
* Returns: the number of mantissa bits which are equal in x and y.
* eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH feqrel(x, y)))
* $(TR $(TD x) $(TD x) $(TD real.mant_dig))
* $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0))
* $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0))
* $(TR $(TD $(NAN)) $(TD any) $(TD 0))
* $(TR $(TD any) $(TD $(NAN)) $(TD 0))
* )
*/
int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc
if (isFloatingPoint!(X))
{
/* Public Domain. Author: Don Clugston, 18 Aug 2005.
*/
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ibmExtended)
{
if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB])
{
return double.mant_dig
+ feqrel(cast(double*)(&x)[MANTISSA_LSB],
cast(double*)(&y)[MANTISSA_LSB]);
}
else
{
return feqrel(cast(double*)(&x)[MANTISSA_MSB],
cast(double*)(&y)[MANTISSA_MSB]);
}
}
else
{
static assert(F.realFormat == RealFormat.ieeeSingle
|| F.realFormat == RealFormat.ieeeDouble
|| F.realFormat == RealFormat.ieeeExtended
|| F.realFormat == RealFormat.ieeeQuadruple);
if (x == y)
return X.mant_dig; // ensure diff != 0, cope with INF.
Unqual!X diff = fabs(x - y);
ushort *pa = cast(ushort *)(&x);
ushort *pb = cast(ushort *)(&y);
ushort *pd = cast(ushort *)(&diff);
// The difference in abs(exponent) between x or y and abs(x-y)
// is equal to the number of significand bits of x which are
// equal to y. If negative, x and y have different exponents.
// If positive, x and y are equal to 'bitsdiff' bits.
// AND with 0x7FFF to form the absolute value.
// To avoid out-by-1 errors, we subtract 1 so it rounds down
// if the exponents were different. This means 'bitsdiff' is
// always 1 lower than we want, except that if bitsdiff == 0,
// they could have 0 or 1 bits in common.
int bitsdiff = ((( (pa[F.EXPPOS_SHORT] & F.EXPMASK)
+ (pb[F.EXPPOS_SHORT] & F.EXPMASK)
- (1 << F.EXPSHIFT)) >> 1)
- (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT;
if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0)
{ // Difference is subnormal
// For subnormals, we need to add the number of zeros that
// lie at the start of diff's significand.
// We do this by multiplying by 2^^real.mant_dig
diff *= F.RECIP_EPSILON;
return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT);
}
if (bitsdiff > 0)
return bitsdiff + 1; // add the 1 we subtracted before
// Avoid out-by-1 errors when factor is almost 2.
if (bitsdiff == 0
&& ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0)
{
return 1;
} else return 0;
}
}
@safe pure nothrow @nogc unittest
{
void testFeqrel(F)()
{
// Exact equality
assert(feqrel(F.max, F.max) == F.mant_dig);
assert(feqrel!(F)(0.0, 0.0) == F.mant_dig);
assert(feqrel(F.infinity, F.infinity) == F.mant_dig);
// a few bits away from exact equality
F w=1;
for (int i = 1; i < F.mant_dig - 1; ++i)
{
assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i);
assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i);
assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1);
w*=2;
}
assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1);
assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1);
assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2);
// Numbers that are close
assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5);
assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2);
assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2);
assert(feqrel!(F)(1.5, 1.0) == 1);
assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
// Factors of 2
assert(feqrel(F.max, F.infinity) == 0);
assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
assert(feqrel!(F)(1.0, 2.0) == 0);
assert(feqrel!(F)(4.0, 1.0) == 0);
// Extreme inequality
assert(feqrel(F.nan, F.nan) == 0);
assert(feqrel!(F)(0.0L, -F.nan) == 0);
assert(feqrel(F.nan, F.infinity) == 0);
assert(feqrel(F.infinity, -F.infinity) == 0);
assert(feqrel(F.max, -F.max) == 0);
assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3);
const F Const = 2;
immutable F Immutable = 2;
auto Compiles = feqrel(Const, Immutable);
}
assert(feqrel(7.1824L, 7.1824L) == real.mant_dig);
testFeqrel!(real)();
testFeqrel!(double)();
testFeqrel!(float)();
}
package: // Not public yet
/* Return the value that lies halfway between x and y on the IEEE number line.
*
* Formally, the result is the arithmetic mean of the binary significands of x
* and y, multiplied by the geometric mean of the binary exponents of x and y.
* x and y must have the same sign, and must not be NaN.
* Note: this function is useful for ensuring O(log n) behaviour in algorithms
* involving a 'binary chop'.
*
* Special cases:
* If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value
* is the arithmetic mean (x + y) / 2.
* If x and y are even powers of 2, the return value is the geometric mean,
* ieeeMean(x, y) = sqrt(x * y).
*
*/
T ieeeMean(T)(const T x, const T y) @trusted pure nothrow @nogc
in
{
// both x and y must have the same sign, and must not be NaN.
assert(signbit(x) == signbit(y));
assert(x == x && y == y);
}
body
{
// Runtime behaviour for contract violation:
// If signs are opposite, or one is a NaN, return 0.
if (!((x >= 0 && y >= 0) || (x <= 0 && y <= 0))) return 0.0;
// The implementation is simple: cast x and y to integers,
// average them (avoiding overflow), and cast the result back to a floating-point number.
alias F = floatTraits!(T);
T u;
static if (F.realFormat == RealFormat.ieeeExtended)
{
// There's slight additional complexity because they are actually
// 79-bit reals...
ushort *ue = cast(ushort *)&u;
ulong *ul = cast(ulong *)&u;
ushort *xe = cast(ushort *)&x;
ulong *xl = cast(ulong *)&x;
ushort *ye = cast(ushort *)&y;
ulong *yl = cast(ulong *)&y;
// Ignore the useless implicit bit. (Bonus: this prevents overflows)
ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL);
// @@@ BUG? @@@
// Cast shouldn't be here
ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK)
+ (ye[F.EXPPOS_SHORT] & F.EXPMASK));
if (m & 0x8000_0000_0000_0000L)
{
++e;
m &= 0x7FFF_FFFF_FFFF_FFFFL;
}
// Now do a multi-byte right shift
const uint c = e & 1; // carry
e >>= 1;
m >>>= 1;
if (c)
m |= 0x4000_0000_0000_0000L; // shift carry into significand
if (e)
*ul = m | 0x8000_0000_0000_0000L; // set implicit bit...
else
*ul = m; // ... unless exponent is 0 (subnormal or zero).
ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
// This would be trivial if 'ucent' were implemented...
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
// Multi-byte add, then multi-byte right shift.
import core.checkedint : addu;
bool carry;
ulong ml = addu(xl[MANTISSA_LSB], yl[MANTISSA_LSB], carry);
ulong mh = carry + (xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) +
(yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL);
ul[MANTISSA_MSB] = (mh >>> 1) | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000);
ul[MANTISSA_LSB] = (ml >>> 1) | (mh & 1) << 63;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL)
+ ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1;
m |= ((*xl) & 0x8000_0000_0000_0000L);
*ul = m;
}
else static if (F.realFormat == RealFormat.ieeeSingle)
{
uint *ul = cast(uint *)&u;
uint *xl = cast(uint *)&x;
uint *yl = cast(uint *)&y;
uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1;
m |= ((*xl) & 0x8000_0000);
*ul = m;
}
else
{
assert(0, "Not implemented");
}
return u;
}
@safe pure nothrow @nogc unittest
{
assert(ieeeMean(-0.0,-1e-20)<0);
assert(ieeeMean(0.0,1e-20)>0);
assert(ieeeMean(1.0L,4.0L)==2L);
assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013);
assert(ieeeMean(-1.0L,-4.0L)==-2L);
assert(ieeeMean(-1.0,-4.0)==-2);
assert(ieeeMean(-1.0f,-4.0f)==-2f);
assert(ieeeMean(-1.0,-2.0)==-1.5);
assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon))
==-1.5*(1+5*real.epsilon));
assert(ieeeMean(0x1p60,0x1p-10)==0x1p25);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
assert(ieeeMean(1.0L,real.infinity)==0x1p8192L);
assert(ieeeMean(0.0L,real.infinity)==1.5);
}
assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal)
== 0.5*real.min_normal*(1-2*real.epsilon));
}
public:
/***********************************
* Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2)
* + $(SUB a,3)$(POWER x,3); ...
*
* Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2)
* + x($(SUB a, 3) + ...)))
* Params:
* x = the value to evaluate.
* A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc.
*/
Unqual!(CommonType!(T1, T2)) poly(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc
if (isFloatingPoint!T1 && isFloatingPoint!T2)
in
{
assert(A.length > 0);
}
body
{
static if (is(Unqual!T2 == real))
{
return polyImpl(x, A);
}
else
{
return polyImplBase(x, A);
}
}
///
@safe nothrow @nogc unittest
{
real x = 3.1;
static real[] pp = [56.1, 32.7, 6];
assert(poly(x, pp) == (56.1L + (32.7L + 6.0L * x) * x));
}
@safe nothrow @nogc unittest
{
double x = 3.1;
static double[] pp = [56.1, 32.7, 6];
double y = x;
y *= 6.0;
y += 32.7;
y *= x;
y += 56.1;
assert(poly(x, pp) == y);
}
@safe unittest
{
static assert(poly(3.0, [1.0, 2.0, 3.0]) == 34);
}
private Unqual!(CommonType!(T1, T2)) polyImplBase(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc
if (isFloatingPoint!T1 && isFloatingPoint!T2)
{
ptrdiff_t i = A.length - 1;
typeof(return) r = A[i];
while (--i >= 0)
{
r *= x;
r += A[i];
}
return r;
}
private real polyImpl(real x, in real[] A) @trusted pure nothrow @nogc
{
version (D_InlineAsm_X86)
{
if (__ctfe)
{
return polyImplBase(x, A);
}
version (Windows)
{
// BUG: This code assumes a frame pointer in EBP.
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX][ECX*8] ;
add EDX,ECX ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -10[EDX] ;
sub EDX,10 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (linux)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (OSX)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
add EDX,EDX ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -16[EDX] ;
sub EDX,16 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (FreeBSD)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (Solaris)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (DragonFlyBSD)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else
{
static assert(0);
}
}
else
{
return polyImplBase(x, A);
}
}
/**
Computes whether two values are approximately equal, admitting a maximum
relative difference, and a maximum absolute difference.
Params:
lhs = First item to compare.
rhs = Second item to compare.
maxRelDiff = Maximum allowable difference relative to `rhs`.
maxAbsDiff = Maximum absolute difference.
Returns:
`true` if the two items are approximately equal under either criterium.
If one item is a range, and the other is a single value, then the result
is the logical and-ing of calling `approxEqual` on each element of the
ranged item against the single item. If both items are ranges, then
`approxEqual` returns `true` if and only if the ranges have the same
number of elements and if `approxEqual` evaluates to `true` for each
pair of elements.
*/
bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 1e-5)
{
import std.range.primitives : empty, front, isInputRange, popFront;
static if (isInputRange!T)
{
static if (isInputRange!U)
{
// Two ranges
for (;; lhs.popFront(), rhs.popFront())
{
if (lhs.empty) return rhs.empty;
if (rhs.empty) return lhs.empty;
if (!approxEqual(lhs.front, rhs.front, maxRelDiff, maxAbsDiff))
return false;
}
}
else static if (isIntegral!U)
{
// convert rhs to real
return approxEqual(lhs, real(rhs), maxRelDiff, maxAbsDiff);
}
else
{
// lhs is range, rhs is number
for (; !lhs.empty; lhs.popFront())
{
if (!approxEqual(lhs.front, rhs, maxRelDiff, maxAbsDiff))
return false;
}
return true;
}
}
else
{
static if (isInputRange!U)
{
// lhs is number, rhs is range
for (; !rhs.empty; rhs.popFront())
{
if (!approxEqual(lhs, rhs.front, maxRelDiff, maxAbsDiff))
return false;
}
return true;
}
else static if (isIntegral!T || isIntegral!U)
{
// convert both lhs and rhs to real
return approxEqual(real(lhs), real(rhs), maxRelDiff, maxAbsDiff);
}
else
{
// two numbers
//static assert(is(T : real) && is(U : real));
if (rhs == 0)
{
return fabs(lhs) <= maxAbsDiff;
}
static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity)))
{
if (lhs == lhs.infinity && rhs == rhs.infinity ||
lhs == -lhs.infinity && rhs == -rhs.infinity) return true;
}
return fabs((lhs - rhs) / rhs) <= maxRelDiff
|| maxAbsDiff != 0 && fabs(lhs - rhs) <= maxAbsDiff;
}
}
}
/**
Returns $(D approxEqual(lhs, rhs, 1e-2, 1e-5)).
*/
bool approxEqual(T, U)(T lhs, U rhs)
{
return approxEqual(lhs, rhs, 1e-2, 1e-5);
}
///
@safe pure nothrow unittest
{
assert(approxEqual(1.0, 1.0099));
assert(!approxEqual(1.0, 1.011));
float[] arr1 = [ 1.0, 2.0, 3.0 ];
double[] arr2 = [ 1.001, 1.999, 3 ];
assert(approxEqual(arr1, arr2));
real num = real.infinity;
assert(num == real.infinity); // Passes.
assert(approxEqual(num, real.infinity)); // Fails.
num = -real.infinity;
assert(num == -real.infinity); // Passes.
assert(approxEqual(num, -real.infinity)); // Fails.
assert(!approxEqual(3, 0));
assert(approxEqual(3, 3));
assert(approxEqual(3.0, 3));
assert(approxEqual([3, 3, 3], 3.0));
assert(approxEqual([3.0, 3.0, 3.0], 3));
int a = 10;
assert(approxEqual(10, a));
}
@safe pure nothrow @nogc unittest
{
real num = real.infinity;
assert(num == real.infinity); // Passes.
assert(approxEqual(num, real.infinity)); // Fails.
}
@safe pure nothrow @nogc unittest
{
float f = sqrt(2.0f);
assert(fabs(f * f - 2.0f) < .00001);
double d = sqrt(2.0);
assert(fabs(d * d - 2.0) < .00001);
real r = sqrt(2.0L);
assert(fabs(r * r - 2.0) < .00001);
}
@safe pure nothrow @nogc unittest
{
float f = fabs(-2.0f);
assert(f == 2);
double d = fabs(-2.0);
assert(d == 2);
real r = fabs(-2.0L);
assert(r == 2);
}
@safe pure nothrow @nogc unittest
{
float f = sin(-2.0f);
assert(fabs(f - -0.909297f) < .00001);
double d = sin(-2.0);
assert(fabs(d - -0.909297f) < .00001);
real r = sin(-2.0L);
assert(fabs(r - -0.909297f) < .00001);
}
@safe pure nothrow @nogc unittest
{
float f = cos(-2.0f);
assert(fabs(f - -0.416147f) < .00001);
double d = cos(-2.0);
assert(fabs(d - -0.416147f) < .00001);
real r = cos(-2.0L);
assert(fabs(r - -0.416147f) < .00001);
}
@safe pure nothrow @nogc unittest
{
float f = tan(-2.0f);
assert(fabs(f - 2.18504f) < .00001);
double d = tan(-2.0);
assert(fabs(d - 2.18504f) < .00001);
real r = tan(-2.0L);
assert(fabs(r - 2.18504f) < .00001);
// Verify correct behavior for large inputs
assert(!isNaN(tan(0x1p63)));
assert(!isNaN(tan(0x1p300L)));
assert(!isNaN(tan(-0x1p63)));
assert(!isNaN(tan(-0x1p300L)));
}
@safe pure nothrow unittest
{
// issue 6381: floor/ceil should be usable in pure function.
auto x = floor(1.2);
auto y = ceil(1.2);
}
@safe pure nothrow unittest
{
// relative comparison depends on rhs, make sure proper side is used when
// comparing range to single value. Based on bugzilla issue 15763
auto a = [2e-3 - 1e-5];
auto b = 2e-3 + 1e-5;
assert(a[0].approxEqual(b));
assert(!b.approxEqual(a[0]));
assert(a.approxEqual(b));
assert(!b.approxEqual(a));
}
/***********************************
* Defines a total order on all floating-point numbers.
*
* The order is defined as follows:
* $(UL
* $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered
* the same way as by built-in comparison, with the exception of
* -0.0, which is less than +0.0;)
* $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less
* than any number; if the sign bit is not set (it is 'positive'),
* $(NAN) is greater than any number;)
* $(LI $(NAN)s of the same sign are ordered by the payload ('negative'
* ones - in reverse order).)
* )
*
* Returns:
* negative value if $(D x) precedes $(D y) in the order specified above;
* 0 if $(D x) and $(D y) are identical, and positive value otherwise.
*
* See_Also:
* $(MYREF isIdentical)
* Standards: Conforms to IEEE 754-2008
*/
int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow
if (isFloatingPoint!T)
{
alias F = floatTraits!T;
static if (F.realFormat == RealFormat.ieeeSingle
|| F.realFormat == RealFormat.ieeeDouble)
{
static if (T.sizeof == 4)
alias UInt = uint;
else
alias UInt = ulong;
union Repainter
{
T number;
UInt bits;
}
enum msb = ~(UInt.max >>> 1);
import std.typecons : Tuple;
Tuple!(Repainter, Repainter) vars = void;
vars[0].number = x;
vars[1].number = y;
foreach (ref var; vars)
if (var.bits & msb)
var.bits = ~var.bits;
else
var.bits |= msb;
if (vars[0].bits < vars[1].bits)
return -1;
else if (vars[0].bits > vars[1].bits)
return 1;
else
return 0;
}
else static if (F.realFormat == RealFormat.ieeeExtended53
|| F.realFormat == RealFormat.ieeeExtended
|| F.realFormat == RealFormat.ieeeQuadruple)
{
static if (F.realFormat == RealFormat.ieeeQuadruple)
alias RemT = ulong;
else
alias RemT = ushort;
struct Bits
{
ulong bulk;
RemT rem;
}
union Repainter
{
T number;
Bits bits;
ubyte[T.sizeof] bytes;
}
import std.typecons : Tuple;
Tuple!(Repainter, Repainter) vars = void;
vars[0].number = x;
vars[1].number = y;
foreach (ref var; vars)
if (var.bytes[F.SIGNPOS_BYTE] & 0x80)
{
var.bits.bulk = ~var.bits.bulk;
var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem
}
else
{
var.bytes[F.SIGNPOS_BYTE] |= 0x80;
}
version (LittleEndian)
{
if (vars[0].bits.rem < vars[1].bits.rem)
return -1;
else if (vars[0].bits.rem > vars[1].bits.rem)
return 1;
else if (vars[0].bits.bulk < vars[1].bits.bulk)
return -1;
else if (vars[0].bits.bulk > vars[1].bits.bulk)
return 1;
else
return 0;
}
else
{
if (vars[0].bits.bulk < vars[1].bits.bulk)
return -1;
else if (vars[0].bits.bulk > vars[1].bits.bulk)
return 1;
else if (vars[0].bits.rem < vars[1].bits.rem)
return -1;
else if (vars[0].bits.rem > vars[1].bits.rem)
return 1;
else
return 0;
}
}
else
{
// IBM Extended doubledouble does not follow the general
// sign-exponent-significand layout, so has to be handled generically
const int xSign = signbit(x),
ySign = signbit(y);
if (xSign == 1 && ySign == 1)
return cmp(-y, -x);
else if (xSign == 1)
return -1;
else if (ySign == 1)
return 1;
else if (x < y)
return -1;
else if (x == y)
return 0;
else if (x > y)
return 1;
else if (isNaN(x) && !isNaN(y))
return 1;
else if (isNaN(y) && !isNaN(x))
return -1;
else if (getNaNPayload(x) < getNaNPayload(y))
return -1;
else if (getNaNPayload(x) > getNaNPayload(y))
return 1;
else
return 0;
}
}
/// Most numbers are ordered naturally.
@safe unittest
{
assert(cmp(-double.infinity, -double.max) < 0);
assert(cmp(-double.max, -100.0) < 0);
assert(cmp(-100.0, -0.5) < 0);
assert(cmp(-0.5, 0.0) < 0);
assert(cmp(0.0, 0.5) < 0);
assert(cmp(0.5, 100.0) < 0);
assert(cmp(100.0, double.max) < 0);
assert(cmp(double.max, double.infinity) < 0);
assert(cmp(1.0, 1.0) == 0);
}
/// Positive and negative zeroes are distinct.
@safe unittest
{
assert(cmp(-0.0, +0.0) < 0);
assert(cmp(+0.0, -0.0) > 0);
}
/// Depending on the sign, $(NAN)s go to either end of the spectrum.
@safe unittest
{
assert(cmp(-double.nan, -double.infinity) < 0);
assert(cmp(double.infinity, double.nan) < 0);
assert(cmp(-double.nan, double.nan) < 0);
}
/// $(NAN)s of the same sign are ordered by the payload.
@safe unittest
{
assert(cmp(NaN(10), NaN(20)) < 0);
assert(cmp(-NaN(20), -NaN(10)) < 0);
}
@safe unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(float, double, real))
{
T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity,
-T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown,
T(-1.0), T(-1.0).nextUp,
T(-0.5), -T.min_normal, (-T.min_normal).nextUp,
-2 * T.min_normal * T.epsilon,
-T.min_normal * T.epsilon,
T(-0.0), T(0.0),
T.min_normal * T.epsilon,
2 * T.min_normal * T.epsilon,
T.min_normal.nextDown, T.min_normal, T(0.5),
T(1.0).nextDown, T(1.0),
T(1.0).nextUp, T(16.0), T.max / 2, T.max,
T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)];
foreach (i, x; values)
{
foreach (y; values[i + 1 .. $])
{
assert(cmp(x, y) < 0);
assert(cmp(y, x) > 0);
}
assert(cmp(x, x) == 0);
}
}
}
private enum PowType
{
floor,
ceil
}
pragma(inline, true)
private T powIntegralImpl(PowType type, T)(T val)
{
import core.bitop : bsr;
if (val == 0 || (type == PowType.ceil && (val > T.max / 2 || val == T.min)))
return 0;
else
{
static if (isSigned!T)
return cast(Unqual!T) (val < 0 ? -(T(1) << bsr(0 - val) + type) : T(1) << bsr(val) + type);
else
return cast(Unqual!T) (T(1) << bsr(val) + type);
}
}
private T powFloatingPointImpl(PowType type, T)(T x)
{
if (!x.isFinite)
return x;
if (!x)
return x;
int exp;
auto y = frexp(x, exp);
static if (type == PowType.ceil)
y = ldexp(cast(T) 0.5, exp + 1);
else
y = ldexp(cast(T) 0.5, exp);
if (!y.isFinite)
return cast(T) 0.0;
y = copysign(y, x);
return y;
}
/**
* Gives the next power of two after $(D val). `T` can be any built-in
* numerical type.
*
* If the operation would lead to an over/underflow, this function will
* return `0`.
*
* Params:
* val = any number
*
* Returns:
* the next power of two after $(D val)
*/
T nextPow2(T)(const T val)
if (isIntegral!T)
{
return powIntegralImpl!(PowType.ceil)(val);
}
/// ditto
T nextPow2(T)(const T val)
if (isFloatingPoint!T)
{
return powFloatingPointImpl!(PowType.ceil)(val);
}
///
@safe @nogc pure nothrow unittest
{
assert(nextPow2(2) == 4);
assert(nextPow2(10) == 16);
assert(nextPow2(4000) == 4096);
assert(nextPow2(-2) == -4);
assert(nextPow2(-10) == -16);
assert(nextPow2(uint.max) == 0);
assert(nextPow2(uint.min) == 0);
assert(nextPow2(size_t.max) == 0);
assert(nextPow2(size_t.min) == 0);
assert(nextPow2(int.max) == 0);
assert(nextPow2(int.min) == 0);
assert(nextPow2(long.max) == 0);
assert(nextPow2(long.min) == 0);
}
///
@safe @nogc pure nothrow unittest
{
assert(nextPow2(2.1) == 4.0);
assert(nextPow2(-2.0) == -4.0);
assert(nextPow2(0.25) == 0.5);
assert(nextPow2(-4.0) == -8.0);
assert(nextPow2(double.max) == 0.0);
assert(nextPow2(double.infinity) == double.infinity);
}
@safe @nogc pure nothrow unittest
{
assert(nextPow2(ubyte(2)) == 4);
assert(nextPow2(ubyte(10)) == 16);
assert(nextPow2(byte(2)) == 4);
assert(nextPow2(byte(10)) == 16);
assert(nextPow2(short(2)) == 4);
assert(nextPow2(short(10)) == 16);
assert(nextPow2(short(4000)) == 4096);
assert(nextPow2(ushort(2)) == 4);
assert(nextPow2(ushort(10)) == 16);
assert(nextPow2(ushort(4000)) == 4096);
}
@safe @nogc pure nothrow unittest
{
foreach (ulong i; 1 .. 62)
{
assert(nextPow2(1UL << i) == 2UL << i);
assert(nextPow2((1UL << i) - 1) == 1UL << i);
assert(nextPow2((1UL << i) + 1) == 2UL << i);
assert(nextPow2((1UL << i) + (1UL<<(i-1))) == 2UL << i);
}
}
@safe @nogc pure nothrow unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(float, double, real))
{
enum T subNormal = T.min_normal / 2;
static if (subNormal) assert(nextPow2(subNormal) == T.min_normal);
assert(nextPow2(T(0.0)) == 0.0);
assert(nextPow2(T(2.0)) == 4.0);
assert(nextPow2(T(2.1)) == 4.0);
assert(nextPow2(T(3.1)) == 4.0);
assert(nextPow2(T(4.0)) == 8.0);
assert(nextPow2(T(0.25)) == 0.5);
assert(nextPow2(T(-2.0)) == -4.0);
assert(nextPow2(T(-2.1)) == -4.0);
assert(nextPow2(T(-3.1)) == -4.0);
assert(nextPow2(T(-4.0)) == -8.0);
assert(nextPow2(T(-0.25)) == -0.5);
assert(nextPow2(T.max) == 0);
assert(nextPow2(-T.max) == 0);
assert(nextPow2(T.infinity) == T.infinity);
assert(nextPow2(T.init).isNaN);
}
}
@safe @nogc pure nothrow unittest // Issue 15973
{
assert(nextPow2(uint.max / 2) == uint.max / 2 + 1);
assert(nextPow2(uint.max / 2 + 2) == 0);
assert(nextPow2(int.max / 2) == int.max / 2 + 1);
assert(nextPow2(int.max / 2 + 2) == 0);
assert(nextPow2(int.min + 1) == int.min);
}
/**
* Gives the last power of two before $(D val). $(T) can be any built-in
* numerical type.
*
* Params:
* val = any number
*
* Returns:
* the last power of two before $(D val)
*/
T truncPow2(T)(const T val)
if (isIntegral!T)
{
return powIntegralImpl!(PowType.floor)(val);
}
/// ditto
T truncPow2(T)(const T val)
if (isFloatingPoint!T)
{
return powFloatingPointImpl!(PowType.floor)(val);
}
///
@safe @nogc pure nothrow unittest
{
assert(truncPow2(3) == 2);
assert(truncPow2(4) == 4);
assert(truncPow2(10) == 8);
assert(truncPow2(4000) == 2048);
assert(truncPow2(-5) == -4);
assert(truncPow2(-20) == -16);
assert(truncPow2(uint.max) == int.max + 1);
assert(truncPow2(uint.min) == 0);
assert(truncPow2(ulong.max) == long.max + 1);
assert(truncPow2(ulong.min) == 0);
assert(truncPow2(int.max) == (int.max / 2) + 1);
assert(truncPow2(int.min) == int.min);
assert(truncPow2(long.max) == (long.max / 2) + 1);
assert(truncPow2(long.min) == long.min);
}
///
@safe @nogc pure nothrow unittest
{
assert(truncPow2(2.1) == 2.0);
assert(truncPow2(7.0) == 4.0);
assert(truncPow2(-1.9) == -1.0);
assert(truncPow2(0.24) == 0.125);
assert(truncPow2(-7.0) == -4.0);
assert(truncPow2(double.infinity) == double.infinity);
}
@safe @nogc pure nothrow unittest
{
assert(truncPow2(ubyte(3)) == 2);
assert(truncPow2(ubyte(4)) == 4);
assert(truncPow2(ubyte(10)) == 8);
assert(truncPow2(byte(3)) == 2);
assert(truncPow2(byte(4)) == 4);
assert(truncPow2(byte(10)) == 8);
assert(truncPow2(ushort(3)) == 2);
assert(truncPow2(ushort(4)) == 4);
assert(truncPow2(ushort(10)) == 8);
assert(truncPow2(ushort(4000)) == 2048);
assert(truncPow2(short(3)) == 2);
assert(truncPow2(short(4)) == 4);
assert(truncPow2(short(10)) == 8);
assert(truncPow2(short(4000)) == 2048);
}
@safe @nogc pure nothrow unittest
{
foreach (ulong i; 1 .. 62)
{
assert(truncPow2(2UL << i) == 2UL << i);
assert(truncPow2((2UL << i) + 1) == 2UL << i);
assert(truncPow2((2UL << i) - 1) == 1UL << i);
assert(truncPow2((2UL << i) - (2UL<<(i-1))) == 1UL << i);
}
}
@safe @nogc pure nothrow unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(float, double, real))
{
assert(truncPow2(T(0.0)) == 0.0);
assert(truncPow2(T(4.0)) == 4.0);
assert(truncPow2(T(2.1)) == 2.0);
assert(truncPow2(T(3.5)) == 2.0);
assert(truncPow2(T(7.0)) == 4.0);
assert(truncPow2(T(0.24)) == 0.125);
assert(truncPow2(T(-2.0)) == -2.0);
assert(truncPow2(T(-2.1)) == -2.0);
assert(truncPow2(T(-3.1)) == -2.0);
assert(truncPow2(T(-7.0)) == -4.0);
assert(truncPow2(T(-0.24)) == -0.125);
assert(truncPow2(T.infinity) == T.infinity);
assert(truncPow2(T.init).isNaN);
}
}
/**
Check whether a number is an integer power of two.
Note that only positive numbers can be integer powers of two. This
function always return `false` if `x` is negative or zero.
Params:
x = the number to test
Returns:
`true` if `x` is an integer power of two.
*/
bool isPowerOf2(X)(const X x) pure @safe nothrow @nogc
if (isNumeric!X)
{
static if (isFloatingPoint!X)
{
int exp;
const X sig = frexp(x, exp);
return (exp != int.min) && (sig is cast(X) 0.5L);
}
else
{
static if (isSigned!X)
{
auto y = cast(typeof(x + 0))x;
return y > 0 && !(y & (y - 1));
}
else
{
auto y = cast(typeof(x + 0u))x;
return (y & -y) > (y - 1);
}
}
}
///
@safe unittest
{
assert( isPowerOf2(1.0L));
assert( isPowerOf2(2.0L));
assert( isPowerOf2(0.5L));
assert( isPowerOf2(pow(2.0L, 96)));
assert( isPowerOf2(pow(2.0L, -77)));
assert(!isPowerOf2(-2.0L));
assert(!isPowerOf2(-0.5L));
assert(!isPowerOf2(0.0L));
assert(!isPowerOf2(4.315));
assert(!isPowerOf2(1.0L / 3.0L));
assert(!isPowerOf2(real.nan));
assert(!isPowerOf2(real.infinity));
}
///
@safe unittest
{
assert( isPowerOf2(1));
assert( isPowerOf2(2));
assert( isPowerOf2(1uL << 63));
assert(!isPowerOf2(-4));
assert(!isPowerOf2(0));
assert(!isPowerOf2(1337u));
}
@safe unittest
{
import std.meta : AliasSeq;
immutable smallP2 = pow(2.0L, -62);
immutable bigP2 = pow(2.0L, 50);
immutable smallP7 = pow(7.0L, -35);
immutable bigP7 = pow(7.0L, 30);
foreach (X; AliasSeq!(float, double, real))
{
immutable min_sub = X.min_normal * X.epsilon;
foreach (x; AliasSeq!(smallP2, min_sub, X.min_normal, .25L, 0.5L, 1.0L,
2.0L, 8.0L, pow(2.0L, X.max_exp - 1), bigP2))
{
assert( isPowerOf2(cast(X) x));
assert(!isPowerOf2(cast(X)-x));
}
foreach (x; AliasSeq!(0.0L, 3 * min_sub, smallP7, 0.1L, 1337.0L, bigP7, X.max, real.nan, real.infinity))
{
assert(!isPowerOf2(cast(X) x));
assert(!isPowerOf2(cast(X)-x));
}
}
foreach (X; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
foreach (x; [1, 2, 4, 8, (X.max >>> 1) + 1])
{
assert( isPowerOf2(cast(X) x));
static if (isSigned!X)
assert(!isPowerOf2(cast(X)-x));
}
foreach (x; [0, 3, 5, 13, 77, X.min, X.max])
assert(!isPowerOf2(cast(X) x));
}
}