Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
// Map implementation -*- C++ -*-

// Copyright (C) 2001-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file bits/stl_map.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{map}
 */

#ifndef _STL_MAP_H
#define _STL_MAP_H 1

#include <bits/functexcept.h>
#include <bits/concept_check.h>
#if __cplusplus >= 201103L
#include <initializer_list>
#include <tuple>
#endif

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER

  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    class multimap;

  /**
   *  @brief A standard container made up of (key,value) pairs, which can be
   *  retrieved based on a key, in logarithmic time.
   *
   *  @ingroup associative_containers
   *
   *  @tparam _Key  Type of key objects.
   *  @tparam  _Tp  Type of mapped objects.
   *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
   *  @tparam _Alloc  Allocator type, defaults to
   *                  allocator<pair<const _Key, _Tp>.
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and an
   *  <a href="tables.html#69">associative container</a> (using unique keys).
   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
   *  value_type is std::pair<const Key,T>.
   *
   *  Maps support bidirectional iterators.
   *
   *  The private tree data is declared exactly the same way for map and
   *  multimap; the distinction is made entirely in how the tree functions are
   *  called (*_unique versus *_equal, same as the standard).
  */
  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
    class map
    {
    public:
      typedef _Key					key_type;
      typedef _Tp					mapped_type;
      typedef std::pair<const _Key, _Tp>		value_type;
      typedef _Compare					key_compare;
      typedef _Alloc					allocator_type;

    private:
#ifdef _GLIBCXX_CONCEPT_CHECKS
      // concept requirements
      typedef typename _Alloc::value_type		_Alloc_value_type;
# if __cplusplus < 201103L
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
# endif
      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
				_BinaryFunctionConcept)
      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
#endif

#if __cplusplus >= 201103L
#if __cplusplus > 201703L || defined __STRICT_ANSI__
      static_assert(is_same<typename _Alloc::value_type, value_type>::value,
	  "std::map must have the same value_type as its allocator");
#endif
#endif

    public:
      class value_compare
      : public std::binary_function<value_type, value_type, bool>
      {
	friend class map<_Key, _Tp, _Compare, _Alloc>;
      protected:
	_Compare comp;

	value_compare(_Compare __c)
	: comp(__c) { }

      public:
	bool operator()(const value_type& __x, const value_type& __y) const
	{ return comp(__x.first, __y.first); }
      };

    private:
      /// This turns a red-black tree into a [multi]map.
      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
	rebind<value_type>::other _Pair_alloc_type;

      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
		       key_compare, _Pair_alloc_type> _Rep_type;

      /// The actual tree structure.
      _Rep_type _M_t;

      typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;

    public:
      // many of these are specified differently in ISO, but the following are
      // "functionally equivalent"
      typedef typename _Alloc_traits::pointer		 pointer;
      typedef typename _Alloc_traits::const_pointer	 const_pointer;
      typedef typename _Alloc_traits::reference		 reference;
      typedef typename _Alloc_traits::const_reference	 const_reference;
      typedef typename _Rep_type::iterator		 iterator;
      typedef typename _Rep_type::const_iterator	 const_iterator;
      typedef typename _Rep_type::size_type		 size_type;
      typedef typename _Rep_type::difference_type	 difference_type;
      typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;

#if __cplusplus > 201402L
      using node_type = typename _Rep_type::node_type;
      using insert_return_type = typename _Rep_type::insert_return_type;
#endif

      // [23.3.1.1] construct/copy/destroy
      // (get_allocator() is also listed in this section)

      /**
       *  @brief  Default constructor creates no elements.
       */
#if __cplusplus < 201103L
      map() : _M_t() { }
#else
      map() = default;
#endif

      /**
       *  @brief  Creates a %map with no elements.
       *  @param  __comp  A comparison object.
       *  @param  __a  An allocator object.
       */
      explicit
      map(const _Compare& __comp,
	  const allocator_type& __a = allocator_type())
      : _M_t(__comp, _Pair_alloc_type(__a)) { }

      /**
       *  @brief  %Map copy constructor.
       *
       *  Whether the allocator is copied depends on the allocator traits.
       */
#if __cplusplus < 201103L
      map(const map& __x)
      : _M_t(__x._M_t) { }
#else
      map(const map&) = default;

      /**
       *  @brief  %Map move constructor.
       *
       *  The newly-created %map contains the exact contents of the moved
       *  instance. The moved instance is a valid, but unspecified, %map.
       */
      map(map&&) = default;

      /**
       *  @brief  Builds a %map from an initializer_list.
       *  @param  __l  An initializer_list.
       *  @param  __comp  A comparison object.
       *  @param  __a  An allocator object.
       *
       *  Create a %map consisting of copies of the elements in the
       *  initializer_list @a __l.
       *  This is linear in N if the range is already sorted, and NlogN
       *  otherwise (where N is @a __l.size()).
       */
      map(initializer_list<value_type> __l,
	  const _Compare& __comp = _Compare(),
	  const allocator_type& __a = allocator_type())
      : _M_t(__comp, _Pair_alloc_type(__a))
      { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }

      /// Allocator-extended default constructor.
      explicit
      map(const allocator_type& __a)
      : _M_t(_Pair_alloc_type(__a)) { }

      /// Allocator-extended copy constructor.
      map(const map& __m, const allocator_type& __a)
      : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }

      /// Allocator-extended move constructor.
      map(map&& __m, const allocator_type& __a)
      noexcept(is_nothrow_copy_constructible<_Compare>::value
	       && _Alloc_traits::_S_always_equal())
      : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }

      /// Allocator-extended initialier-list constructor.
      map(initializer_list<value_type> __l, const allocator_type& __a)
      : _M_t(_Pair_alloc_type(__a))
      { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }

      /// Allocator-extended range constructor.
      template<typename _InputIterator>
	map(_InputIterator __first, _InputIterator __last,
	    const allocator_type& __a)
	: _M_t(_Pair_alloc_type(__a))
	{ _M_t._M_insert_range_unique(__first, __last); }
#endif

      /**
       *  @brief  Builds a %map from a range.
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *
       *  Create a %map consisting of copies of the elements from
       *  [__first,__last).  This is linear in N if the range is
       *  already sorted, and NlogN otherwise (where N is
       *  distance(__first,__last)).
       */
      template<typename _InputIterator>
	map(_InputIterator __first, _InputIterator __last)
	: _M_t()
	{ _M_t._M_insert_range_unique(__first, __last); }

      /**
       *  @brief  Builds a %map from a range.
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *  @param  __comp  A comparison functor.
       *  @param  __a  An allocator object.
       *
       *  Create a %map consisting of copies of the elements from
       *  [__first,__last).  This is linear in N if the range is
       *  already sorted, and NlogN otherwise (where N is
       *  distance(__first,__last)).
       */
      template<typename _InputIterator>
	map(_InputIterator __first, _InputIterator __last,
	    const _Compare& __comp,
	    const allocator_type& __a = allocator_type())
	: _M_t(__comp, _Pair_alloc_type(__a))
	{ _M_t._M_insert_range_unique(__first, __last); }

#if __cplusplus >= 201103L
      /**
       *  The dtor only erases the elements, and note that if the elements
       *  themselves are pointers, the pointed-to memory is not touched in any
       *  way.  Managing the pointer is the user's responsibility.
       */
      ~map() = default;
#endif

      /**
       *  @brief  %Map assignment operator.
       *
       *  Whether the allocator is copied depends on the allocator traits.
       */
#if __cplusplus < 201103L
      map&
      operator=(const map& __x)
      {
	_M_t = __x._M_t;
	return *this;
      }
#else
      map&
      operator=(const map&) = default;

      /// Move assignment operator.
      map&
      operator=(map&&) = default;

      /**
       *  @brief  %Map list assignment operator.
       *  @param  __l  An initializer_list.
       *
       *  This function fills a %map with copies of the elements in the
       *  initializer list @a __l.
       *
       *  Note that the assignment completely changes the %map and
       *  that the resulting %map's size is the same as the number
       *  of elements assigned.
       */
      map&
      operator=(initializer_list<value_type> __l)
      {
	_M_t._M_assign_unique(__l.begin(), __l.end());
	return *this;
      }
#endif

      /// Get a copy of the memory allocation object.
      allocator_type
      get_allocator() const _GLIBCXX_NOEXCEPT
      { return allocator_type(_M_t.get_allocator()); }

      // iterators
      /**
       *  Returns a read/write iterator that points to the first pair in the
       *  %map.
       *  Iteration is done in ascending order according to the keys.
       */
      iterator
      begin() _GLIBCXX_NOEXCEPT
      { return _M_t.begin(); }

      /**
       *  Returns a read-only (constant) iterator that points to the first pair
       *  in the %map.  Iteration is done in ascending order according to the
       *  keys.
       */
      const_iterator
      begin() const _GLIBCXX_NOEXCEPT
      { return _M_t.begin(); }

      /**
       *  Returns a read/write iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order
       *  according to the keys.
       */
      iterator
      end() _GLIBCXX_NOEXCEPT
      { return _M_t.end(); }

      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order according to
       *  the keys.
       */
      const_iterator
      end() const _GLIBCXX_NOEXCEPT
      { return _M_t.end(); }

      /**
       *  Returns a read/write reverse iterator that points to the last pair in
       *  the %map.  Iteration is done in descending order according to the
       *  keys.
       */
      reverse_iterator
      rbegin() _GLIBCXX_NOEXCEPT
      { return _M_t.rbegin(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to the
       *  last pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      const_reverse_iterator
      rbegin() const _GLIBCXX_NOEXCEPT
      { return _M_t.rbegin(); }

      /**
       *  Returns a read/write reverse iterator that points to one before the
       *  first pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      reverse_iterator
      rend() _GLIBCXX_NOEXCEPT
      { return _M_t.rend(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to one
       *  before the first pair in the %map.  Iteration is done in descending
       *  order according to the keys.
       */
      const_reverse_iterator
      rend() const _GLIBCXX_NOEXCEPT
      { return _M_t.rend(); }

#if __cplusplus >= 201103L
      /**
       *  Returns a read-only (constant) iterator that points to the first pair
       *  in the %map.  Iteration is done in ascending order according to the
       *  keys.
       */
      const_iterator
      cbegin() const noexcept
      { return _M_t.begin(); }

      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order according to
       *  the keys.
       */
      const_iterator
      cend() const noexcept
      { return _M_t.end(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to the
       *  last pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      const_reverse_iterator
      crbegin() const noexcept
      { return _M_t.rbegin(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to one
       *  before the first pair in the %map.  Iteration is done in descending
       *  order according to the keys.
       */
      const_reverse_iterator
      crend() const noexcept
      { return _M_t.rend(); }
#endif

      // capacity
      /** Returns true if the %map is empty.  (Thus begin() would equal
       *  end().)
      */
      _GLIBCXX_NODISCARD bool
      empty() const _GLIBCXX_NOEXCEPT
      { return _M_t.empty(); }

      /** Returns the size of the %map.  */
      size_type
      size() const _GLIBCXX_NOEXCEPT
      { return _M_t.size(); }

      /** Returns the maximum size of the %map.  */
      size_type
      max_size() const _GLIBCXX_NOEXCEPT
      { return _M_t.max_size(); }

      // [23.3.1.2] element access
      /**
       *  @brief  Subscript ( @c [] ) access to %map data.
       *  @param  __k  The key for which data should be retrieved.
       *  @return  A reference to the data of the (key,data) %pair.
       *
       *  Allows for easy lookup with the subscript ( @c [] )
       *  operator.  Returns data associated with the key specified in
       *  subscript.  If the key does not exist, a pair with that key
       *  is created using default values, which is then returned.
       *
       *  Lookup requires logarithmic time.
       */
      mapped_type&
      operator[](const key_type& __k)
      {
	// concept requirements
	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)

	iterator __i = lower_bound(__k);
	// __i->first is greater than or equivalent to __k.
	if (__i == end() || key_comp()(__k, (*__i).first))
#if __cplusplus >= 201103L
	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
					    std::tuple<const key_type&>(__k),
					    std::tuple<>());
#else
	  __i = insert(__i, value_type(__k, mapped_type()));
#endif
	return (*__i).second;
      }

#if __cplusplus >= 201103L
      mapped_type&
      operator[](key_type&& __k)
      {
	// concept requirements
	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)

	iterator __i = lower_bound(__k);
	// __i->first is greater than or equivalent to __k.
	if (__i == end() || key_comp()(__k, (*__i).first))
	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
					std::forward_as_tuple(std::move(__k)),
					std::tuple<>());
	return (*__i).second;
      }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 464. Suggestion for new member functions in standard containers.
      /**
       *  @brief  Access to %map data.
       *  @param  __k  The key for which data should be retrieved.
       *  @return  A reference to the data whose key is equivalent to @a __k, if
       *           such a data is present in the %map.
       *  @throw  std::out_of_range  If no such data is present.
       */
      mapped_type&
      at(const key_type& __k)
      {
	iterator __i = lower_bound(__k);
	if (__i == end() || key_comp()(__k, (*__i).first))
	  __throw_out_of_range(__N("map::at"));
	return (*__i).second;
      }

      const mapped_type&
      at(const key_type& __k) const
      {
	const_iterator __i = lower_bound(__k);
	if (__i == end() || key_comp()(__k, (*__i).first))
	  __throw_out_of_range(__N("map::at"));
	return (*__i).second;
      }

      // modifiers
#if __cplusplus >= 201103L
      /**
       *  @brief Attempts to build and insert a std::pair into the %map.
       *
       *  @param __args  Arguments used to generate a new pair instance (see
       *	        std::piecewise_contruct for passing arguments to each
       *	        part of the pair constructor).
       *
       *  @return  A pair, of which the first element is an iterator that points
       *           to the possibly inserted pair, and the second is a bool that
       *           is true if the pair was actually inserted.
       *
       *  This function attempts to build and insert a (key, value) %pair into
       *  the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *
       *  Insertion requires logarithmic time.
       */
      template<typename... _Args>
	std::pair<iterator, bool>
	emplace(_Args&&... __args)
	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }

      /**
       *  @brief Attempts to build and insert a std::pair into the %map.
       *
       *  @param  __pos  An iterator that serves as a hint as to where the pair
       *                should be inserted.
       *  @param  __args  Arguments used to generate a new pair instance (see
       *	         std::piecewise_contruct for passing arguments to each
       *	         part of the pair constructor).
       *  @return An iterator that points to the element with key of the
       *          std::pair built from @a __args (may or may not be that
       *          std::pair).
       *
       *  This function is not concerned about whether the insertion took place,
       *  and thus does not return a boolean like the single-argument emplace()
       *  does.
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process. A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires logarithmic time (if the hint is not taken).
       */
      template<typename... _Args>
	iterator
	emplace_hint(const_iterator __pos, _Args&&... __args)
	{
	  return _M_t._M_emplace_hint_unique(__pos,
					     std::forward<_Args>(__args)...);
	}
#endif

#if __cplusplus > 201402L
      /// Extract a node.
      node_type
      extract(const_iterator __pos)
      {
	__glibcxx_assert(__pos != end());
	return _M_t.extract(__pos);
      }

      /// Extract a node.
      node_type
      extract(const key_type& __x)
      { return _M_t.extract(__x); }

      /// Re-insert an extracted node.
      insert_return_type
      insert(node_type&& __nh)
      { return _M_t._M_reinsert_node_unique(std::move(__nh)); }

      /// Re-insert an extracted node.
      iterator
      insert(const_iterator __hint, node_type&& __nh)
      { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }

      template<typename, typename>
	friend class std::_Rb_tree_merge_helper;

      template<typename _Cmp2>
	void
	merge(map<_Key, _Tp, _Cmp2, _Alloc>& __source)
	{
	  using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
	}

      template<typename _Cmp2>
	void
	merge(map<_Key, _Tp, _Cmp2, _Alloc>&& __source)
	{ merge(__source); }

      template<typename _Cmp2>
	void
	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>& __source)
	{
	  using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
	}

      template<typename _Cmp2>
	void
	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>&& __source)
	{ merge(__source); }
#endif // C++17

#if __cplusplus > 201402L
#define __cpp_lib_map_try_emplace 201411
      /**
       *  @brief Attempts to build and insert a std::pair into the %map.
       *
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __args  Arguments used to generate the .second for a new pair
       *                instance.
       *
       *  @return  A pair, of which the first element is an iterator that points
       *           to the possibly inserted pair, and the second is a bool that
       *           is true if the pair was actually inserted.
       *
       *  This function attempts to build and insert a (key, value) %pair into
       *  the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *  If a %pair is not inserted, this function has no effect.
       *
       *  Insertion requires logarithmic time.
       */
      template <typename... _Args>
	pair<iterator, bool>
	try_emplace(const key_type& __k, _Args&&... __args)
	{
	  iterator __i = lower_bound(__k);
	  if (__i == end() || key_comp()(__k, (*__i).first))
	    {
	      __i = emplace_hint(__i, std::piecewise_construct,
				 std::forward_as_tuple(__k),
				 std::forward_as_tuple(
				   std::forward<_Args>(__args)...));
	      return {__i, true};
	    }
	  return {__i, false};
	}

      // move-capable overload
      template <typename... _Args>
	pair<iterator, bool>
	try_emplace(key_type&& __k, _Args&&... __args)
	{
	  iterator __i = lower_bound(__k);
	  if (__i == end() || key_comp()(__k, (*__i).first))
	    {
	      __i = emplace_hint(__i, std::piecewise_construct,
				 std::forward_as_tuple(std::move(__k)),
				 std::forward_as_tuple(
				   std::forward<_Args>(__args)...));
	      return {__i, true};
	    }
	  return {__i, false};
	}

      /**
       *  @brief Attempts to build and insert a std::pair into the %map.
       *
       *  @param  __hint  An iterator that serves as a hint as to where the
       *                  pair should be inserted.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __args  Arguments used to generate the .second for a new pair
       *                instance.
       *  @return An iterator that points to the element with key of the
       *          std::pair built from @a __args (may or may not be that
       *          std::pair).
       *
       *  This function is not concerned about whether the insertion took place,
       *  and thus does not return a boolean like the single-argument
       *  try_emplace() does. However, if insertion did not take place,
       *  this function has no effect.
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process. A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires logarithmic time (if the hint is not taken).
       */
      template <typename... _Args>
	iterator
	try_emplace(const_iterator __hint, const key_type& __k,
		    _Args&&... __args)
	{
	  iterator __i;
	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
	  if (__true_hint.second)
	    __i = emplace_hint(iterator(__true_hint.second),
			       std::piecewise_construct,
			       std::forward_as_tuple(__k),
			       std::forward_as_tuple(
				 std::forward<_Args>(__args)...));
	  else
	    __i = iterator(__true_hint.first);
	  return __i;
	}

      // move-capable overload
      template <typename... _Args>
	iterator
	try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
	{
	  iterator __i;
	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
	  if (__true_hint.second)
	    __i = emplace_hint(iterator(__true_hint.second),
			       std::piecewise_construct,
			       std::forward_as_tuple(std::move(__k)),
			       std::forward_as_tuple(
				 std::forward<_Args>(__args)...));
	  else
	    __i = iterator(__true_hint.first);
	  return __i;
	}
#endif

      /**
       *  @brief Attempts to insert a std::pair into the %map.
       *  @param __x Pair to be inserted (see std::make_pair for easy
       *	     creation of pairs).
       *
       *  @return  A pair, of which the first element is an iterator that
       *           points to the possibly inserted pair, and the second is
       *           a bool that is true if the pair was actually inserted.
       *
       *  This function attempts to insert a (key, value) %pair into the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *
       *  Insertion requires logarithmic time.
       *  @{
       */
      std::pair<iterator, bool>
      insert(const value_type& __x)
      { return _M_t._M_insert_unique(__x); }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2354. Unnecessary copying when inserting into maps with braced-init
      std::pair<iterator, bool>
      insert(value_type&& __x)
      { return _M_t._M_insert_unique(std::move(__x)); }

      template<typename _Pair>
	__enable_if_t<is_constructible<value_type, _Pair>::value,
		      pair<iterator, bool>>
	insert(_Pair&& __x)
	{ return _M_t._M_emplace_unique(std::forward<_Pair>(__x)); }
#endif
      /// @}

#if __cplusplus >= 201103L
      /**
       *  @brief Attempts to insert a list of std::pairs into the %map.
       *  @param  __list  A std::initializer_list<value_type> of pairs to be
       *                  inserted.
       *
       *  Complexity similar to that of the range constructor.
       */
      void
      insert(std::initializer_list<value_type> __list)
      { insert(__list.begin(), __list.end()); }
#endif

      /**
       *  @brief Attempts to insert a std::pair into the %map.
       *  @param  __position  An iterator that serves as a hint as to where the
       *                    pair should be inserted.
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
       *               of pairs).
       *  @return An iterator that points to the element with key of
       *           @a __x (may or may not be the %pair passed in).
       *

       *  This function is not concerned about whether the insertion
       *  took place, and thus does not return a boolean like the
       *  single-argument insert() does.  Note that the first
       *  parameter is only a hint and can potentially improve the
       *  performance of the insertion process.  A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires logarithmic time (if the hint is not taken).
       *  @{
       */
      iterator
#if __cplusplus >= 201103L
      insert(const_iterator __position, const value_type& __x)
#else
      insert(iterator __position, const value_type& __x)
#endif
      { return _M_t._M_insert_unique_(__position, __x); }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2354. Unnecessary copying when inserting into maps with braced-init
      iterator
      insert(const_iterator __position, value_type&& __x)
      { return _M_t._M_insert_unique_(__position, std::move(__x)); }

      template<typename _Pair>
	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
	insert(const_iterator __position, _Pair&& __x)
	{
	  return _M_t._M_emplace_hint_unique(__position,
					     std::forward<_Pair>(__x));
	}
#endif
      /// @}

      /**
       *  @brief Template function that attempts to insert a range of elements.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                   inserted.
       *  @param  __last  Iterator pointing to the end of the range.
       *
       *  Complexity similar to that of the range constructor.
       */
      template<typename _InputIterator>
	void
	insert(_InputIterator __first, _InputIterator __last)
	{ _M_t._M_insert_range_unique(__first, __last); }

#if __cplusplus > 201402L
      /**
       *  @brief Attempts to insert or assign a std::pair into the %map.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __obj  Argument used to generate the .second for a pair
       *                instance.
       *
       *  @return  A pair, of which the first element is an iterator that
       *           points to the possibly inserted pair, and the second is
       *           a bool that is true if the pair was actually inserted.
       *
       *  This function attempts to insert a (key, value) %pair into the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *  If the %pair was already in the %map, the .second of the %pair
       *  is assigned from __obj.
       *
       *  Insertion requires logarithmic time.
       */
      template <typename _Obj>
	pair<iterator, bool>
	insert_or_assign(const key_type& __k, _Obj&& __obj)
	{
	  iterator __i = lower_bound(__k);
	  if (__i == end() || key_comp()(__k, (*__i).first))
	    {
	      __i = emplace_hint(__i, std::piecewise_construct,
				 std::forward_as_tuple(__k),
				 std::forward_as_tuple(
				   std::forward<_Obj>(__obj)));
	      return {__i, true};
	    }
	  (*__i).second = std::forward<_Obj>(__obj);
	  return {__i, false};
	}

      // move-capable overload
      template <typename _Obj>
	pair<iterator, bool>
	insert_or_assign(key_type&& __k, _Obj&& __obj)
	{
	  iterator __i = lower_bound(__k);
	  if (__i == end() || key_comp()(__k, (*__i).first))
	    {
	      __i = emplace_hint(__i, std::piecewise_construct,
				 std::forward_as_tuple(std::move(__k)),
				 std::forward_as_tuple(
				   std::forward<_Obj>(__obj)));
	      return {__i, true};
	    }
	  (*__i).second = std::forward<_Obj>(__obj);
	  return {__i, false};
	}

      /**
       *  @brief Attempts to insert or assign a std::pair into the %map.
       *  @param  __hint  An iterator that serves as a hint as to where the
       *                  pair should be inserted.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __obj  Argument used to generate the .second for a pair
       *                instance.
       *
       *  @return An iterator that points to the element with key of
       *           @a __x (may or may not be the %pair passed in).
       *
       *  This function attempts to insert a (key, value) %pair into the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *  If the %pair was already in the %map, the .second of the %pair
       *  is assigned from __obj.
       *
       *  Insertion requires logarithmic time.
       */
      template <typename _Obj>
	iterator
	insert_or_assign(const_iterator __hint,
			 const key_type& __k, _Obj&& __obj)
	{
	  iterator __i;
	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
	  if (__true_hint.second)
	    {
	      return emplace_hint(iterator(__true_hint.second),
				  std::piecewise_construct,
				  std::forward_as_tuple(__k),
				  std::forward_as_tuple(
				    std::forward<_Obj>(__obj)));
	    }
	  __i = iterator(__true_hint.first);
	  (*__i).second = std::forward<_Obj>(__obj);
	  return __i;
	}

      // move-capable overload
      template <typename _Obj>
	iterator
	insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
	{
	  iterator __i;
	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
	  if (__true_hint.second)
	    {
	      return emplace_hint(iterator(__true_hint.second),
				  std::piecewise_construct,
				  std::forward_as_tuple(std::move(__k)),
				  std::forward_as_tuple(
				    std::forward<_Obj>(__obj)));
	    }
	  __i = iterator(__true_hint.first);
	  (*__i).second = std::forward<_Obj>(__obj);
	  return __i;
	}
#endif

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 130. Associative erase should return an iterator.
      /**
       *  @brief Erases an element from a %map.
       *  @param  __position  An iterator pointing to the element to be erased.
       *  @return An iterator pointing to the element immediately following
       *          @a position prior to the element being erased. If no such
       *          element exists, end() is returned.
       *
       *  This function erases an element, pointed to by the given
       *  iterator, from a %map.  Note that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibility.
       *
       *  @{
       */
      iterator
      erase(const_iterator __position)
      { return _M_t.erase(__position); }

      // LWG 2059
      _GLIBCXX_ABI_TAG_CXX11
      iterator
      erase(iterator __position)
      { return _M_t.erase(__position); }
      /// @}
#else
      /**
       *  @brief Erases an element from a %map.
       *  @param  __position  An iterator pointing to the element to be erased.
       *
       *  This function erases an element, pointed to by the given
       *  iterator, from a %map.  Note that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibility.
       */
      void
      erase(iterator __position)
      { _M_t.erase(__position); }
#endif

      /**
       *  @brief Erases elements according to the provided key.
       *  @param  __x  Key of element to be erased.
       *  @return  The number of elements erased.
       *
       *  This function erases all the elements located by the given key from
       *  a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      size_type
      erase(const key_type& __x)
      { return _M_t.erase(__x); }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 130. Associative erase should return an iterator.
      /**
       *  @brief Erases a [first,last) range of elements from a %map.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                   erased.
       *  @param __last Iterator pointing to the end of the range to
       *                be erased.
       *  @return The iterator @a __last.
       *
       *  This function erases a sequence of elements from a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      iterator
      erase(const_iterator __first, const_iterator __last)
      { return _M_t.erase(__first, __last); }
#else
      /**
       *  @brief Erases a [__first,__last) range of elements from a %map.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                   erased.
       *  @param __last Iterator pointing to the end of the range to
       *                be erased.
       *
       *  This function erases a sequence of elements from a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      void
      erase(iterator __first, iterator __last)
      { _M_t.erase(__first, __last); }
#endif

      /**
       *  @brief  Swaps data with another %map.
       *  @param  __x  A %map of the same element and allocator types.
       *
       *  This exchanges the elements between two maps in constant
       *  time.  (It is only swapping a pointer, an integer, and an
       *  instance of the @c Compare type (which itself is often
       *  stateless and empty), so it should be quite fast.)  Note
       *  that the global std::swap() function is specialized such
       *  that std::swap(m1,m2) will feed to this function.
       *
       *  Whether the allocators are swapped depends on the allocator traits.
       */
      void
      swap(map& __x)
      _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
      { _M_t.swap(__x._M_t); }

      /**
       *  Erases all elements in a %map.  Note that this function only
       *  erases the elements, and that if the elements themselves are
       *  pointers, the pointed-to memory is not touched in any way.
       *  Managing the pointer is the user's responsibility.
       */
      void
      clear() _GLIBCXX_NOEXCEPT
      { _M_t.clear(); }

      // observers
      /**
       *  Returns the key comparison object out of which the %map was
       *  constructed.
       */
      key_compare
      key_comp() const
      { return _M_t.key_comp(); }

      /**
       *  Returns a value comparison object, built from the key comparison
       *  object out of which the %map was constructed.
       */
      value_compare
      value_comp() const
      { return value_compare(_M_t.key_comp()); }

      // [23.3.1.3] map operations

      ///@{
      /**
       *  @brief Tries to locate an element in a %map.
       *  @param  __x  Key of (key, value) %pair to be located.
       *  @return  Iterator pointing to sought-after element, or end() if not
       *           found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns an iterator
       *  pointing to the sought after %pair.  If unsuccessful it returns the
       *  past-the-end ( @c end() ) iterator.
       */

      iterator
      find(const key_type& __x)
      { return _M_t.find(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
	{ return _M_t._M_find_tr(__x); }
#endif
      ///@}

      ///@{
      /**
       *  @brief Tries to locate an element in a %map.
       *  @param  __x  Key of (key, value) %pair to be located.
       *  @return  Read-only (constant) iterator pointing to sought-after
       *           element, or end() if not found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns a constant
       *  iterator pointing to the sought after %pair. If unsuccessful it
       *  returns the past-the-end ( @c end() ) iterator.
       */

      const_iterator
      find(const key_type& __x) const
      { return _M_t.find(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
	{ return _M_t._M_find_tr(__x); }
#endif
      ///@}

      ///@{
      /**
       *  @brief  Finds the number of elements with given key.
       *  @param  __x  Key of (key, value) pairs to be located.
       *  @return  Number of elements with specified key.
       *
       *  This function only makes sense for multimaps; for map the result will
       *  either be 0 (not present) or 1 (present).
       */
      size_type
      count(const key_type& __x) const
      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
	{ return _M_t._M_count_tr(__x); }
#endif
      ///@}

#if __cplusplus > 201703L
      ///@{
      /**
       *  @brief  Finds whether an element with the given key exists.
       *  @param  __x  Key of (key, value) pairs to be located.
       *  @return  True if there is an element with the specified key.
       */
      bool
      contains(const key_type& __x) const
      { return _M_t.find(__x) != _M_t.end(); }

      template<typename _Kt>
	auto
	contains(const _Kt& __x) const
	-> decltype(_M_t._M_find_tr(__x), void(), true)
	{ return _M_t._M_find_tr(__x) != _M_t.end(); }
      ///@}
#endif

      ///@{
      /**
       *  @brief Finds the beginning of a subsequence matching given key.
       *  @param  __x  Key of (key, value) pair to be located.
       *  @return  Iterator pointing to first element equal to or greater
       *           than key, or end().
       *
       *  This function returns the first element of a subsequence of elements
       *  that matches the given key.  If unsuccessful it returns an iterator
       *  pointing to the first element that has a greater value than given key
       *  or end() if no such element exists.
       */
      iterator
      lower_bound(const key_type& __x)
      { return _M_t.lower_bound(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	lower_bound(const _Kt& __x)
	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
#endif
      ///@}

      ///@{
      /**
       *  @brief Finds the beginning of a subsequence matching given key.
       *  @param  __x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to first element
       *           equal to or greater than key, or end().
       *
       *  This function returns the first element of a subsequence of elements
       *  that matches the given key.  If unsuccessful it returns an iterator
       *  pointing to the first element that has a greater value than given key
       *  or end() if no such element exists.
       */
      const_iterator
      lower_bound(const key_type& __x) const
      { return _M_t.lower_bound(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	lower_bound(const _Kt& __x) const
	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
#endif
      ///@}

      ///@{
      /**
       *  @brief Finds the end of a subsequence matching given key.
       *  @param  __x  Key of (key, value) pair to be located.
       *  @return Iterator pointing to the first element
       *          greater than key, or end().
       */
      iterator
      upper_bound(const key_type& __x)
      { return _M_t.upper_bound(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	upper_bound(const _Kt& __x)
	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
#endif
      ///@}

      ///@{
      /**
       *  @brief Finds the end of a subsequence matching given key.
       *  @param  __x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to first iterator
       *           greater than key, or end().
       */
      const_iterator
      upper_bound(const key_type& __x) const
      { return _M_t.upper_bound(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	upper_bound(const _Kt& __x) const
	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
#endif
      ///@}

      ///@{
      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  __x  Key of (key, value) pairs to be located.
       *  @return  Pair of iterators that possibly points to the subsequence
       *           matching given key.
       *
       *  This function is equivalent to
       *  @code
       *    std::make_pair(c.lower_bound(val),
       *                   c.upper_bound(val))
       *  @endcode
       *  (but is faster than making the calls separately).
       *
       *  This function probably only makes sense for multimaps.
       */
      std::pair<iterator, iterator>
      equal_range(const key_type& __x)
      { return _M_t.equal_range(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	equal_range(const _Kt& __x)
	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
#endif
      ///@}

      ///@{
      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  __x  Key of (key, value) pairs to be located.
       *  @return  Pair of read-only (constant) iterators that possibly points
       *           to the subsequence matching given key.
       *
       *  This function is equivalent to
       *  @code
       *    std::make_pair(c.lower_bound(val),
       *                   c.upper_bound(val))
       *  @endcode
       *  (but is faster than making the calls separately).
       *
       *  This function probably only makes sense for multimaps.
       */
      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __x) const
      { return _M_t.equal_range(__x); }

#if __cplusplus > 201103L
      template<typename _Kt>
	auto
	equal_range(const _Kt& __x) const
	-> decltype(pair<const_iterator, const_iterator>(
	      _M_t._M_equal_range_tr(__x)))
	{
	  return pair<const_iterator, const_iterator>(
	      _M_t._M_equal_range_tr(__x));
	}
#endif
      ///@}

      template<typename _K1, typename _T1, typename _C1, typename _A1>
	friend bool
	operator==(const map<_K1, _T1, _C1, _A1>&,
		   const map<_K1, _T1, _C1, _A1>&);

#if __cpp_lib_three_way_comparison
      template<typename _K1, typename _T1, typename _C1, typename _A1>
	friend __detail::__synth3way_t<pair<const _K1, _T1>>
	operator<=>(const map<_K1, _T1, _C1, _A1>&,
		    const map<_K1, _T1, _C1, _A1>&);
#else
      template<typename _K1, typename _T1, typename _C1, typename _A1>
	friend bool
	operator<(const map<_K1, _T1, _C1, _A1>&,
		  const map<_K1, _T1, _C1, _A1>&);
#endif
    };


#if __cpp_deduction_guides >= 201606

  template<typename _InputIterator,
	   typename _Compare = less<__iter_key_t<_InputIterator>>,
	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireNotAllocator<_Compare>,
	   typename = _RequireAllocator<_Allocator>>
    map(_InputIterator, _InputIterator,
	_Compare = _Compare(), _Allocator = _Allocator())
    -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
	   _Compare, _Allocator>;

  template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
	   typename = _RequireNotAllocator<_Compare>,
	   typename = _RequireAllocator<_Allocator>>
    map(initializer_list<pair<_Key, _Tp>>,
	_Compare = _Compare(), _Allocator = _Allocator())
    -> map<_Key, _Tp, _Compare, _Allocator>;

  template <typename _InputIterator, typename _Allocator,
	    typename = _RequireInputIter<_InputIterator>,
	    typename = _RequireAllocator<_Allocator>>
    map(_InputIterator, _InputIterator, _Allocator)
    -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
	   less<__iter_key_t<_InputIterator>>, _Allocator>;

  template<typename _Key, typename _Tp, typename _Allocator,
	   typename = _RequireAllocator<_Allocator>>
    map(initializer_list<pair<_Key, _Tp>>, _Allocator)
    -> map<_Key, _Tp, less<_Key>, _Allocator>;

#endif // deduction guides

  /**
   *  @brief  Map equality comparison.
   *  @param  __x  A %map.
   *  @param  __y  A %map of the same type as @a x.
   *  @return  True iff the size and elements of the maps are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  maps.  Maps are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t == __y._M_t; }

#if __cpp_lib_three_way_comparison
  /**
   *  @brief  Map ordering relation.
   *  @param  __x  A `map`.
   *  @param  __y  A `map` of the same type as `x`.
   *  @return  A value indicating whether `__x` is less than, equal to,
   *           greater than, or incomparable with `__y`.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  maps.  The elements must be comparable with @c <.
   *
   *  See `std::lexicographical_compare_three_way()` for how the determination
   *  is made. This operator is used to synthesize relational operators like
   *  `<` and `>=` etc.
  */
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline __detail::__synth3way_t<pair<const _Key, _Tp>>
    operator<=>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
		const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t <=> __y._M_t; }
#else
  /**
   *  @brief  Map ordering relation.
   *  @param  __x  A %map.
   *  @param  __y  A %map of the same type as @a x.
   *  @return  True iff @a x is lexicographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  maps.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t < __y._M_t; }

  /// Based on operator==
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __y < __x; }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__x < __y); }
#endif // three-way comparison

  /// See std::map::swap().
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline void
    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
	 map<_Key, _Tp, _Compare, _Alloc>& __y)
    _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
    { __x.swap(__y); }

_GLIBCXX_END_NAMESPACE_CONTAINER

#if __cplusplus > 201402L
  // Allow std::map access to internals of compatible maps.
  template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
	   typename _Cmp2>
    struct
    _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>,
			  _Cmp2>
    {
    private:
      friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>;

      static auto&
      _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
      { return __map._M_t; }

      static auto&
      _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
      { return __map._M_t; }
    };
#endif // C++17

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif /* _STL_MAP_H */