// <experimental/executor> -*- C++ -*-
// Copyright (C) 2015-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file experimental/executor
* This is a TS C++ Library header.
* @ingroup networking-ts
*/
#ifndef _GLIBCXX_EXPERIMENTAL_EXECUTOR
#define _GLIBCXX_EXPERIMENTAL_EXECUTOR 1
#pragma GCC system_header
#if __cplusplus >= 201402L
#include <algorithm>
#include <condition_variable>
#include <functional>
#include <future>
#include <list>
#include <queue>
#include <thread>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <experimental/netfwd>
#include <bits/unique_ptr.h>
#include <experimental/bits/net.h>
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
namespace experimental
{
namespace net
{
inline namespace v1
{
/** @addtogroup networking-ts
* @{
*/
/// Customization point for asynchronous operations.
template<typename _CompletionToken, typename _Signature, typename = void>
class async_result;
/// Convenience utility to help implement asynchronous operations.
template<typename _CompletionToken, typename _Signature>
class async_completion;
template<typename _Tp, typename _ProtoAlloc, typename = __void_t<>>
struct __associated_allocator_impl
{
using type = _ProtoAlloc;
static type
_S_get(const _Tp&, const _ProtoAlloc& __a) noexcept { return __a; }
};
template<typename _Tp, typename _ProtoAlloc>
struct __associated_allocator_impl<_Tp, _ProtoAlloc,
__void_t<typename _Tp::allocator_type>>
{
using type = typename _Tp::allocator_type;
static type
_S_get(const _Tp& __t, const _ProtoAlloc&) noexcept
{ return __t.get_allocator(); }
};
/// Helper to associate an allocator with a type.
template<typename _Tp, typename _ProtoAllocator = allocator<void>>
struct associated_allocator
: __associated_allocator_impl<_Tp, _ProtoAllocator>
{
static auto
get(const _Tp& __t,
const _ProtoAllocator& __a = _ProtoAllocator()) noexcept
{
using _Impl = __associated_allocator_impl<_Tp, _ProtoAllocator>;
return _Impl::_S_get(__t, __a);
}
};
/// Alias template for associated_allocator.
template<typename _Tp, typename _ProtoAllocator = allocator<void>>
using associated_allocator_t
= typename associated_allocator<_Tp, _ProtoAllocator>::type;
// get_associated_allocator:
template<typename _Tp>
inline associated_allocator_t<_Tp>
get_associated_allocator(const _Tp& __t) noexcept
{ return associated_allocator<_Tp>::get(__t); }
template<typename _Tp, typename _ProtoAllocator>
inline associated_allocator_t<_Tp, _ProtoAllocator>
get_associated_allocator(const _Tp& __t,
const _ProtoAllocator& __a) noexcept
{ return associated_allocator<_Tp, _ProtoAllocator>::get(__t, __a); }
enum class fork_event { prepare, parent, child };
/// An extensible, type-safe, polymorphic set of services.
class execution_context;
class service_already_exists : public logic_error
{
public:
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 3414. service_already_exists has no usable constructors
service_already_exists() : logic_error("service already exists") { }
};
template<typename _Tp> struct is_executor;
struct executor_arg_t { };
constexpr executor_arg_t executor_arg = executor_arg_t();
/// Trait for determining whether to construct an object with an executor.
template<typename _Tp, typename _Executor> struct uses_executor;
template<typename _Tp, typename _Executor, typename = __void_t<>>
struct __associated_executor_impl
{
using type = _Executor;
static type
_S_get(const _Tp&, const _Executor& __e) noexcept { return __e; }
};
template<typename _Tp, typename _Executor>
struct __associated_executor_impl<_Tp, _Executor,
__void_t<typename _Tp::executor_type>>
{
using type = typename _Tp::executor_type;
static type
_S_get(const _Tp& __t, const _Executor&) noexcept
{ return __t.get_executor(); }
};
/// Helper to associate an executor with a type.
template<typename _Tp, typename _Executor = system_executor>
struct associated_executor
: __associated_executor_impl<_Tp, _Executor>
{
static auto
get(const _Tp& __t, const _Executor& __e = _Executor()) noexcept
{ return __associated_executor_impl<_Tp, _Executor>::_S_get(__t, __e); }
};
template<typename _Tp, typename _Executor = system_executor>
using associated_executor_t
= typename associated_executor<_Tp, _Executor>::type;
template<typename _ExecutionContext>
using __is_exec_context
= is_convertible<_ExecutionContext&, execution_context&>;
template<typename _Tp>
using __executor_t = typename _Tp::executor_type;
// get_associated_executor:
template<typename _Tp>
inline associated_executor_t<_Tp>
get_associated_executor(const _Tp& __t) noexcept
{ return associated_executor<_Tp>::get(__t); }
template<typename _Tp, typename _Executor>
inline
enable_if_t<is_executor<_Executor>::value,
associated_executor_t<_Tp, _Executor>>
get_associated_executor(const _Tp& __t, const _Executor& __ex)
{ return associated_executor<_Tp, _Executor>::get(__t, __ex); }
template<typename _Tp, typename _ExecutionContext>
inline
enable_if_t<__is_exec_context<_ExecutionContext>::value,
associated_executor_t<_Tp, __executor_t<_ExecutionContext>>>
get_associated_executor(const _Tp& __t, _ExecutionContext& __ctx) noexcept
{ return net::get_associated_executor(__t, __ctx.get_executor()); }
/// Helper to bind an executor to an object or function.
template<typename _Tp, typename _Executor>
class executor_binder;
template<typename _Tp, typename _Executor, typename _Signature>
class async_result<executor_binder<_Tp, _Executor>, _Signature>;
template<typename _Tp, typename _Executor, typename _ProtoAllocator>
struct associated_allocator<executor_binder<_Tp, _Executor>,
_ProtoAllocator>;
template<typename _Tp, typename _Executor, typename _Executor1>
struct associated_executor<executor_binder<_Tp, _Executor>, _Executor1>;
// bind_executor:
template<typename _Executor, typename _Tp>
inline
enable_if_t<is_executor<_Executor>::value,
executor_binder<decay_t<_Tp>, _Executor>>
bind_executor(const _Executor& __ex, _Tp&& __t)
{ return { std::forward<_Tp>(__t), __ex }; }
template<typename _ExecutionContext, typename _Tp>
inline
enable_if_t<__is_exec_context<_ExecutionContext>::value,
executor_binder<decay_t<_Tp>, __executor_t<_ExecutionContext>>>
bind_executor(_ExecutionContext& __ctx, _Tp&& __t)
{ return { __ctx.get_executor(), forward<_Tp>(__t) }; }
/// A scope-guard type to record when work is started and finished.
template<typename _Executor>
class executor_work_guard;
// make_work_guard:
template<typename _Executor>
inline
enable_if_t<is_executor<_Executor>::value, executor_work_guard<_Executor>>
make_work_guard(const _Executor& __ex)
{ return executor_work_guard<_Executor>(__ex); }
template<typename _ExecutionContext>
inline
enable_if_t<__is_exec_context<_ExecutionContext>::value,
executor_work_guard<__executor_t<_ExecutionContext>>>
make_work_guard(_ExecutionContext& __ctx)
{ return net::make_work_guard(__ctx.get_executor()); }
template<typename _Tp>
inline
enable_if_t<__not_<__or_<is_executor<_Tp>, __is_exec_context<_Tp>>>::value,
executor_work_guard<associated_executor_t<_Tp>>>
make_work_guard(const _Tp& __t)
{ return net::get_associated_executor(__t); }
template<typename _Tp, typename _Up>
auto
make_work_guard(const _Tp& __t, _Up&& __u)
-> decltype(net::make_work_guard(
net::get_associated_executor(__t, forward<_Up>(__u))))
{
return net::make_work_guard(
net::get_associated_executor(__t, forward<_Up>(__u)));
}
/// Allows function objects to execute on any thread.
class system_executor;
/// The execution context associated with system_executor objects.
class system_context;
inline bool
operator==(const system_executor&, const system_executor&) { return true; }
inline bool
operator!=(const system_executor&, const system_executor&) { return false; }
/// Exception thrown by empty executors.
class bad_executor;
/// Polymorphic wrapper for types satisfying the Executor requirements.
class executor;
bool
operator==(const executor&, const executor&) noexcept;
bool
operator==(const executor&, nullptr_t) noexcept;
bool
operator==(nullptr_t, const executor&) noexcept;
bool
operator!=(const executor&, const executor&) noexcept;
bool
operator!=(const executor&, nullptr_t) noexcept;
bool
operator!=(nullptr_t, const executor&) noexcept;
void swap(executor&, executor&) noexcept;
// dispatch:
template<typename _CompletionToken>
__deduced_t<_CompletionToken, void()>
dispatch(_CompletionToken&& __token);
template<typename _Executor, typename _CompletionToken>
__deduced_t<_CompletionToken, void()>
dispatch(const _Executor& __ex, _CompletionToken&& __token);
template<typename _ExecutionContext, typename _CompletionToken>
__deduced_t<_CompletionToken, void()>
dispatch(_ExecutionContext& __ctx, _CompletionToken&& __token);
// post:
template<typename _CompletionToken>
__deduced_t<_CompletionToken, void()>
post(_CompletionToken&& __token);
template<typename _Executor, typename _CompletionToken>
enable_if_t<is_executor<_Executor>::value,
__deduced_t<_CompletionToken, void()>>
post(const _Executor& __ex, _CompletionToken&& __token);
template<typename _ExecutionContext, typename _CompletionToken>
enable_if_t<__is_exec_context<_ExecutionContext>::value,
__deduced_t<_CompletionToken, void()>>
post(_ExecutionContext& __ctx, _CompletionToken&& __token);
// defer:
template<typename _CompletionToken>
__deduced_t<_CompletionToken, void()>
defer(_CompletionToken&& __token);
template<typename _Executor, typename _CompletionToken>
__deduced_t<_CompletionToken, void()>
defer(const _Executor& __ex, _CompletionToken&& __token);
template<typename _ExecutionContext, typename _CompletionToken>
__deduced_t<_CompletionToken, void()>
defer(_ExecutionContext& __ctx, _CompletionToken&& __token);
template<typename _Executor>
class strand;
template<typename _Executor>
bool
operator==(const strand<_Executor>& __a, const strand<_Executor>& __b);
template<typename _Executor>
bool
operator!=(const strand<_Executor>& __a, const strand<_Executor>& __b)
{ return !(__a == __b); }
template<typename _CompletionToken, typename _Signature, typename>
class async_result
{
public:
typedef _CompletionToken completion_handler_type;
typedef void return_type;
explicit async_result(completion_handler_type&) {}
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
return_type get() {}
};
template<typename _CompletionToken, typename _Signature>
class async_completion
{
using __result_type
= async_result<decay_t<_CompletionToken>, _Signature>;
public:
using completion_handler_type
= typename __result_type::completion_handler_type;
private:
using __handler_type = conditional_t<
is_same<_CompletionToken, completion_handler_type>::value,
completion_handler_type&,
completion_handler_type>;
public:
explicit
async_completion(_CompletionToken& __t)
: completion_handler(std::forward<__handler_type>(__t)),
result(completion_handler)
{ }
async_completion(const async_completion&) = delete;
async_completion& operator=(const async_completion&) = delete;
__handler_type completion_handler;
__result_type result;
};
class execution_context
{
public:
class service
{
protected:
// construct / copy / destroy:
explicit
service(execution_context& __owner) : _M_context(__owner) { }
service(const service&) = delete;
service& operator=(const service&) = delete;
virtual ~service() { } // TODO should not be inline
// service observers:
execution_context& context() const noexcept { return _M_context; }
private:
// service operations:
virtual void shutdown() noexcept = 0;
virtual void notify_fork(fork_event) { }
friend class execution_context;
execution_context& _M_context;
};
// construct / copy / destroy:
execution_context() { }
execution_context(const execution_context&) = delete;
execution_context& operator=(const execution_context&) = delete;
virtual ~execution_context()
{
shutdown();
destroy();
}
// execution context operations:
void
notify_fork(fork_event __e)
{
auto __l = [=](auto& __svc) { __svc._M_ptr->notify_fork(__e); };
if (__e == fork_event::prepare)
std::for_each(_M_services.rbegin(), _M_services.rend(), __l);
else
std::for_each(_M_services.begin(), _M_services.end(), __l);
}
protected:
// execution context protected operations:
void
shutdown()
{
std::for_each(_M_services.rbegin(), _M_services.rend(),
[=](auto& __svc) {
if (__svc._M_active)
{
__svc._M_ptr->shutdown();
__svc._M_active = false;
}
});
}
void
destroy()
{
while (_M_services.size())
_M_services.pop_back();
_M_keys.clear();
}
protected:
template<typename _Service>
static void
_S_deleter(service* __svc) { delete static_cast<_Service*>(__svc); }
struct _ServicePtr
{
template<typename _Service>
explicit
_ServicePtr(_Service* __svc)
: _M_ptr(__svc, &_S_deleter<_Service>), _M_active(true) { }
std::unique_ptr<service, void(*)(service*)> _M_ptr;
bool _M_active;
};
mutable std::mutex _M_mutex;
// Sorted in order of beginning of service object lifetime.
std::list<_ServicePtr> _M_services;
template<typename _Service, typename... _Args>
service*
_M_add_svc(_Args&&... __args)
{
_M_services.push_back(
_ServicePtr{new _Service{*this, std::forward<_Args>(__args)...}} );
return _M_services.back()._M_ptr.get();
}
using __key_type = void(*)();
template<typename _Key>
static __key_type
_S_key() { return reinterpret_cast<__key_type>(&_S_key<_Key>); }
std::unordered_map<__key_type, service*> _M_keys;
template<typename _Service>
friend typename _Service::key_type&
use_service(execution_context&);
template<typename _Service, typename... _Args>
friend _Service&
make_service(execution_context&, _Args&&...);
template<typename _Service>
friend bool
has_service(const execution_context&) noexcept;
};
// service access:
template<typename _Service>
typename _Service::key_type&
use_service(execution_context& __ctx)
{
using _Key = typename _Service::key_type;
static_assert(is_base_of<execution_context::service, _Key>::value,
"a service type must derive from execution_context::service");
static_assert(is_base_of<_Key, _Service>::value,
"a service type must match or derive from its key_type");
auto __key = execution_context::_S_key<_Key>();
std::lock_guard<std::mutex> __lock(__ctx._M_mutex);
auto& __svc = __ctx._M_keys[__key];
if (__svc == nullptr)
{
__try {
__svc = __ctx._M_add_svc<_Service>();
} __catch(...) {
__ctx._M_keys.erase(__key);
__throw_exception_again;
}
}
return static_cast<_Key&>(*__svc);
}
template<typename _Service, typename... _Args>
_Service&
make_service(execution_context& __ctx, _Args&&... __args)
{
using _Key = typename _Service::key_type;
static_assert(is_base_of<execution_context::service, _Key>::value,
"a service type must derive from execution_context::service");
static_assert(is_base_of<_Key, _Service>::value,
"a service type must match or derive from its key_type");
auto __key = execution_context::_S_key<_Key>();
std::lock_guard<std::mutex> __lock(__ctx._M_mutex);
auto& __svc = __ctx._M_keys[__key];
if (__svc != nullptr)
throw service_already_exists();
__try {
__svc = __ctx._M_add_svc<_Service>(std::forward<_Args>(__args)...);
} __catch(...) {
__ctx._M_keys.erase(__key);
__throw_exception_again;
}
return static_cast<_Service&>(*__svc);
}
template<typename _Service>
inline bool
has_service(const execution_context& __ctx) noexcept
{
using _Key = typename _Service::key_type;
static_assert(is_base_of<execution_context::service, _Key>::value,
"a service type must derive from execution_context::service");
static_assert(is_base_of<_Key, _Service>::value,
"a service type must match or derive from its key_type");
std::lock_guard<std::mutex> __lock(__ctx._M_mutex);
return __ctx._M_keys.count(execution_context::_S_key<_Key>());
}
template<typename _Tp, typename = __void_t<>>
struct __is_executor_impl : false_type
{ };
// Check Executor requirements.
template<typename _Tp, typename _Up = remove_const_t<_Tp>>
auto
__executor_reqs(_Up* __x = 0, const _Up* __cx = 0, void(*__f)() = 0,
const allocator<int>& __a = {})
-> enable_if_t<__is_value_constructible<_Tp>::value, __void_t<
decltype(*__cx == *__cx),
decltype(*__cx != *__cx),
decltype(__x->context()),
decltype(__x->on_work_started()),
decltype(__x->on_work_finished()),
decltype(__x->dispatch(std::move(__f), __a)),
decltype(__x->post(std::move(__f), __a)),
decltype(__x->defer(std::move(__f), __a))
>>;
template<typename _Tp>
struct __is_executor_impl<_Tp, decltype(__executor_reqs<_Tp>())>
: true_type
{ };
template<typename _Tp>
struct is_executor : __is_executor_impl<_Tp>
{ };
template<typename _Tp>
constexpr bool is_executor_v = is_executor<_Tp>::value;
template<typename _Tp, typename _Executor, typename = __void_t<>>
struct __uses_executor_impl : false_type
{ };
template<typename _Tp, typename _Executor>
struct __uses_executor_impl<_Tp, _Executor,
__void_t<typename _Tp::executor_type>>
: is_convertible<_Executor, typename _Tp::executor_type>
{ };
template<typename _Tp, typename _Executor>
struct uses_executor : __uses_executor_impl<_Tp, _Executor>::type
{ };
template<typename _Tp, typename _Executor>
constexpr bool uses_executor_v = uses_executor<_Tp, _Executor>::value;
template<typename _Tp, typename _Executor>
class executor_binder
{
struct __use_exec { };
public:
// types:
typedef _Tp target_type;
typedef _Executor executor_type;
// construct / copy / destroy:
executor_binder(_Tp __t, const _Executor& __ex)
: executor_binder(__use_exec{}, std::move(__t), __ex)
{ }
executor_binder(const executor_binder&) = default;
executor_binder(executor_binder&&) = default;
template<typename _Up, typename _OtherExecutor>
executor_binder(const executor_binder<_Up, _OtherExecutor>& __other)
: executor_binder(__use_exec{}, __other.get(), __other.get_executor())
{ }
template<typename _Up, typename _OtherExecutor>
executor_binder(executor_binder<_Up, _OtherExecutor>&& __other)
: executor_binder(__use_exec{}, std::move(__other.get()),
__other.get_executor())
{ }
template<typename _Up, typename _OtherExecutor>
executor_binder(executor_arg_t, const _Executor& __ex,
const executor_binder<_Up, _OtherExecutor>& __other)
: executor_binder(__use_exec{}, __other.get(), __ex)
{ }
template<typename _Up, typename _OtherExecutor>
executor_binder(executor_arg_t, const _Executor& __ex,
executor_binder<_Up, _OtherExecutor>&& __other)
: executor_binder(__use_exec{}, std::move(__other.get()), __ex)
{ }
~executor_binder();
// executor binder access:
_Tp& get() noexcept { return _M_target; }
const _Tp& get() const noexcept { return _M_target; }
executor_type get_executor() const noexcept { return _M_ex; }
// executor binder invocation:
template<class... _Args>
result_of_t<_Tp&(_Args&&...)>
operator()(_Args&&... __args)
{ return std::__invoke(get(), std::forward<_Args>(__args)...); }
template<class... _Args>
result_of_t<const _Tp&(_Args&&...)>
operator()(_Args&&... __args) const
{ return std::__invoke(get(), std::forward<_Args>(__args)...); }
private:
template<typename _Up>
using __use_exec_cond
= __and_<uses_executor<_Tp, _Executor>,
is_constructible<_Tp, executor_arg_t, _Executor, _Up>>;
template<typename _Up, typename _Exec, typename =
enable_if_t<__use_exec_cond<_Up>::value>>
executor_binder(__use_exec, _Up&& __u, _Exec&& __ex)
: _M_ex(std::forward<_Exec>(__ex)),
_M_target(executor_arg, _M_ex, std::forward<_Up>(__u))
{ }
template<typename _Up, typename _Exec, typename =
enable_if_t<!__use_exec_cond<_Up>::value>>
executor_binder(__use_exec, _Up&& __u, const _Exec& __ex)
: _M_ex(std::forward<_Exec>(__ex)),
_M_target(std::forward<_Up>(__u))
{ }
_Executor _M_ex;
_Tp _M_target;
};
template<typename _Tp, typename _Executor, typename _Signature>
class async_result<executor_binder<_Tp, _Executor>, _Signature>
{
using __inner = async_result<_Tp, _Signature>;
public:
using completion_handler_type =
executor_binder<typename __inner::completion_handler_type, _Executor>;
using return_type = typename __inner::return_type;
explicit
async_result(completion_handler_type& __h)
: _M_target(__h.get()) { }
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
return_type get() { return _M_target.get(); }
private:
__inner _M_target;
};
template<typename _Tp, typename _Executor, typename _ProtoAlloc>
struct associated_allocator<executor_binder<_Tp, _Executor>, _ProtoAlloc>
{
typedef associated_allocator_t<_Tp, _ProtoAlloc> type;
static type
get(const executor_binder<_Tp, _Executor>& __b,
const _ProtoAlloc& __a = _ProtoAlloc()) noexcept
{ return associated_allocator<_Tp, _ProtoAlloc>::get(__b.get(), __a); }
};
template<typename _Tp, typename _Executor, typename _Executor1>
struct associated_executor<executor_binder<_Tp, _Executor>, _Executor1>
{
typedef _Executor type;
static type
get(const executor_binder<_Tp, _Executor>& __b,
const _Executor1& = _Executor1()) noexcept
{ return __b.get_executor(); }
};
template<typename _Executor>
class executor_work_guard
{
public:
// types:
typedef _Executor executor_type;
// construct / copy / destroy:
explicit
executor_work_guard(const executor_type& __ex) noexcept
: _M_ex(__ex), _M_owns(true)
{ _M_ex.on_work_started(); }
executor_work_guard(const executor_work_guard& __other) noexcept
: _M_ex(__other._M_ex), _M_owns(__other._M_owns)
{
if (_M_owns)
_M_ex.on_work_started();
}
executor_work_guard(executor_work_guard&& __other) noexcept
: _M_ex(__other._M_ex), _M_owns(__other._M_owns)
{ __other._M_owns = false; }
executor_work_guard& operator=(const executor_work_guard&) = delete;
~executor_work_guard()
{
if (_M_owns)
_M_ex.on_work_finished();
}
// executor work guard observers:
executor_type get_executor() const noexcept { return _M_ex; }
bool owns_work() const noexcept { return _M_owns; }
// executor work guard modifiers:
void reset() noexcept
{
if (_M_owns)
_M_ex.on_work_finished();
_M_owns = false;
}
private:
_Executor _M_ex;
bool _M_owns;
};
class system_context : public execution_context
{
public:
// types:
typedef system_executor executor_type;
// construct / copy / destroy:
system_context() = delete;
system_context(const system_context&) = delete;
system_context& operator=(const system_context&) = delete;
~system_context()
{
stop();
join();
}
// system_context operations:
executor_type get_executor() noexcept;
void stop()
{
lock_guard<mutex> __lock(_M_mtx);
_M_stopped = true;
_M_cv.notify_all();
}
bool stopped() const noexcept
{
lock_guard<mutex> __lock(_M_mtx);
return _M_stopped;
}
void join()
{
if (_M_thread.joinable())
_M_thread.join();
}
private:
friend system_executor;
struct __tag { };
system_context(__tag) { }
thread _M_thread;
mutable mutex _M_mtx;
condition_variable _M_cv;
queue<function<void()>> _M_tasks;
bool _M_stopped = false;
void
_M_run()
{
while (true)
{
function<void()> __f;
{
unique_lock<mutex> __lock(_M_mtx);
_M_cv.wait(__lock,
[this]{ return _M_stopped || !_M_tasks.empty(); });
if (_M_stopped)
return;
__f = std::move(_M_tasks.front());
_M_tasks.pop();
}
__f();
}
}
void
_M_post(std::function<void()> __f)
{
lock_guard<mutex> __lock(_M_mtx);
if (_M_stopped)
return;
if (!_M_thread.joinable())
_M_thread = std::thread(&system_context::_M_run, this);
_M_tasks.push(std::move(__f)); // XXX allocator not used
_M_cv.notify_one();
}
static system_context&
_S_get() noexcept
{
static system_context __sc(__tag{});
return __sc;
}
};
class system_executor
{
public:
// executor operations:
system_executor() { }
system_context&
context() const noexcept { return system_context::_S_get(); }
void on_work_started() const noexcept { }
void on_work_finished() const noexcept { }
template<typename _Func, typename _ProtoAlloc>
void
dispatch(_Func&& __f, const _ProtoAlloc& __a) const
{ decay_t<_Func>{std::forward<_Func>(__f)}(); }
template<typename _Func, typename _ProtoAlloc>
void
post(_Func&& __f, const _ProtoAlloc&) const // XXX allocator not used
{
system_context::_S_get()._M_post(std::forward<_Func>(__f));
}
template<typename _Func, typename _ProtoAlloc>
void
defer(_Func&& __f, const _ProtoAlloc& __a) const
{ post(std::forward<_Func>(__f), __a); }
};
inline system_executor
system_context::get_executor() noexcept
{ return {}; }
class bad_executor : public std::exception
{
virtual const char* what() const noexcept { return "bad executor"; }
};
inline void __throw_bad_executor() // TODO make non-inline
{
#if __cpp_exceptions
throw bad_executor();
#else
__builtin_abort();
#endif
}
class executor
{
public:
// construct / copy / destroy:
executor() noexcept = default;
executor(nullptr_t) noexcept { }
executor(const executor&) noexcept = default;
executor(executor&&) noexcept = default;
template<typename _Executor>
executor(_Executor __e)
: _M_target(make_shared<_Tgt1<_Executor>>(std::move(__e)))
{ }
template<typename _Executor, typename _ProtoAlloc>
executor(allocator_arg_t, const _ProtoAlloc& __a, _Executor __e)
: _M_target(allocate_shared<_Tgt2<_Executor, _ProtoAlloc>>(__a,
std::move(__e), __a))
{ }
executor& operator=(const executor&) noexcept = default;
executor& operator=(executor&&) noexcept = default;
executor&
operator=(nullptr_t) noexcept
{
_M_target = nullptr;
return *this;
}
template<typename _Executor>
executor&
operator=(_Executor __e)
{
executor(std::move(__e)).swap(*this);
return *this;
}
~executor() = default;
// executor modifiers:
void
swap(executor& __other) noexcept
{ _M_target.swap(__other._M_target); }
template<typename _Executor, typename _Alloc>
void
assign(_Executor __e, const _Alloc& __a)
{ executor(allocator_arg, __a, std::move(__e)).swap(*this); }
// executor operations:
execution_context&
context() const noexcept
{
__glibcxx_assert( _M_target );
return _M_target->context();
}
void
on_work_started() const noexcept
{
__glibcxx_assert( _M_target );
return _M_target->on_work_started();
}
void
on_work_finished() const noexcept
{
__glibcxx_assert( _M_target );
return _M_target->on_work_finished();
}
template<typename _Func, typename _Alloc>
void
dispatch(_Func&& __f, const _Alloc& __a) const
{
if (!_M_target)
__throw_bad_executor();
// _M_target->dispatch({allocator_arg, __a, std::forward<_Func>(__f)});
_M_target->dispatch(std::forward<_Func>(__f));
}
template<typename _Func, typename _Alloc>
void
post(_Func&& __f, const _Alloc& __a) const
{
if (!_M_target)
__throw_bad_executor();
// _M_target->post({allocator_arg, __a, std::forward<_Func>(__f)});
_M_target->post(std::forward<_Func>(__f));
}
template<typename _Func, typename _Alloc>
void
defer(_Func&& __f, const _Alloc& __a) const
{
if (!_M_target)
__throw_bad_executor();
// _M_target->defer({allocator_arg, __a, std::forward<_Func>(__f)});
_M_target->defer(std::forward<_Func>(__f));
}
// executor capacity:
explicit operator bool() const noexcept
{ return static_cast<bool>(_M_target); }
// executor target access:
#if __cpp_rtti
const type_info&
target_type() const noexcept
{
if (_M_target)
return *static_cast<const type_info*>(_M_target->target_type());
return typeid(void);
}
#endif
template<typename _Executor>
_Executor*
target() noexcept
{
void* __p = nullptr;
if (_M_target)
{
if (_M_target->_M_func == &_Tgt1<remove_cv_t<_Executor>>::_S_func)
__p = _M_target->_M_func(_M_target.get(), nullptr);
#if __cpp_rtti
else
__p = _M_target->target(&typeid(_Executor));
#endif
}
return static_cast<_Executor*>(__p);
}
template<typename _Executor>
const _Executor*
target() const noexcept
{
const void* __p = nullptr;
if (_M_target)
{
if (_M_target->_M_func == &_Tgt1<remove_cv_t<_Executor>>::_S_func)
return (_Executor*)_M_target->_M_func(_M_target.get(), nullptr);
#if __cpp_rtti
else
__p = _M_target->target(&typeid(_Executor));
#endif
}
return static_cast<const _Executor*>(__p);
}
private:
struct _Tgt
{
virtual void on_work_started() const noexcept = 0;
virtual void on_work_finished() const noexcept = 0;
virtual execution_context& context() const noexcept = 0;
virtual void dispatch(std::function<void()>) const = 0;
virtual void post(std::function<void()>) const = 0;
virtual void defer(std::function<void()>) const = 0;
virtual const void* target_type() const noexcept = 0;
virtual void* target(const void*) noexcept = 0;
virtual bool _M_equals(_Tgt*) const noexcept = 0;
using _Func = void* (_Tgt*, const _Tgt*);
_Func* _M_func; // Provides access to target without RTTI
};
template<typename _Ex>
struct _Tgt1 : _Tgt
{
explicit
_Tgt1(_Ex&& __ex)
: _M_ex(std::move(__ex))
{ this->_M_func = &_S_func; }
void
on_work_started() const noexcept override
{ _M_ex.on_work_started(); }
void
on_work_finished() const noexcept override
{ _M_ex.on_work_finished(); }
execution_context&
context() const noexcept override
{ return _M_ex.context(); }
void
dispatch(std::function<void()> __f) const override
{ _M_ex.dispatch(std::move(__f), allocator<void>()); }
void
post(std::function<void()> __f) const override
{ _M_ex.post(std::move(__f), allocator<void>()); }
void
defer(std::function<void()> __f) const override
{ _M_ex.defer(std::move(__f), allocator<void>()); }
const void*
target_type() const noexcept override
{
#if __cpp_rtti
return &typeid(_Ex);
#else
return nullptr;
#endif
}
void*
target(const void* __ti) noexcept override
{
#if __cpp_rtti
if (*static_cast<const type_info*>(__ti) == typeid(_Ex))
return std::__addressof(_M_ex);
#endif
return nullptr;
}
bool
_M_equals(_Tgt* __tgt) const noexcept override
{
#if __cpp_rtti
if (const void* __p = __tgt->target(&typeid(_Ex)))
return *static_cast<const _Ex*>(__p) == _M_ex;
#endif
return false;
}
_Ex _M_ex [[__no_unique_address__]];
static void*
_S_func(_Tgt* __p, const _Tgt* __q) noexcept
{
auto& __ex = static_cast<_Tgt1*>(__p)->_M_ex;
if (__q)
{
if (__ex == static_cast<const _Tgt1*>(__q)->_M_ex)
return __p;
else
return nullptr;
}
else
return std::__addressof(__ex);
}
};
template<typename _Ex, typename _Alloc>
struct _Tgt2 : _Tgt1<_Ex>
{
explicit
_Tgt2(_Ex&& __ex, const _Alloc& __a)
: _Tgt1<_Ex>(std::move(__ex)), _M_alloc(__a) { }
void
dispatch(std::function<void()> __f) const override
{ this->_M_ex.dispatch(std::move(__f), _M_alloc); }
void
post(std::function<void()> __f) const override
{ this->_M_ex.post(std::move(__f), _M_alloc); }
void
defer(std::function<void()> __f) const override
{ this->_M_ex.defer(std::move(__f), _M_alloc); }
_Alloc _M_alloc [[__no_unique_address__]];
};
// Partial specialization for std::allocator<T>.
// Don't store the allocator.
template<typename _Ex, typename _Tp>
struct _Tgt2<_Ex, std::allocator<_Tp>> : _Tgt1<_Ex>
{ };
friend bool
operator==(const executor& __a, const executor& __b) noexcept
{
_Tgt* __ta = __a._M_target.get();
_Tgt* __tb = __b._M_target.get();
if (__ta == __tb)
return true;
if (!__ta || !__tb)
return false;
if (__ta->_M_func == __tb->_M_func)
return __ta->_M_func(__ta, __tb);
return __ta->_M_equals(__tb);
}
shared_ptr<_Tgt> _M_target;
};
template<> struct is_executor<executor> : true_type { };
/// executor comparisons
inline bool
operator==(const executor& __e, nullptr_t) noexcept
{ return !__e; }
inline bool
operator==(nullptr_t, const executor& __e) noexcept
{ return !__e; }
inline bool
operator!=(const executor& __a, const executor& __b) noexcept
{ return !(__a == __b); }
inline bool
operator!=(const executor& __e, nullptr_t) noexcept
{ return (bool)__e; }
inline bool
operator!=(nullptr_t, const executor& __e) noexcept
{ return (bool)__e; }
/// Swap two executor objects.
inline void swap(executor& __a, executor& __b) noexcept { __a.swap(__b); }
template<typename _CompletionHandler>
struct __dispatcher
{
explicit
__dispatcher(_CompletionHandler& __h)
: _M_h(std::move(__h)), _M_w(net::make_work_guard(_M_h))
{ }
void operator()()
{
auto __alloc = net::get_associated_allocator(_M_h);
_M_w.get_executor().dispatch(std::move(_M_h), __alloc);
_M_w.reset();
}
_CompletionHandler _M_h;
decltype(net::make_work_guard(_M_h)) _M_w;
};
template<typename _CompletionHandler>
inline __dispatcher<_CompletionHandler>
__make_dispatcher(_CompletionHandler& __h)
{ return __dispatcher<_CompletionHandler>{__h}; }
// dispatch:
template<typename _CompletionToken>
inline __deduced_t<_CompletionToken, void()>
dispatch(_CompletionToken&& __token)
{
async_completion<_CompletionToken, void()> __cmpl{__token};
auto __ex = net::get_associated_executor(__cmpl.completion_handler);
auto __alloc = net::get_associated_allocator(__cmpl.completion_handler);
__ex.dispatch(std::move(__cmpl.completion_handler), __alloc);
return __cmpl.result.get();
}
template<typename _Executor, typename _CompletionToken>
inline
enable_if_t<is_executor<_Executor>::value,
__deduced_t<_CompletionToken, void()>>
dispatch(const _Executor& __ex, _CompletionToken&& __token)
{
async_completion<_CompletionToken, void()> __cmpl{__token};
auto __alloc = net::get_associated_allocator(__cmpl.completion_handler);
__ex.dispatch(net::__make_dispatcher(__cmpl.completion_handler),
__alloc);
return __cmpl.result.get();
}
template<typename _ExecutionContext, typename _CompletionToken>
inline
enable_if_t<__is_exec_context<_ExecutionContext>::value,
__deduced_t<_CompletionToken, void()>>
dispatch(_ExecutionContext& __ctx, _CompletionToken&& __token)
{
return net::dispatch(__ctx.get_executor(),
forward<_CompletionToken>(__token));
}
// post:
template<typename _CompletionToken>
inline __deduced_t<_CompletionToken, void()>
post(_CompletionToken&& __token)
{
async_completion<_CompletionToken, void()> __cmpl{__token};
auto __ex = net::get_associated_executor(__cmpl.completion_handler);
auto __alloc = net::get_associated_allocator(__cmpl.completion_handler);
__ex.post(std::move(__cmpl.completion_handler), __alloc);
return __cmpl.result.get();
}
template<typename _Executor, typename _CompletionToken>
inline
enable_if_t<is_executor<_Executor>::value,
__deduced_t<_CompletionToken, void()>>
post(const _Executor& __ex, _CompletionToken&& __token)
{
async_completion<_CompletionToken, void()> __cmpl{__token};
auto __alloc = net::get_associated_allocator(__cmpl.completion_handler);
__ex.post(net::__make_dispatcher(__cmpl.completion_handler), __alloc);
return __cmpl.result.get();
}
template<typename _ExecutionContext, typename _CompletionToken>
inline
enable_if_t<__is_exec_context<_ExecutionContext>::value,
__deduced_t<_CompletionToken, void()>>
post(_ExecutionContext& __ctx, _CompletionToken&& __token)
{
return net::post(__ctx.get_executor(),
forward<_CompletionToken>(__token));
}
// defer:
template<typename _CompletionToken>
inline __deduced_t<_CompletionToken, void()>
defer(_CompletionToken&& __token)
{
async_completion<_CompletionToken, void()> __cmpl{__token};
auto __ex = net::get_associated_executor(__cmpl.completion_handler);
auto __alloc = net::get_associated_allocator(__cmpl.completion_handler);
__ex.defer(std::move(__cmpl.completion_handler), __alloc);
return __cmpl.result.get();
}
template<typename _Executor, typename _CompletionToken>
inline
enable_if_t<is_executor<_Executor>::value,
__deduced_t<_CompletionToken, void()>>
defer(const _Executor& __ex, _CompletionToken&& __token)
{
async_completion<_CompletionToken, void()> __cmpl{__token};
auto __alloc = net::get_associated_allocator(__cmpl.completion_handler);
__ex.defer(net::__make_dispatcher(__cmpl.completion_handler), __alloc);
return __cmpl.result.get();
}
template<typename _ExecutionContext, typename _CompletionToken>
inline
enable_if_t<__is_exec_context<_ExecutionContext>::value,
__deduced_t<_CompletionToken, void()>>
defer(_ExecutionContext& __ctx, _CompletionToken&& __token)
{
return net::defer(__ctx.get_executor(),
forward<_CompletionToken>(__token));
}
template<typename _Executor>
class strand
{
public:
// types:
typedef _Executor inner_executor_type;
// construct / copy / destroy:
strand(); // TODO make state
explicit strand(_Executor __ex) : _M_inner_ex(__ex) { } // TODO make state
template<typename _Alloc>
strand(allocator_arg_t, const _Alloc& __a, _Executor __ex)
: _M_inner_ex(__ex) { } // TODO make state
strand(const strand& __other) noexcept
: _M_state(__other._M_state), _M_inner_ex(__other._M_inner_ex) { }
strand(strand&& __other) noexcept
: _M_state(std::move(__other._M_state)),
_M_inner_ex(std::move(__other._M_inner_ex)) { }
template<typename _OtherExecutor>
strand(const strand<_OtherExecutor>& __other) noexcept
: _M_state(__other._M_state), _M_inner_ex(__other._M_inner_ex) { }
template<typename _OtherExecutor>
strand(strand<_OtherExecutor>&& __other) noexcept
: _M_state(std::move(__other._M_state)),
_M_inner_ex(std::move(__other._M_inner_ex)) { }
strand&
operator=(const strand& __other) noexcept
{
static_assert(is_copy_assignable<_Executor>::value,
"inner executor type must be CopyAssignable");
// TODO lock __other
// TODO copy state
_M_inner_ex = __other._M_inner_ex;
return *this;
}
strand&
operator=(strand&& __other) noexcept
{
static_assert(is_move_assignable<_Executor>::value,
"inner executor type must be MoveAssignable");
// TODO move state
_M_inner_ex = std::move(__other._M_inner_ex);
return *this;
}
template<typename _OtherExecutor>
strand&
operator=(const strand<_OtherExecutor>& __other) noexcept
{
static_assert(is_convertible<_OtherExecutor, _Executor>::value,
"inner executor type must be compatible");
// TODO lock __other
// TODO copy state
_M_inner_ex = __other._M_inner_ex;
return *this;
}
template<typename _OtherExecutor>
strand&
operator=(strand<_OtherExecutor>&& __other) noexcept
{
static_assert(is_convertible<_OtherExecutor, _Executor>::value,
"inner executor type must be compatible");
// TODO move state
_M_inner_ex = std::move(__other._M_inner_ex);
return *this;
}
~strand()
{
// the task queue outlives this object if non-empty
// TODO create circular ref in queue?
}
// strand operations:
inner_executor_type
get_inner_executor() const noexcept
{ return _M_inner_ex; }
bool
running_in_this_thread() const noexcept
{ return std::this_thread::get_id() == _M_state->_M_running_on; }
execution_context&
context() const noexcept
{ return _M_inner_ex.context(); }
void on_work_started() const noexcept { _M_inner_ex.on_work_started(); }
void on_work_finished() const noexcept { _M_inner_ex.on_work_finished(); }
template<typename _Func, typename _Alloc>
void
dispatch(_Func&& __f, const _Alloc& __a) const
{
if (running_in_this_thread())
decay_t<_Func>{std::forward<_Func>(__f)}();
else
post(std::forward<_Func>(__f), __a);
}
template<typename _Func, typename _Alloc>
void
post(_Func&& __f, const _Alloc& __a) const; // TODO
template<typename _Func, typename _Alloc>
void
defer(_Func&& __f, const _Alloc& __a) const
{ post(std::forward<_Func>(__f), __a); }
private:
friend bool
operator==(const strand& __a, const strand& __b)
{ return __a._M_state == __b._M_state; }
// TODO add synchronised queue
struct _State
{
std::thread::id _M_running_on;
};
shared_ptr<_State> _M_state;
_Executor _M_inner_ex;
};
#if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1)
// Completion token for asynchronous operations initiated with use_future.
template<typename _Func, typename _Alloc>
struct __use_future_ct
{
std::tuple<_Func, _Alloc> _M_t;
};
template<typename _Func, typename _Tp>
struct __use_future_ct<_Func, std::allocator<_Tp>>
{
_Func _M_f;
};
template<typename _ProtoAllocator = allocator<void>>
class use_future_t
{
public:
// use_future_t types:
using allocator_type = _ProtoAllocator;
// use_future_t members:
constexpr
use_future_t()
noexcept(is_nothrow_default_constructible<_ProtoAllocator>::value)
: _M_alloc() { }
explicit
use_future_t(const _ProtoAllocator& __a) noexcept : _M_alloc(__a) { }
template<typename _OtherAllocator>
use_future_t<_OtherAllocator>
rebind(const _OtherAllocator& __a) const noexcept
{ return use_future_t<_OtherAllocator>(__a); }
allocator_type get_allocator() const noexcept { return _M_alloc; }
template<typename _Func>
auto
operator()(_Func&& __f) const
{
using _Token = __use_future_ct<decay_t<_Func>, _ProtoAllocator>;
return _Token{ {std::forward<_Func>(__f), _M_alloc} };
}
private:
_ProtoAllocator _M_alloc;
};
template<typename _Tp>
class use_future_t<std::allocator<_Tp>>
{
public:
// use_future_t types:
using allocator_type = std::allocator<_Tp>;
// use_future_t members:
constexpr use_future_t() noexcept = default;
explicit
use_future_t(const allocator_type& __a) noexcept { }
template<class _Up>
use_future_t<std::allocator<_Up>>
rebind(const std::allocator<_Up>& __a) const noexcept
{ return use_future_t<std::allocator<_Up>>(__a); }
allocator_type get_allocator() const noexcept { return {}; }
template<typename _Func>
auto
operator()(_Func&& __f) const
{
using _Token = __use_future_ct<decay_t<_Func>, allocator_type>;
return _Token{std::forward<_Func>(__f)};
}
};
constexpr use_future_t<> use_future = use_future_t<>();
template<typename _Func, typename _Alloc, typename _Res, typename... _Args>
class async_result<__use_future_ct<_Func, _Alloc>, _Res(_Args...)>;
template<typename _Result, typename _Executor>
struct __use_future_ex;
// Completion handler for asynchronous operations initiated with use_future.
template<typename _Func, typename... _Args>
struct __use_future_ch
{
template<typename _Alloc>
explicit
__use_future_ch(__use_future_ct<_Func, _Alloc>&& __token)
: _M_f{ std::move(std::get<0>(__token._M_t)) },
_M_promise{ std::get<1>(__token._M_t) }
{ }
template<typename _Tp>
explicit
__use_future_ch(__use_future_ct<_Func, std::allocator<_Tp>>&& __token)
: _M_f{ std::move(__token._M_f) }
{ }
void
operator()(_Args&&... __args)
{
__try
{
_M_promise.set_value(_M_f(std::forward<_Args>(__args)...));
}
__catch(__cxxabiv1::__forced_unwind&)
{
__throw_exception_again;
}
__catch(...)
{
_M_promise.set_exception(std::current_exception());
}
}
using __result = result_of_t<_Func(decay_t<_Args>...)>;
future<__result> get_future() { return _M_promise.get_future(); }
private:
template<typename _Result, typename _Executor>
friend struct __use_future_ex;
_Func _M_f;
mutable promise<__result> _M_promise;
};
// Specialization of async_result for operations initiated with use_future.
template<typename _Func, typename _Alloc, typename _Res, typename... _Args>
class async_result<__use_future_ct<_Func, _Alloc>, _Res(_Args...)>
{
public:
using completion_handler_type = __use_future_ch<_Func, _Args...>;
using return_type = future<typename completion_handler_type::__result>;
explicit
async_result(completion_handler_type& __h)
: _M_future(__h.get_future())
{ }
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
return_type get() { return std::move(_M_future); }
private:
return_type _M_future;
};
template<typename _Result, typename _Executor>
struct __use_future_ex
{
template<typename _Handler>
__use_future_ex(const _Handler& __h, _Executor __ex)
: _M_t(__h._M_promise, __ex)
{ }
template<typename _Fn, typename _Alloc>
void
dispatch(_Fn&& __fn)
{
__try
{
std::get<1>(_M_t).dispatch(std::forward<_Fn>(__fn));
}
__catch(__cxxabiv1::__forced_unwind&)
{
__throw_exception_again;
}
__catch(...)
{
std::get<0>(_M_t).set_exception(std::current_exception());
}
}
template<typename _Fn, typename _Alloc>
void
post(_Fn&& __fn)
{
__try
{
std::get<1>(_M_t).post(std::forward<_Fn>(__fn));
}
__catch(__cxxabiv1::__forced_unwind&)
{
__throw_exception_again;
}
__catch(...)
{
std::get<0>(_M_t).set_exception(std::current_exception());
}
}
template<typename _Fn, typename _Alloc>
void
defer(_Fn&& __fn)
{
__try
{
std::get<1>(_M_t).defer(std::forward<_Fn>(__fn));
}
__catch(__cxxabiv1::__forced_unwind&)
{
__throw_exception_again;
}
__catch(...)
{
std::get<0>(_M_t).set_exception(std::current_exception());
}
}
private:
tuple<promise<_Result>&, _Executor> _M_t;
};
template<typename _Func, typename... _Args, typename _Executor>
struct associated_executor<__use_future_ch<_Func, _Args...>, _Executor>
{
private:
using __handler = __use_future_ch<_Func, _Args...>;
using type = __use_future_ex<typename __handler::__result, _Executor>;
static type
get(const __handler& __h, const _Executor& __ex)
{ return { __h, __ex }; }
};
#if 0
// [async.use.future.traits]
template<typename _Allocator, typename _Ret, typename... _Args>
class handler_type<use_future_t<_Allocator>, _Ret(_Args...)> // TODO uglify name
{
template<typename... _Args>
struct __is_error_result : false_type { };
template<typename... _Args>
struct __is_error_result<error_code, _Args...> : true_type { };
template<typename... _Args>
struct __is_error_result<exception_ptr, _Args...> : true_type { };
static exception_ptr
_S_exptr(exception_ptr& __ex)
{ return std::move(__ex); }
static exception_ptr
_S_exptr(const error_code& __ec)
{ return make_exception_ptr(system_error(__ec)); }
template<bool _IsError, typename... _UArgs>
struct _Type;
// N == 0
template<bool _IsError>
struct _Type<_IsError>
{
std::promise<void> _M_promise;
void
operator()()
{
_M_promise.set_value();
}
};
// N == 1, U0 is error_code or exception_ptr
template<typename _UArg0>
struct _Type<true, _UArg0>
{
std::promise<void> _M_promise;
template<typename _Arg0>
void
operator()(_Arg0&& __a0)
{
if (__a0)
_M_promise.set_exception(_S_exptr(__a0));
else
_M_promise.set_value();
}
};
// N == 1, U0 is not error_code or exception_ptr
template<typename _UArg0>
struct _Type<false, _UArg0>
{
std::promise<_UArg0> _M_promise;
template<typename _Arg0>
void
operator()(_Arg0&& __a0)
{
_M_promise.set_value(std::forward<_Arg0>(__a0));
}
};
// N == 2, U0 is error_code or exception_ptr
template<typename _UArg0, typename _UArg1>
struct _Type<true, _UArg0, _UArg1>
{
std::promise<_UArg1> _M_promise;
template<typename _Arg0, typename _Arg1>
void
operator()(_Arg0&& __a0, _Arg1&& __a1)
{
if (__a0)
_M_promise.set_exception(_S_exptr(__a0));
else
_M_promise.set_value(std::forward<_Arg1>(__a1));
}
};
// N >= 2, U0 is not error_code or exception_ptr
template<typename... _UArgs>
struct _Type<false, _UArgs...>
{
static_assert(sizeof...(_UArgs) > 1, "wrong partial specialization");
std::promise<tuple<_UArgs...>> _M_promise;
template<typename... _Args>
void
operator()(_Args&&... __args)
{
_M_promise.set_value(
std::forward_as_tuple(std::forward<_Args>(__args)...));
}
};
// N > 2, U0 is error_code or exception_ptr
template<typename _UArg0, typename... _UArgs>
struct _Type<true, _UArg0, _UArgs...>
{
static_assert(sizeof...(_UArgs) > 1, "wrong partial specialization");
std::promise<tuple<_UArgs...>> _M_promise;
template<typename _Arg0, typename... _Args>
void
operator()(_Arg0&& __a0, _Args&&... __args)
{
if (__a0)
_M_promise.set_exception(_S_exptr(__a0));
else
_M_promise.set_value(
std::forward_as_tuple(std::forward<_Args>(__args)...));
}
};
public:
using type =
_Type<__is_error_result<_Args...>::value, decay_t<_Args>...>;
};
template<typename _Alloc, typename _Ret, typename... _Args>
struct async_result<use_future_t<_Alloc>, _Ret(_Args...)>
{
using completion_handler_type
= typename handler_type<use_future_t<_Alloc>, _Ret(_Args...)>::type;
using return_type = void; // XXX TODO ???;
explicit
async_result(completion_handler_type& __h) : _M_handler(__h) { }
auto get() { return _M_handler._M_provider.get_future(); }
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
return_type get() { return _M_handler._M_promise.get_future(); }
private:
completion_handler_type& _M_handler;
};
// TODO specialize associated_executor for
// async_result<use_future_t<A>, Sig>::completion_handler_type
// to use a __use_future_ex
// (probably need to move _Type outside of handler_type so we don't have
// a non-deduced context)
#endif
// [async.packaged.task.specializations]
template<typename _Ret, typename... _Args, typename _Signature>
class async_result<packaged_task<_Ret(_Args...)>, _Signature>
{
public:
using completion_handler_type = packaged_task<_Ret(_Args...)>;
using return_type = future<_Ret>;
explicit
async_result(completion_handler_type& __h)
: _M_future(__h.get_future()) { }
async_result(const async_result&) = delete;
async_result& operator=(const async_result&) = delete;
return_type get() { return std::move(_M_future); }
private:
return_type _M_future;
};
#endif
/// @}
} // namespace v1
} // namespace net
} // namespace experimental
template<typename _Alloc>
struct uses_allocator<experimental::net::executor, _Alloc>
: true_type {};
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif // C++14
#endif // _GLIBCXX_EXPERIMENTAL_EXECUTOR