Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
/* Simulator instruction decoder for lm32bf.

THIS FILE IS MACHINE GENERATED WITH CGEN.

Copyright 1996-2020 Free Software Foundation, Inc.

This file is part of the GNU simulators.

   This file is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   It is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, see <http://www.gnu.org/licenses/>.

*/

#define WANT_CPU lm32bf
#define WANT_CPU_LM32BF

#include "sim-main.h"
#include "sim-assert.h"

/* The instruction descriptor array.
   This is computed at runtime.  Space for it is not malloc'd to save a
   teensy bit of cpu in the decoder.  Moving it to malloc space is trivial
   but won't be done until necessary (we don't currently support the runtime
   addition of instructions nor an SMP machine with different cpus).  */
static IDESC lm32bf_insn_data[LM32BF_INSN__MAX];

/* Commas between elements are contained in the macros.
   Some of these are conditionally compiled out.  */

static const struct insn_sem lm32bf_insn_sem[] =
{
  { VIRTUAL_INSN_X_INVALID, LM32BF_INSN_X_INVALID, LM32BF_SFMT_EMPTY },
  { VIRTUAL_INSN_X_AFTER, LM32BF_INSN_X_AFTER, LM32BF_SFMT_EMPTY },
  { VIRTUAL_INSN_X_BEFORE, LM32BF_INSN_X_BEFORE, LM32BF_SFMT_EMPTY },
  { VIRTUAL_INSN_X_CTI_CHAIN, LM32BF_INSN_X_CTI_CHAIN, LM32BF_SFMT_EMPTY },
  { VIRTUAL_INSN_X_CHAIN, LM32BF_INSN_X_CHAIN, LM32BF_SFMT_EMPTY },
  { VIRTUAL_INSN_X_BEGIN, LM32BF_INSN_X_BEGIN, LM32BF_SFMT_EMPTY },
  { LM32_INSN_ADD, LM32BF_INSN_ADD, LM32BF_SFMT_ADD },
  { LM32_INSN_ADDI, LM32BF_INSN_ADDI, LM32BF_SFMT_ADDI },
  { LM32_INSN_AND, LM32BF_INSN_AND, LM32BF_SFMT_ADD },
  { LM32_INSN_ANDI, LM32BF_INSN_ANDI, LM32BF_SFMT_ANDI },
  { LM32_INSN_ANDHII, LM32BF_INSN_ANDHII, LM32BF_SFMT_ANDHII },
  { LM32_INSN_B, LM32BF_INSN_B, LM32BF_SFMT_B },
  { LM32_INSN_BI, LM32BF_INSN_BI, LM32BF_SFMT_BI },
  { LM32_INSN_BE, LM32BF_INSN_BE, LM32BF_SFMT_BE },
  { LM32_INSN_BG, LM32BF_INSN_BG, LM32BF_SFMT_BE },
  { LM32_INSN_BGE, LM32BF_INSN_BGE, LM32BF_SFMT_BE },
  { LM32_INSN_BGEU, LM32BF_INSN_BGEU, LM32BF_SFMT_BE },
  { LM32_INSN_BGU, LM32BF_INSN_BGU, LM32BF_SFMT_BE },
  { LM32_INSN_BNE, LM32BF_INSN_BNE, LM32BF_SFMT_BE },
  { LM32_INSN_CALL, LM32BF_INSN_CALL, LM32BF_SFMT_CALL },
  { LM32_INSN_CALLI, LM32BF_INSN_CALLI, LM32BF_SFMT_CALLI },
  { LM32_INSN_CMPE, LM32BF_INSN_CMPE, LM32BF_SFMT_ADD },
  { LM32_INSN_CMPEI, LM32BF_INSN_CMPEI, LM32BF_SFMT_ADDI },
  { LM32_INSN_CMPG, LM32BF_INSN_CMPG, LM32BF_SFMT_ADD },
  { LM32_INSN_CMPGI, LM32BF_INSN_CMPGI, LM32BF_SFMT_ADDI },
  { LM32_INSN_CMPGE, LM32BF_INSN_CMPGE, LM32BF_SFMT_ADD },
  { LM32_INSN_CMPGEI, LM32BF_INSN_CMPGEI, LM32BF_SFMT_ADDI },
  { LM32_INSN_CMPGEU, LM32BF_INSN_CMPGEU, LM32BF_SFMT_ADD },
  { LM32_INSN_CMPGEUI, LM32BF_INSN_CMPGEUI, LM32BF_SFMT_ANDI },
  { LM32_INSN_CMPGU, LM32BF_INSN_CMPGU, LM32BF_SFMT_ADD },
  { LM32_INSN_CMPGUI, LM32BF_INSN_CMPGUI, LM32BF_SFMT_ANDI },
  { LM32_INSN_CMPNE, LM32BF_INSN_CMPNE, LM32BF_SFMT_ADD },
  { LM32_INSN_CMPNEI, LM32BF_INSN_CMPNEI, LM32BF_SFMT_ADDI },
  { LM32_INSN_DIVU, LM32BF_INSN_DIVU, LM32BF_SFMT_DIVU },
  { LM32_INSN_LB, LM32BF_INSN_LB, LM32BF_SFMT_LB },
  { LM32_INSN_LBU, LM32BF_INSN_LBU, LM32BF_SFMT_LB },
  { LM32_INSN_LH, LM32BF_INSN_LH, LM32BF_SFMT_LH },
  { LM32_INSN_LHU, LM32BF_INSN_LHU, LM32BF_SFMT_LH },
  { LM32_INSN_LW, LM32BF_INSN_LW, LM32BF_SFMT_LW },
  { LM32_INSN_MODU, LM32BF_INSN_MODU, LM32BF_SFMT_DIVU },
  { LM32_INSN_MUL, LM32BF_INSN_MUL, LM32BF_SFMT_ADD },
  { LM32_INSN_MULI, LM32BF_INSN_MULI, LM32BF_SFMT_ADDI },
  { LM32_INSN_NOR, LM32BF_INSN_NOR, LM32BF_SFMT_ADD },
  { LM32_INSN_NORI, LM32BF_INSN_NORI, LM32BF_SFMT_ANDI },
  { LM32_INSN_OR, LM32BF_INSN_OR, LM32BF_SFMT_ADD },
  { LM32_INSN_ORI, LM32BF_INSN_ORI, LM32BF_SFMT_ORI },
  { LM32_INSN_ORHII, LM32BF_INSN_ORHII, LM32BF_SFMT_ANDHII },
  { LM32_INSN_RCSR, LM32BF_INSN_RCSR, LM32BF_SFMT_RCSR },
  { LM32_INSN_SB, LM32BF_INSN_SB, LM32BF_SFMT_SB },
  { LM32_INSN_SEXTB, LM32BF_INSN_SEXTB, LM32BF_SFMT_SEXTB },
  { LM32_INSN_SEXTH, LM32BF_INSN_SEXTH, LM32BF_SFMT_SEXTB },
  { LM32_INSN_SH, LM32BF_INSN_SH, LM32BF_SFMT_SH },
  { LM32_INSN_SL, LM32BF_INSN_SL, LM32BF_SFMT_ADD },
  { LM32_INSN_SLI, LM32BF_INSN_SLI, LM32BF_SFMT_ADDI },
  { LM32_INSN_SR, LM32BF_INSN_SR, LM32BF_SFMT_ADD },
  { LM32_INSN_SRI, LM32BF_INSN_SRI, LM32BF_SFMT_ADDI },
  { LM32_INSN_SRU, LM32BF_INSN_SRU, LM32BF_SFMT_ADD },
  { LM32_INSN_SRUI, LM32BF_INSN_SRUI, LM32BF_SFMT_ADDI },
  { LM32_INSN_SUB, LM32BF_INSN_SUB, LM32BF_SFMT_ADD },
  { LM32_INSN_SW, LM32BF_INSN_SW, LM32BF_SFMT_SW },
  { LM32_INSN_USER, LM32BF_INSN_USER, LM32BF_SFMT_USER },
  { LM32_INSN_WCSR, LM32BF_INSN_WCSR, LM32BF_SFMT_WCSR },
  { LM32_INSN_XOR, LM32BF_INSN_XOR, LM32BF_SFMT_ADD },
  { LM32_INSN_XORI, LM32BF_INSN_XORI, LM32BF_SFMT_ANDI },
  { LM32_INSN_XNOR, LM32BF_INSN_XNOR, LM32BF_SFMT_ADD },
  { LM32_INSN_XNORI, LM32BF_INSN_XNORI, LM32BF_SFMT_ANDI },
  { LM32_INSN_BREAK, LM32BF_INSN_BREAK, LM32BF_SFMT_BREAK },
  { LM32_INSN_SCALL, LM32BF_INSN_SCALL, LM32BF_SFMT_BREAK },
};

static const struct insn_sem lm32bf_insn_sem_invalid =
{
  VIRTUAL_INSN_X_INVALID, LM32BF_INSN_X_INVALID, LM32BF_SFMT_EMPTY
};

/* Initialize an IDESC from the compile-time computable parts.  */

static INLINE void
init_idesc (SIM_CPU *cpu, IDESC *id, const struct insn_sem *t)
{
  const CGEN_INSN *insn_table = CGEN_CPU_INSN_TABLE (CPU_CPU_DESC (cpu))->init_entries;

  id->num = t->index;
  id->sfmt = t->sfmt;
  if ((int) t->type <= 0)
    id->idata = & cgen_virtual_insn_table[- (int) t->type];
  else
    id->idata = & insn_table[t->type];
  id->attrs = CGEN_INSN_ATTRS (id->idata);
  /* Oh my god, a magic number.  */
  id->length = CGEN_INSN_BITSIZE (id->idata) / 8;

#if WITH_PROFILE_MODEL_P
  id->timing = & MODEL_TIMING (CPU_MODEL (cpu)) [t->index];
  {
    SIM_DESC sd = CPU_STATE (cpu);
    SIM_ASSERT (t->index == id->timing->num);
  }
#endif

  /* Semantic pointers are initialized elsewhere.  */
}

/* Initialize the instruction descriptor table.  */

void
lm32bf_init_idesc_table (SIM_CPU *cpu)
{
  IDESC *id,*tabend;
  const struct insn_sem *t,*tend;
  int tabsize = LM32BF_INSN__MAX;
  IDESC *table = lm32bf_insn_data;

  memset (table, 0, tabsize * sizeof (IDESC));

  /* First set all entries to the `invalid insn'.  */
  t = & lm32bf_insn_sem_invalid;
  for (id = table, tabend = table + tabsize; id < tabend; ++id)
    init_idesc (cpu, id, t);

  /* Now fill in the values for the chosen cpu.  */
  for (t = lm32bf_insn_sem, tend = t + ARRAY_SIZE (lm32bf_insn_sem);
       t != tend; ++t)
    {
      init_idesc (cpu, & table[t->index], t);
    }

  /* Link the IDESC table into the cpu.  */
  CPU_IDESC (cpu) = table;
}

/* Given an instruction, return a pointer to its IDESC entry.  */

const IDESC *
lm32bf_decode (SIM_CPU *current_cpu, IADDR pc,
              CGEN_INSN_WORD base_insn, CGEN_INSN_WORD entire_insn,
              ARGBUF *abuf)
{
  /* Result of decoder.  */
  LM32BF_INSN_TYPE itype;

  {
    CGEN_INSN_WORD insn = base_insn;

    {
      unsigned int val = (((insn >> 26) & (63 << 0)));
      switch (val)
      {
      case 0 : itype = LM32BF_INSN_SRUI; goto extract_sfmt_addi;
      case 1 : itype = LM32BF_INSN_NORI; goto extract_sfmt_andi;
      case 2 : itype = LM32BF_INSN_MULI; goto extract_sfmt_addi;
      case 3 : itype = LM32BF_INSN_SH; goto extract_sfmt_sh;
      case 4 : itype = LM32BF_INSN_LB; goto extract_sfmt_lb;
      case 5 : itype = LM32BF_INSN_SRI; goto extract_sfmt_addi;
      case 6 : itype = LM32BF_INSN_XORI; goto extract_sfmt_andi;
      case 7 : itype = LM32BF_INSN_LH; goto extract_sfmt_lh;
      case 8 : itype = LM32BF_INSN_ANDI; goto extract_sfmt_andi;
      case 9 : itype = LM32BF_INSN_XNORI; goto extract_sfmt_andi;
      case 10 : itype = LM32BF_INSN_LW; goto extract_sfmt_lw;
      case 11 : itype = LM32BF_INSN_LHU; goto extract_sfmt_lh;
      case 12 : itype = LM32BF_INSN_SB; goto extract_sfmt_sb;
      case 13 : itype = LM32BF_INSN_ADDI; goto extract_sfmt_addi;
      case 14 : itype = LM32BF_INSN_ORI; goto extract_sfmt_ori;
      case 15 : itype = LM32BF_INSN_SLI; goto extract_sfmt_addi;
      case 16 : itype = LM32BF_INSN_LBU; goto extract_sfmt_lb;
      case 17 : itype = LM32BF_INSN_BE; goto extract_sfmt_be;
      case 18 : itype = LM32BF_INSN_BG; goto extract_sfmt_be;
      case 19 : itype = LM32BF_INSN_BGE; goto extract_sfmt_be;
      case 20 : itype = LM32BF_INSN_BGEU; goto extract_sfmt_be;
      case 21 : itype = LM32BF_INSN_BGU; goto extract_sfmt_be;
      case 22 : itype = LM32BF_INSN_SW; goto extract_sfmt_sw;
      case 23 : itype = LM32BF_INSN_BNE; goto extract_sfmt_be;
      case 24 : itype = LM32BF_INSN_ANDHII; goto extract_sfmt_andhii;
      case 25 : itype = LM32BF_INSN_CMPEI; goto extract_sfmt_addi;
      case 26 : itype = LM32BF_INSN_CMPGI; goto extract_sfmt_addi;
      case 27 : itype = LM32BF_INSN_CMPGEI; goto extract_sfmt_addi;
      case 28 : itype = LM32BF_INSN_CMPGEUI; goto extract_sfmt_andi;
      case 29 : itype = LM32BF_INSN_CMPGUI; goto extract_sfmt_andi;
      case 30 : itype = LM32BF_INSN_ORHII; goto extract_sfmt_andhii;
      case 31 : itype = LM32BF_INSN_CMPNEI; goto extract_sfmt_addi;
      case 32 :
        if ((entire_insn & 0xfc0007ff) == 0x80000000)
          { itype = LM32BF_INSN_SRU; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 33 :
        if ((entire_insn & 0xfc0007ff) == 0x84000000)
          { itype = LM32BF_INSN_NOR; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 34 :
        if ((entire_insn & 0xfc0007ff) == 0x88000000)
          { itype = LM32BF_INSN_MUL; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 35 :
        if ((entire_insn & 0xfc0007ff) == 0x8c000000)
          { itype = LM32BF_INSN_DIVU; goto extract_sfmt_divu; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 36 :
        if ((entire_insn & 0xfc1f07ff) == 0x90000000)
          { itype = LM32BF_INSN_RCSR; goto extract_sfmt_rcsr; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 37 :
        if ((entire_insn & 0xfc0007ff) == 0x94000000)
          { itype = LM32BF_INSN_SR; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 38 :
        if ((entire_insn & 0xfc0007ff) == 0x98000000)
          { itype = LM32BF_INSN_XOR; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 40 :
        if ((entire_insn & 0xfc0007ff) == 0xa0000000)
          { itype = LM32BF_INSN_AND; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 41 :
        if ((entire_insn & 0xfc0007ff) == 0xa4000000)
          { itype = LM32BF_INSN_XNOR; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 43 :
        {
          unsigned int val = (((insn >> 1) & (1 << 1)) | ((insn >> 0) & (1 << 0)));
          switch (val)
          {
          case 0 :
            if ((entire_insn & 0xffffffff) == 0xac000002)
              { itype = LM32BF_INSN_BREAK; goto extract_sfmt_break; }
            itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
          case 3 :
            if ((entire_insn & 0xffffffff) == 0xac000007)
              { itype = LM32BF_INSN_SCALL; goto extract_sfmt_break; }
            itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
          default : itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
          }
        }
      case 44 :
        if ((entire_insn & 0xfc1f07ff) == 0xb0000000)
          { itype = LM32BF_INSN_SEXTB; goto extract_sfmt_sextb; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 45 :
        if ((entire_insn & 0xfc0007ff) == 0xb4000000)
          { itype = LM32BF_INSN_ADD; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 46 :
        if ((entire_insn & 0xfc0007ff) == 0xb8000000)
          { itype = LM32BF_INSN_OR; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 47 :
        if ((entire_insn & 0xfc0007ff) == 0xbc000000)
          { itype = LM32BF_INSN_SL; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 48 :
        if ((entire_insn & 0xfc1fffff) == 0xc0000000)
          { itype = LM32BF_INSN_B; goto extract_sfmt_b; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 49 :
        if ((entire_insn & 0xfc0007ff) == 0xc4000000)
          { itype = LM32BF_INSN_MODU; goto extract_sfmt_divu; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 50 :
        if ((entire_insn & 0xfc0007ff) == 0xc8000000)
          { itype = LM32BF_INSN_SUB; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 51 : itype = LM32BF_INSN_USER; goto extract_sfmt_user;
      case 52 :
        if ((entire_insn & 0xfc00ffff) == 0xd0000000)
          { itype = LM32BF_INSN_WCSR; goto extract_sfmt_wcsr; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 54 :
        if ((entire_insn & 0xfc1fffff) == 0xd8000000)
          { itype = LM32BF_INSN_CALL; goto extract_sfmt_call; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 55 :
        if ((entire_insn & 0xfc1f07ff) == 0xdc000000)
          { itype = LM32BF_INSN_SEXTH; goto extract_sfmt_sextb; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 56 : itype = LM32BF_INSN_BI; goto extract_sfmt_bi;
      case 57 :
        if ((entire_insn & 0xfc0007ff) == 0xe4000000)
          { itype = LM32BF_INSN_CMPE; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 58 :
        if ((entire_insn & 0xfc0007ff) == 0xe8000000)
          { itype = LM32BF_INSN_CMPG; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 59 :
        if ((entire_insn & 0xfc0007ff) == 0xec000000)
          { itype = LM32BF_INSN_CMPGE; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 60 :
        if ((entire_insn & 0xfc0007ff) == 0xf0000000)
          { itype = LM32BF_INSN_CMPGEU; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 61 :
        if ((entire_insn & 0xfc0007ff) == 0xf4000000)
          { itype = LM32BF_INSN_CMPGU; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      case 62 : itype = LM32BF_INSN_CALLI; goto extract_sfmt_calli;
      case 63 :
        if ((entire_insn & 0xfc0007ff) == 0xfc000000)
          { itype = LM32BF_INSN_CMPNE; goto extract_sfmt_add; }
        itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      default : itype = LM32BF_INSN_X_INVALID; goto extract_sfmt_empty;
      }
    }
  }

  /* The instruction has been decoded, now extract the fields.  */

 extract_sfmt_empty:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
#define FLD(f) abuf->fields.sfmt_empty.f


  /* Record the fields for the semantic handler.  */
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_empty", (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_add:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_user.f
    UINT f_r0;
    UINT f_r1;
    UINT f_r2;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5);

  /* Record the fields for the semantic handler.  */
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  FLD (f_r2) = f_r2;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_add", "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, "f_r2 0x%x", 'x', f_r2, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_addi:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_addi.f
    UINT f_r0;
    UINT f_r1;
    INT f_imm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_imm) = f_imm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_addi", "f_imm 0x%x", 'x', f_imm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_andi:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_andi.f
    UINT f_r0;
    UINT f_r1;
    UINT f_uimm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_r0) = f_r0;
  FLD (f_uimm) = f_uimm;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_andi", "f_r0 0x%x", 'x', f_r0, "f_uimm 0x%x", 'x', f_uimm, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_andhii:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_andi.f
    UINT f_r0;
    UINT f_r1;
    UINT f_uimm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_uimm) = f_uimm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_andhii", "f_uimm 0x%x", 'x', f_uimm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_b:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_be.f
    UINT f_r0;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);

  /* Record the fields for the semantic handler.  */
  FLD (f_r0) = f_r0;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_b", "f_r0 0x%x", 'x', f_r0, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_bi:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_bi.f
    SI f_call;

    f_call = ((pc) + (((SI) (((EXTRACT_LSB0_SINT (insn, 32, 25, 26)) << (6))) >> (4))));

  /* Record the fields for the semantic handler.  */
  FLD (i_call) = f_call;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_bi", "call 0x%x", 'x', f_call, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_be:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_be.f
    UINT f_r0;
    UINT f_r1;
    SI f_branch;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_branch = ((pc) + (((SI) (((EXTRACT_LSB0_SINT (insn, 32, 15, 16)) << (16))) >> (14))));

  /* Record the fields for the semantic handler.  */
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  FLD (i_branch) = f_branch;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_be", "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, "branch 0x%x", 'x', f_branch, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_call:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_be.f
    UINT f_r0;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);

  /* Record the fields for the semantic handler.  */
  FLD (f_r0) = f_r0;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_call", "f_r0 0x%x", 'x', f_r0, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_calli:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_bi.f
    SI f_call;

    f_call = ((pc) + (((SI) (((EXTRACT_LSB0_SINT (insn, 32, 25, 26)) << (6))) >> (4))));

  /* Record the fields for the semantic handler.  */
  FLD (i_call) = f_call;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_calli", "call 0x%x", 'x', f_call, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_divu:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_user.f
    UINT f_r0;
    UINT f_r1;
    UINT f_r2;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5);

  /* Record the fields for the semantic handler.  */
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  FLD (f_r2) = f_r2;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_divu", "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, "f_r2 0x%x", 'x', f_r2, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_lb:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_addi.f
    UINT f_r0;
    UINT f_r1;
    INT f_imm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_imm) = f_imm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_lb", "f_imm 0x%x", 'x', f_imm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_lh:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_addi.f
    UINT f_r0;
    UINT f_r1;
    INT f_imm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_imm) = f_imm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_lh", "f_imm 0x%x", 'x', f_imm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_lw:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_addi.f
    UINT f_r0;
    UINT f_r1;
    INT f_imm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_imm) = f_imm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_lw", "f_imm 0x%x", 'x', f_imm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_ori:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_andi.f
    UINT f_r0;
    UINT f_r1;
    UINT f_uimm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_uimm) = f_uimm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_ori", "f_uimm 0x%x", 'x', f_uimm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_rcsr:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_rcsr.f
    UINT f_csr;
    UINT f_r2;

    f_csr = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5);

  /* Record the fields for the semantic handler.  */
  FLD (f_csr) = f_csr;
  FLD (f_r2) = f_r2;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_rcsr", "f_csr 0x%x", 'x', f_csr, "f_r2 0x%x", 'x', f_r2, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_sb:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_addi.f
    UINT f_r0;
    UINT f_r1;
    INT f_imm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_imm) = f_imm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_sb", "f_imm 0x%x", 'x', f_imm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_sextb:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_user.f
    UINT f_r0;
    UINT f_r2;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5);

  /* Record the fields for the semantic handler.  */
  FLD (f_r0) = f_r0;
  FLD (f_r2) = f_r2;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_sextb", "f_r0 0x%x", 'x', f_r0, "f_r2 0x%x", 'x', f_r2, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_sh:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_addi.f
    UINT f_r0;
    UINT f_r1;
    INT f_imm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_imm) = f_imm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_sh", "f_imm 0x%x", 'x', f_imm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_sw:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_addi.f
    UINT f_r0;
    UINT f_r1;
    INT f_imm;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16);

  /* Record the fields for the semantic handler.  */
  FLD (f_imm) = f_imm;
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_sw", "f_imm 0x%x", 'x', f_imm, "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_user:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_user.f
    UINT f_r0;
    UINT f_r1;
    UINT f_r2;
    UINT f_user;

    f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);
    f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5);
    f_user = EXTRACT_LSB0_UINT (insn, 32, 10, 11);

  /* Record the fields for the semantic handler.  */
  FLD (f_r0) = f_r0;
  FLD (f_r1) = f_r1;
  FLD (f_user) = f_user;
  FLD (f_r2) = f_r2;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_user", "f_r0 0x%x", 'x', f_r0, "f_r1 0x%x", 'x', f_r1, "f_user 0x%x", 'x', f_user, "f_r2 0x%x", 'x', f_r2, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_wcsr:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
    CGEN_INSN_WORD insn = entire_insn;
#define FLD(f) abuf->fields.sfmt_wcsr.f
    UINT f_csr;
    UINT f_r1;

    f_csr = EXTRACT_LSB0_UINT (insn, 32, 25, 5);
    f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5);

  /* Record the fields for the semantic handler.  */
  FLD (f_csr) = f_csr;
  FLD (f_r1) = f_r1;
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_wcsr", "f_csr 0x%x", 'x', f_csr, "f_r1 0x%x", 'x', f_r1, (char *) 0));

#undef FLD
    return idesc;
  }

 extract_sfmt_break:
  {
    const IDESC *idesc = &lm32bf_insn_data[itype];
#define FLD(f) abuf->fields.sfmt_empty.f


  /* Record the fields for the semantic handler.  */
  CGEN_TRACE_EXTRACT (current_cpu, abuf, (current_cpu, pc, "sfmt_break", (char *) 0));

#undef FLD
    return idesc;
  }

}