Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
// icf.cc -- Identical Code Folding.
//
// Copyright (C) 2009-2020 Free Software Foundation, Inc.
// Written by Sriraman Tallam <tmsriram@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

// Identical Code Folding Algorithm
// ----------------------------------
// Detecting identical functions is done here and the basic algorithm
// is as follows.  A checksum is computed on each foldable section using
// its contents and relocations.  If the symbol name corresponding to
// a relocation is known it is used to compute the checksum.  If the
// symbol name is not known the stringified name of the object and the
// section number pointed to by the relocation is used.  The checksums
// are stored as keys in a hash map and a section is identical to some
// other section if its checksum is already present in the hash map.
// Checksum collisions are handled by using a multimap and explicitly
// checking the contents when two sections have the same checksum.
//
// However, two functions A and B with identical text but with
// relocations pointing to different foldable sections can be identical if
// the corresponding foldable sections to which their relocations point to
// turn out to be identical.  Hence, this checksumming process must be
// done repeatedly until convergence is obtained.  Here is an example for
// the following case :
//
// int funcA ()               int funcB ()
// {                          {
//   return foo();              return goo();
// }                          }
//
// The functions funcA and funcB are identical if functions foo() and
// goo() are identical.
//
// Hence, as described above, we repeatedly do the checksumming,
// assigning identical functions to the same group, until convergence is
// obtained.  Now, we have two different ways to do this depending on how
// we initialize.
//
// Algorithm I :
// -----------
// We can start with marking all functions as different and repeatedly do
// the checksumming.  This has the advantage that we do not need to wait
// for convergence. We can stop at any point and correctness will be
// guaranteed although not all cases would have been found.  However, this
// has a problem that some cases can never be found even if it is run until
// convergence.  Here is an example with mutually recursive functions :
//
// int funcA (int a)            int funcB (int a)
// {                            {
//   if (a == 1)                  if (a == 1)
//     return 1;                    return 1;
//   return 1 + funcB(a - 1);     return 1 + funcA(a - 1);
// }                            }
//
// In this example funcA and funcB are identical and one of them could be
// folded into the other.  However, if we start with assuming that funcA
// and funcB are not identical, the algorithm, even after it is run to
// convergence, cannot detect that they are identical.  It should be noted
// that even if the functions were self-recursive, Algorithm I cannot catch
// that they are identical, at least as is.
//
// Algorithm II :
// ------------
// Here we start with marking all functions as identical and then repeat
// the checksumming until convergence.  This can detect the above case
// mentioned above.  It can detect all cases that Algorithm I can and more.
// However, the caveat is that it has to be run to convergence.  It cannot
// be stopped arbitrarily like Algorithm I as correctness cannot be
// guaranteed.  Algorithm II is not implemented.
//
// Algorithm I is used because experiments show that about three
// iterations are more than enough to achieve convergence. Algorithm I can
// handle recursive calls if it is changed to use a special common symbol
// for recursive relocs.  This seems to be the most common case that
// Algorithm I could not catch as is.  Mutually recursive calls are not
// frequent and Algorithm I wins because of its ability to be stopped
// arbitrarily.
//
// Caveat with using function pointers :
// ------------------------------------
//
// Programs using function pointer comparisons/checks should use function
// folding with caution as the result of such comparisons could be different
// when folding takes place.  This could lead to unexpected run-time
// behaviour.
//
// Safe Folding :
// ------------
//
// ICF in safe mode folds only ctors and dtors if their function pointers can
// never be taken.  Also, for X86-64, safe folding uses the relocation
// type to determine if a function's pointer is taken or not and only folds
// functions whose pointers are definitely not taken.
//
// Caveat with safe folding :
// ------------------------
//
// This applies only to x86_64.
//
// Position independent executables are created from PIC objects (compiled
// with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the
// relocation types for function pointer taken and a call are the same.
// Now, it is not always possible to tell if an object used in the link of
// a pie executable is a PIC object or a PIE object.  Hence, for pie
// executables, using relocation types to disambiguate function pointers is
// currently disabled.
//
// Further, it is not correct to use safe folding to build non-pie
// executables using PIC/PIE objects.  PIC/PIE objects have different
// relocation types for function pointers than non-PIC objects, and the
// current implementation of safe folding does not handle those relocation
// types.  Hence, if used, functions whose pointers are taken could still be
// folded causing unpredictable run-time behaviour if the pointers were used
// in comparisons.
//
// Notes regarding C++ exception handling :
// --------------------------------------
//
// It is possible for two sections to have identical text, identical
// relocations, but different exception handling metadata (unwind
// information in the .eh_frame section, and/or handler information in
// a .gcc_except_table section).  Thus, if a foldable section is
// referenced from a .eh_frame FDE, we must include in its checksum
// the contents of that FDE as well as of the CIE that the FDE refers
// to.  The CIE and FDE in turn probably contain relocations to the
// personality routine and LSDA, which are handled like any other
// relocation for ICF purposes.  This logic is helped by the fact that
// gcc with -ffunction-sections puts each function's LSDA in its own
// .gcc_except_table.<functionname> section.  Given sections for two
// functions with nontrivial exception handling logic, we will
// determine on the first iteration that their .gcc_except_table
// sections are identical and can be folded, and on the second
// iteration that their .text and .eh_frame contents (including the
// now-merged .gcc_except_table relocations for the LSDA) are
// identical and can be folded.
//
//
// How to run  : --icf=[safe|all|none]
// Optional parameters : --icf-iterations <num> --print-icf-sections
//
// Performance : Less than 20 % link-time overhead on industry strength
// applications.  Up to 6 %  text size reductions.

#include "gold.h"
#include "object.h"
#include "gc.h"
#include "icf.h"
#include "symtab.h"
#include "libiberty.h"
#include "demangle.h"
#include "elfcpp.h"
#include "int_encoding.h"

#include <limits>

namespace gold
{

// This function determines if a section or a group of identical
// sections has unique contents.  Such unique sections or groups can be
// declared final and need not be processed any further.
// Parameters :
// ID_SECTION : Vector mapping a section index to a Section_id pair.
// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
//                            sections is already known to be unique.
// SECTION_CONTENTS : Contains the section's text and relocs to sections
//                    that cannot be folded.   SECTION_CONTENTS are NULL
//                    implies that this function is being called for the
//                    first time before the first iteration of icf.

static void
preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
                               std::vector<bool>* is_secn_or_group_unique,
                               std::vector<std::string>* section_contents)
{
  Unordered_map<uint32_t, unsigned int> uniq_map;
  std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
    uniq_map_insert;

  for (unsigned int i = 0; i < id_section.size(); i++)
    {
      if ((*is_secn_or_group_unique)[i])
        continue;

      uint32_t cksum;
      Section_id secn = id_section[i];
      section_size_type plen;
      if (section_contents == NULL)
        {
          // Lock the object so we can read from it.  This is only called
          // single-threaded from queue_middle_tasks, so it is OK to lock.
          // Unfortunately we have no way to pass in a Task token.
          const Task* dummy_task = reinterpret_cast<const Task*>(-1);
          Task_lock_obj<Object> tl(dummy_task, secn.first);
          const unsigned char* contents;
          contents = secn.first->section_contents(secn.second,
                                                  &plen,
                                                  false);
          cksum = xcrc32(contents, plen, 0xffffffff);
        }
      else
        {
          const unsigned char* contents_array = reinterpret_cast
            <const unsigned char*>((*section_contents)[i].c_str());
          cksum = xcrc32(contents_array, (*section_contents)[i].length(),
                         0xffffffff);
        }
      uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
      if (uniq_map_insert.second)
        {
          (*is_secn_or_group_unique)[i] = true;
        }
      else
        {
          (*is_secn_or_group_unique)[i] = false;
          (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
        }
    }
}

// For SHF_MERGE sections that use REL relocations, the addend is stored in
// the text section at the relocation offset.  Read  the addend value given
// the pointer to the addend in the text section and the addend size.
// Update the addend value if a valid addend is found.
// Parameters:
// RELOC_ADDEND_PTR   : Pointer to the addend in the text section.
// ADDEND_SIZE        : The size of the addend.
// RELOC_ADDEND_VALUE : Pointer to the addend that is updated.

inline void
get_rel_addend(const unsigned char* reloc_addend_ptr,
	       const unsigned int addend_size,
	       uint64_t* reloc_addend_value)
{
  switch (addend_size)
    {
    case 0:
      break;
    case 1:
      *reloc_addend_value =
        read_from_pointer<8>(reloc_addend_ptr);
      break;
    case 2:
      *reloc_addend_value =
          read_from_pointer<16>(reloc_addend_ptr);
      break;
    case 4:
      *reloc_addend_value =
        read_from_pointer<32>(reloc_addend_ptr);
      break;
    case 8:
      *reloc_addend_value =
        read_from_pointer<64>(reloc_addend_ptr);
      break;
    default:
      gold_unreachable();
    }
}

// This returns the buffer containing the section's contents, both
// text and relocs.  Relocs are differentiated as those pointing to
// sections that could be folded and those that cannot.  Only relocs
// pointing to sections that could be folded are recomputed on
// subsequent invocations of this function.
// Parameters  :
// FIRST_ITERATION    : true if it is the first invocation.
// FIXED_CACHE        : String that stores the portion of the result that
//                      does not change from iteration to iteration;
//                      written if first_iteration is true, read if it's false.
// SECN               : Section for which contents are desired.
// SELF_SECN          : Relocations that target this section will be
//                      considered "relocations to self" so that recursive
//                      functions can be folded. Should normally be the
//                      same as `secn` except when processing extra identity
//                      regions.
// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
//                      to ICF sections.
// KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
// START_OFFSET       : Only consider the part of the section at and after
//                      this offset.
// END_OFFSET         : Only consider the part of the section before this
//                      offset.

static std::string
get_section_contents(bool first_iteration,
		     std::string* fixed_cache,
                     const Section_id& secn,
		     const Section_id& self_secn,
                     unsigned int* num_tracked_relocs,
                     Symbol_table* symtab,
                     const std::vector<unsigned int>& kept_section_id,
		     section_offset_type start_offset = 0,
		     section_offset_type end_offset =
		       std::numeric_limits<section_offset_type>::max())
{
  section_size_type plen;
  const unsigned char* contents = NULL;
  if (first_iteration)
    contents = secn.first->section_contents(secn.second, &plen, false);

  // The buffer to hold all the contents including relocs.  A checksum
  // is then computed on this buffer.
  std::string buffer;
  std::string icf_reloc_buffer;

  Icf::Reloc_info_list& reloc_info_list = 
    symtab->icf()->reloc_info_list();

  Icf::Reloc_info_list::iterator it_reloc_info_list =
    reloc_info_list.find(secn);

  buffer.clear();
  icf_reloc_buffer.clear();

  // Process relocs and put them into the buffer.

  if (it_reloc_info_list != reloc_info_list.end())
    {
      Icf::Sections_reachable_info &v =
        (it_reloc_info_list->second).section_info;
      // Stores the information of the symbol pointed to by the reloc.
      const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
      // Stores the addend and the symbol value.
      Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
      // Stores the offset of the reloc.
      const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
      const Icf::Reloc_addend_size_info &reloc_addend_size_info =
        (it_reloc_info_list->second).reloc_addend_size_info;
      Icf::Sections_reachable_info::iterator it_v = v.begin();
      Icf::Symbol_info::const_iterator it_s = s.begin();
      Icf::Addend_info::iterator it_a = a.begin();
      Icf::Offset_info::const_iterator it_o = o.begin();
      Icf::Reloc_addend_size_info::const_iterator it_addend_size =
        reloc_addend_size_info.begin();

      for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
        {
	  Symbol* gsym = *it_s;
	  bool is_section_symbol = false;

	  // Ignore relocations outside the region we were told to look at
	  if (static_cast<section_offset_type>(*it_o) < start_offset
	      || static_cast<section_offset_type>(*it_o) >= end_offset)
	    continue;

	  // A -1 value in the symbol vector indicates a local section symbol.
	  if (gsym == reinterpret_cast<Symbol*>(-1))
	    {
	      is_section_symbol = true;
	      gsym = NULL;
	    }

	  if (first_iteration
	      && it_v->first != NULL)
	    {
	      Symbol_location loc;
	      loc.object = it_v->first;
	      loc.shndx = it_v->second;
	      loc.offset = convert_types<off_t, long long>(it_a->first
							   + it_a->second);
	      // Look through function descriptors
	      parameters->target().function_location(&loc);
	      if (loc.shndx != it_v->second)
		{
		  it_v->second = loc.shndx;
		  // Modify symvalue/addend to the code entry.
		  it_a->first = loc.offset;
		  it_a->second = 0;
		}
	    }

          // ADDEND_STR stores the symbol value and addend and offset,
          // each at most 16 hex digits long.  it_a points to a pair
          // where first is the symbol value and second is the
          // addend.
          char addend_str[50];

	  // It would be nice if we could use format macros in inttypes.h
	  // here but there are not in ISO/IEC C++ 1998.
          snprintf(addend_str, sizeof(addend_str), "%llx %llx %llx",
                   static_cast<long long>((*it_a).first),
		   static_cast<long long>((*it_a).second),
		   static_cast<unsigned long long>(*it_o - start_offset));

	  // If the symbol pointed to by the reloc is not in an ordinary
	  // section or if the symbol type is not FROM_OBJECT, then the
	  // object is NULL.
	  if (it_v->first == NULL)
            {
	      if (first_iteration)
                {
		  // If the symbol name is available, use it.
                  if (gsym != NULL)
                      buffer.append(gsym->name());
                  // Append the addend.
                  buffer.append(addend_str);
                  buffer.append("@");
		}
	      continue;
	    }

          Section_id reloc_secn(it_v->first, it_v->second);

          // If this reloc turns back and points to the same section,
          // like a recursive call, use a special symbol to mark this.
          if (reloc_secn.first == self_secn.first
              && reloc_secn.second == self_secn.second)
            {
              if (first_iteration)
                {
                  buffer.append("R");
                  buffer.append(addend_str);
                  buffer.append("@");
                }
              continue;
            }
          Icf::Uniq_secn_id_map& section_id_map =
            symtab->icf()->section_to_int_map();
          Icf::Uniq_secn_id_map::iterator section_id_map_it =
            section_id_map.find(reloc_secn);
          bool is_sym_preemptible = (gsym != NULL
				     && !gsym->is_from_dynobj()
				     && !gsym->is_undefined()
				     && gsym->is_preemptible());
          if (!is_sym_preemptible
              && section_id_map_it != section_id_map.end())
            {
              // This is a reloc to a section that might be folded.
              if (num_tracked_relocs)
                (*num_tracked_relocs)++;

              char kept_section_str[10];
              unsigned int secn_id = section_id_map_it->second;
              snprintf(kept_section_str, sizeof(kept_section_str), "%u",
                       kept_section_id[secn_id]);
              if (first_iteration)
                {
                  buffer.append("ICF_R");
                  buffer.append(addend_str);
                }
              icf_reloc_buffer.append(kept_section_str);
              // Append the addend.
              icf_reloc_buffer.append(addend_str);
              icf_reloc_buffer.append("@");
            }
          else
            {
              // This is a reloc to a section that cannot be folded.
              // Process it only in the first iteration.
              if (!first_iteration)
                continue;

              uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
              // This reloc points to a merge section.  Hash the
              // contents of this section.
              if ((secn_flags & elfcpp::SHF_MERGE) != 0
		  && parameters->target().can_icf_inline_merge_sections())
                {
                  uint64_t entsize =
                    (it_v->first)->section_entsize(it_v->second);
		  long long offset = it_a->first;

		  // Handle SHT_RELA and SHT_REL addends. Only one of these
		  // addends exists. When pointing to a merge section, the
		  // addend only matters if it's relative to a section
		  // symbol. In order to unambiguously identify the target
		  // of the relocation, the compiler (and assembler) must use
		  // a local non-section symbol unless Symbol+Addend does in
		  // fact point directly to the target. (In other words,
		  // a bias for a pc-relative reference or a non-zero based
		  // access forces the use of a local symbol, and the addend
		  // is used only to provide that bias.)
		  uint64_t reloc_addend_value = 0;
		  if (is_section_symbol)
		    {
		      // Get the SHT_RELA addend.  For RELA relocations,
		      // we have the addend from the relocation.
		      reloc_addend_value = it_a->second;

		      // Handle SHT_REL addends.
		      // For REL relocations, we need to fetch the addend
		      // from the section contents.
		      const unsigned char* reloc_addend_ptr =
			contents + static_cast<unsigned long long>(*it_o);

		      // Update the addend value with the SHT_REL addend if
		      // available.
		      get_rel_addend(reloc_addend_ptr, *it_addend_size,
				     &reloc_addend_value);

		      // Ignore the addend when it is a negative value.
		      // See the comments in Merged_symbol_value::value
		      // in object.h.
		      if (reloc_addend_value < 0xffffff00)
			offset = offset + reloc_addend_value;
		    }

                  section_size_type secn_len;

                  const unsigned char* str_contents =
                  (it_v->first)->section_contents(it_v->second,
                                                  &secn_len,
                                                  false) + offset;
		  gold_assert (offset < (long long) secn_len);

                  if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
                    {
                      // String merge section.
                      const char* str_char =
                        reinterpret_cast<const char*>(str_contents);
                      switch(entsize)
                        {
                        case 1:
                          {
                            buffer.append(str_char);
                            break;
                          }
                        case 2:
                          {
                            const uint16_t* ptr_16 =
                              reinterpret_cast<const uint16_t*>(str_char);
                            unsigned int strlen_16 = 0;
                            // Find the NULL character.
                            while(*(ptr_16 + strlen_16) != 0)
                                strlen_16++;
                            buffer.append(str_char, strlen_16 * 2);
                          }
                          break;
                        case 4:
                          {
                            const uint32_t* ptr_32 =
                              reinterpret_cast<const uint32_t*>(str_char);
                            unsigned int strlen_32 = 0;
                            // Find the NULL character.
                            while(*(ptr_32 + strlen_32) != 0)
                                strlen_32++;
                            buffer.append(str_char, strlen_32 * 4);
                          }
                          break;
                        default:
                          gold_unreachable();
                        }
                    }
                  else
                    {
                      // Use the entsize to determine the length to copy.
		      uint64_t bufsize = entsize;
		      // If entsize is too big, copy all the remaining bytes.
		      if ((offset + entsize) > secn_len)
			bufsize = secn_len - offset;
                      buffer.append(reinterpret_cast<const
                                                     char*>(str_contents),
                                    bufsize);
                    }
		  buffer.append("@");
                }
              else if (gsym != NULL)
                {
                  // If symbol name is available use that.
                  buffer.append(gsym->name());
                  // Append the addend.
                  buffer.append(addend_str);
                  buffer.append("@");
                }
              else
                {
                  // Symbol name is not available, like for a local symbol,
                  // use object and section id.
                  buffer.append(it_v->first->name());
                  char secn_id[10];
                  snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
                  buffer.append(secn_id);
                  // Append the addend.
                  buffer.append(addend_str);
                  buffer.append("@");
                }
            }
        }
    }

  if (first_iteration)
    {
      buffer.append("Contents = ");

      const unsigned char* slice_end =
	contents + std::min<section_offset_type>(plen, end_offset);

      if (contents + start_offset < slice_end)
	{
	  buffer.append(reinterpret_cast<const char*>(contents + start_offset),
			slice_end - (contents + start_offset));
	}
    }

  // Add any extra identity regions.
  std::pair<Icf::Extra_identity_list::const_iterator,
	    Icf::Extra_identity_list::const_iterator>
    extra_range = symtab->icf()->extra_identity_list().equal_range(secn);
  for (Icf::Extra_identity_list::const_iterator it_ext = extra_range.first;
       it_ext != extra_range.second; ++it_ext)
    {
      std::string external_fixed;
      std::string external_all =
	get_section_contents(first_iteration, &external_fixed,
			     it_ext->second.section, self_secn,
			     num_tracked_relocs, symtab,
			     kept_section_id, it_ext->second.offset,
			     it_ext->second.offset + it_ext->second.length);
      buffer.append(external_fixed);
      icf_reloc_buffer.append(external_all, external_fixed.length(),
			      std::string::npos);
    }

  if (first_iteration)
    {
      // Store the section contents that don't change to avoid recomputing
      // during the next call to this function.
      *fixed_cache = buffer;
    }
  else
    {
      gold_assert(buffer.empty());

      // Reuse the contents computed in the previous iteration.
      buffer.append(*fixed_cache);
    }

  buffer.append(icf_reloc_buffer);
  return buffer;
}

// This function computes a checksum on each section to detect and form
// groups of identical sections.  The first iteration does this for all 
// sections.
// Further iterations do this only for the kept sections from each group to
// determine if larger groups of identical sections could be formed.  The
// first section in each group is the kept section for that group.
//
// CRC32 is the checksumming algorithm and can have collisions.  That is,
// two sections with different contents can have the same checksum. Hence,
// a multimap is used to maintain more than one group of checksum
// identical sections.  A section is added to a group only after its
// contents are explicitly compared with the kept section of the group.
//
// Parameters  :
// ITERATION_NUM           : Invocation instance of this function.
// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
//                      to ICF sections.
// KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
// ID_SECTION         : Vector mapping a section to an unique integer.
// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
//                            sections is already known to be unique.
// SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
//                      sections.

static bool
match_sections(unsigned int iteration_num,
               Symbol_table* symtab,
               std::vector<unsigned int>* num_tracked_relocs,
               std::vector<unsigned int>* kept_section_id,
               const std::vector<Section_id>& id_section,
	       const std::vector<uint64_t>& section_addraligns,
               std::vector<bool>* is_secn_or_group_unique,
               std::vector<std::string>* section_contents)
{
  Unordered_multimap<uint32_t, unsigned int> section_cksum;
  std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
            Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
  bool converged = true;

  if (iteration_num == 1)
    preprocess_for_unique_sections(id_section,
                                   is_secn_or_group_unique,
                                   NULL);
  else
    preprocess_for_unique_sections(id_section,
                                   is_secn_or_group_unique,
                                   section_contents);

  std::vector<std::string> full_section_contents;

  for (unsigned int i = 0; i < id_section.size(); i++)
    {
      full_section_contents.push_back("");
      if ((*is_secn_or_group_unique)[i])
        continue;

      Section_id secn = id_section[i];

      // Lock the object so we can read from it.  This is only called
      // single-threaded from queue_middle_tasks, so it is OK to lock.
      // Unfortunately we have no way to pass in a Task token.
      const Task* dummy_task = reinterpret_cast<const Task*>(-1);
      Task_lock_obj<Object> tl(dummy_task, secn.first);

      std::string this_secn_contents;
      uint32_t cksum;
      std::string* this_secn_cache = &((*section_contents)[i]);
      if (iteration_num == 1)
        {
          unsigned int num_relocs = 0;
          this_secn_contents = get_section_contents(true, this_secn_cache,
						    secn, secn, &num_relocs,
						    symtab, (*kept_section_id));
          (*num_tracked_relocs)[i] = num_relocs;
        }
      else
        {
          if ((*kept_section_id)[i] != i)
            {
              // This section is already folded into something.
              continue;
            }
          this_secn_contents = get_section_contents(false, this_secn_cache,
						    secn, secn, NULL,
						    symtab, (*kept_section_id));
        }

      const unsigned char* this_secn_contents_array =
            reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
      cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
                     0xffffffff);
      size_t count = section_cksum.count(cksum);

      if (count == 0)
        {
          // Start a group with this cksum.
          section_cksum.insert(std::make_pair(cksum, i));
          full_section_contents[i] = this_secn_contents;
        }
      else
        {
          key_range = section_cksum.equal_range(cksum);
          Unordered_multimap<uint32_t, unsigned int>::iterator it;
          // Search all the groups with this cksum for a match.
          for (it = key_range.first; it != key_range.second; ++it)
            {
              unsigned int kept_section = it->second;
              if (full_section_contents[kept_section].length()
                  != this_secn_contents.length())
                  continue;
              if (memcmp(full_section_contents[kept_section].c_str(),
                         this_secn_contents.c_str(),
                         this_secn_contents.length()) != 0)
                  continue;

	      // Check section alignment here.
	      // The section with the larger alignment requirement
	      // should be kept.  We assume alignment can only be 
	      // zero or positive integral powers of two.
	      uint64_t align_i = section_addraligns[i];
	      uint64_t align_kept = section_addraligns[kept_section];
	      if (align_i <= align_kept)
		{
		  (*kept_section_id)[i] = kept_section;
		}
	      else
		{
		  (*kept_section_id)[kept_section] = i;
		  it->second = i;
		  full_section_contents[kept_section].swap(
		      full_section_contents[i]);
		}

              converged = false;
              break;
            }
          if (it == key_range.second)
            {
              // Create a new group for this cksum.
              section_cksum.insert(std::make_pair(cksum, i));
              full_section_contents[i] = this_secn_contents;
            }
        }
      // If there are no relocs to foldable sections do not process
      // this section any further.
      if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
        (*is_secn_or_group_unique)[i] = true;
    }

  // If a section was folded into another section that was later folded
  // again then the former has to be updated.
  for (unsigned int i = 0; i < id_section.size(); i++)
    {
      // Find the end of the folding chain
      unsigned int kept = i;
      while ((*kept_section_id)[kept] != kept)
        {
          kept = (*kept_section_id)[kept];
        }
      // Update every element of the chain
      unsigned int current = i;
      while ((*kept_section_id)[current] != kept)
        {
          unsigned int next = (*kept_section_id)[current];
          (*kept_section_id)[current] = kept;
          current = next;
        }
    }

  return converged;
}

// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
// This function returns true if the section name is that of a ctor or a dtor.

static bool
is_function_ctor_or_dtor(const std::string& section_name)
{
  const char* mangled_func_name = strrchr(section_name.c_str(), '.');
  gold_assert(mangled_func_name != NULL);
  if ((is_prefix_of("._ZN", mangled_func_name)
       || is_prefix_of("._ZZ", mangled_func_name))
      && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
          || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
    {
      return true;
    }
  return false;
}

// Iterate through the .eh_frame section that has index
// `ehframe_shndx` in `object`, adding entries to extra_identity_list_
// that will cause the contents of each FDE and its CIE to be included
// in the logical ICF identity of the function that the FDE refers to.

bool
Icf::add_ehframe_links(Relobj* object, unsigned int ehframe_shndx,
		       Reloc_info& relocs)
{
  section_size_type contents_len;
  const unsigned char* pcontents = object->section_contents(ehframe_shndx,
							    &contents_len,
							    false);
  const unsigned char* p = pcontents;
  const unsigned char* pend = pcontents + contents_len;

  Sections_reachable_info::iterator it_target = relocs.section_info.begin();
  Sections_reachable_info::iterator it_target_end = relocs.section_info.end();
  Offset_info::iterator it_offset = relocs.offset_info.begin();
  Offset_info::iterator it_offset_end = relocs.offset_info.end();

  // Maps section offset to the length of the CIE defined at that offset.
  typedef Unordered_map<section_offset_type, section_size_type> Cie_map;
  Cie_map cies;

  uint32_t (*read_swap_32)(const unsigned char*);
  if (object->is_big_endian())
    read_swap_32 = &elfcpp::Swap<32, true>::readval;
  else
    read_swap_32 = &elfcpp::Swap<32, false>::readval;

  // TODO: The logic for parsing the CIE/FDE framing is copied from
  // Eh_frame::do_add_ehframe_input_section() and might want to be
  // factored into a shared helper function.
  while (p < pend)
    {
      if (pend - p < 4)
	return false;

      unsigned int len = read_swap_32(p);
      p += 4;
      if (len == 0)
	{
	  // We should only find a zero-length entry at the end of the
	  // section.
	  if (p < pend)
	    return false;
	  break;
	}
      // We don't support a 64-bit .eh_frame.
      if (len == 0xffffffff)
	return false;
      if (static_cast<unsigned int>(pend - p) < len)
	return false;

      const unsigned char* const pentend = p + len;

      if (pend - p < 4)
	return false;

      unsigned int id = read_swap_32(p);
      p += 4;

      if (id == 0)
	{
	  // CIE.
	  cies.insert(std::make_pair(p - pcontents, len - 4));
	}
      else
	{
	  // FDE.
	  Cie_map::const_iterator it;
	  it = cies.find((p - pcontents) - (id - 4));
	  if (it == cies.end())
	    return false;

	  // Figure out which section this FDE refers into. The word at `p`
	  // is an address, and we expect to see a relocation there. If not,
	  // this FDE isn't ICF-relevant.
	  while (it_offset != it_offset_end
		 && it_target != it_target_end
		 && static_cast<ptrdiff_t>(*it_offset) < (p - pcontents))
	    {
	      ++it_offset;
	      ++it_target;
	    }
	  if (it_offset != it_offset_end
	      && it_target != it_target_end
	      && static_cast<ptrdiff_t>(*it_offset) == (p - pcontents))
	    {
	      // Found a reloc. Add this FDE and its CIE as extra identity
	      // info for the section it refers to.
	      Extra_identity_info rec_fde = {Section_id(object, ehframe_shndx),
					     p - pcontents, len - 4};
	      Extra_identity_info rec_cie = {Section_id(object, ehframe_shndx),
					     it->first, it->second};
	      extra_identity_list_.insert(std::make_pair(*it_target, rec_fde));
	      extra_identity_list_.insert(std::make_pair(*it_target, rec_cie));
	    }
	}

      p = pentend;
    }

  return true;
}

// This is the main ICF function called in gold.cc.  This does the
// initialization and calls match_sections repeatedly (thrice by default)
// which computes the crc checksums and detects identical functions.

void
Icf::find_identical_sections(const Input_objects* input_objects,
                             Symbol_table* symtab)
{
  unsigned int section_num = 0;
  std::vector<unsigned int> num_tracked_relocs;
  std::vector<uint64_t> section_addraligns;
  std::vector<bool> is_secn_or_group_unique;
  std::vector<std::string> section_contents;
  const Target& target = parameters->target();

  // Decide which sections are possible candidates first.

  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
       p != input_objects->relobj_end();
       ++p)
    {
      // Lock the object so we can read from it.  This is only called
      // single-threaded from queue_middle_tasks, so it is OK to lock.
      // Unfortunately we have no way to pass in a Task token.
      const Task* dummy_task = reinterpret_cast<const Task*>(-1);
      Task_lock_obj<Object> tl(dummy_task, *p);
      std::vector<unsigned int> eh_frame_ind;

      for (unsigned int i = 0; i < (*p)->shnum(); ++i)
        {
	  const std::string section_name = (*p)->section_name(i);
          if (!is_section_foldable_candidate(section_name))
	    {
	      if (is_prefix_of(".eh_frame", section_name.c_str()))
		eh_frame_ind.push_back(i);
	      continue;
	    }

          if (!(*p)->is_section_included(i))
            continue;
          if (parameters->options().gc_sections()
              && symtab->gc()->is_section_garbage(*p, i))
              continue;
	  // With --icf=safe, check if the mangled function name is a ctor
	  // or a dtor.  The mangled function name can be obtained from the
	  // section name by stripping the section prefix.
	  if (parameters->options().icf_safe_folding()
              && !is_function_ctor_or_dtor(section_name)
	      && (!target.can_check_for_function_pointers()
                  || section_has_function_pointers(*p, i)))
            {
	      continue;
            }
          this->id_section_.push_back(Section_id(*p, i));
          this->section_id_[Section_id(*p, i)] = section_num;
          this->kept_section_id_.push_back(section_num);
          num_tracked_relocs.push_back(0);
	  section_addraligns.push_back((*p)->section_addralign(i));
          is_secn_or_group_unique.push_back(false);
          section_contents.push_back("");
          section_num++;
        }

      for (std::vector<unsigned int>::iterator it_eh_ind = eh_frame_ind.begin();
	   it_eh_ind != eh_frame_ind.end(); ++it_eh_ind)
	{
	  // gc_process_relocs() recorded relocations for this
	  // section even though we can't fold it. We need to
	  // use those relocations to associate other foldable
	  // sections with the FDEs and CIEs that are relevant
	  // to them, so we can avoid merging sections that
	  // don't have identical exception-handling behavior.

	  Section_id sect(*p, *it_eh_ind);
	  Reloc_info_list::iterator it_rel = this->reloc_info_list().find(sect);
	  if (it_rel != this->reloc_info_list().end())
	    {
	      if (!add_ehframe_links(*p, *it_eh_ind, it_rel->second))
		{
		  gold_warning(_("could not parse eh_frame section %s(%s); ICF "
				 "might not preserve exception handling "
				 "behavior"),
			       (*p)->name().c_str(),
			       (*p)->section_name(*it_eh_ind).c_str());
		}
	    }
	}
    }

  unsigned int num_iterations = 0;

  // Default number of iterations to run ICF is 3.
  unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
                            ? parameters->options().icf_iterations()
                            : 3;

  bool converged = false;

  while (!converged && (num_iterations < max_iterations))
    {
      num_iterations++;
      converged = match_sections(num_iterations, symtab,
                                 &num_tracked_relocs, &this->kept_section_id_,
                                 this->id_section_, section_addraligns,
                                 &is_secn_or_group_unique, &section_contents);
    }

  if (parameters->options().print_icf_sections())
    {
      if (converged)
        gold_info(_("%s: ICF Converged after %u iteration(s)"),
                  program_name, num_iterations);
      else
        gold_info(_("%s: ICF stopped after %u iteration(s)"),
                  program_name, num_iterations);
    }

  // Unfold --keep-unique symbols.
  for (options::String_set::const_iterator p =
	 parameters->options().keep_unique_begin();
       p != parameters->options().keep_unique_end();
       ++p)
    {
      const char* name = p->c_str();
      Symbol* sym = symtab->lookup(name);
      if (sym == NULL)
	{
	  gold_warning(_("Could not find symbol %s to unfold\n"), name);
	}
      else if (sym->source() == Symbol::FROM_OBJECT 
               && !sym->object()->is_dynamic())
        {
          Relobj* obj = static_cast<Relobj*>(sym->object());
          bool is_ordinary;
          unsigned int shndx = sym->shndx(&is_ordinary);
          if (is_ordinary)
            {
	      this->unfold_section(obj, shndx);
            }
        }

    }

  this->icf_ready();
}

// Unfolds the section denoted by OBJ and SHNDX if folded.

void
Icf::unfold_section(Relobj* obj, unsigned int shndx)
{
  Section_id secn(obj, shndx);
  Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
  if (it == this->section_id_.end())
    return;
  unsigned int section_num = it->second;
  unsigned int kept_section_id = this->kept_section_id_[section_num];
  if (kept_section_id != section_num)
    this->kept_section_id_[section_num] = section_num;
}

// This function determines if the section corresponding to the
// given object and index is folded based on if the kept section
// is different from this section.

bool
Icf::is_section_folded(Relobj* obj, unsigned int shndx)
{
  Section_id secn(obj, shndx);
  Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
  if (it == this->section_id_.end())
    return false;
  unsigned int section_num = it->second;
  unsigned int kept_section_id = this->kept_section_id_[section_num];
  return kept_section_id != section_num;
}

// This function returns the folded section for the given section.

Section_id
Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
{
  Section_id dup_secn(dup_obj, dup_shndx);
  Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
  gold_assert(it != this->section_id_.end());
  unsigned int section_num = it->second;
  unsigned int kept_section_id = this->kept_section_id_[section_num];
  Section_id folded_section = this->id_section_[kept_section_id];
  return folded_section;
}

} // End of namespace gold.