Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/* -*- c -*- */
/* Copyright (C) 2013-2020 Free Software Foundation, Inc.
   Contributed by Red Hat.
   Written by DJ Delorie.

   This file is part of the GNU opcodes library.

   This library is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   It is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */

#include "sysdep.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bfd.h"
#include "opintl.h"
#include "opcode/msp430-decode.h"

static int trace = 0;

typedef struct
{
  MSP430_Opcode_Decoded *msp430;
  int (*getbyte)(void *);
  void *ptr;
  unsigned char *op;
  int op_ptr;
  int pc;
} LocalData;

#define AU ATTRIBUTE_UNUSED
#define GETBYTE() getbyte_swapped (ld)
#define B ((unsigned long) GETBYTE ())

static int
getbyte_swapped (LocalData *ld)
{
  int b;

  if (ld->op_ptr == ld->msp430->n_bytes)
    {
      do
	{
	  b = ld->getbyte (ld->ptr);
	  ld->op [(ld->msp430->n_bytes++)^1] = b;
	}
      while (ld->msp430->n_bytes & 1);
    }
  return ld->op[ld->op_ptr++];
}

#define ID(x)		msp430->id = x

#define OP(n, t, r, a) (msp430->op[n].type = t,	     \
		        msp430->op[n].reg = r,	     \
		        msp430->op[n].addend = a)

#define OPX(n, t, r1, r2, a)	 \
  (msp430->op[n].type = t,	 \
   msp430->op[n].reg = r1,	 \
   msp430->op[n].reg2 = r2,	 \
   msp430->op[n].addend = a)

#define SYNTAX(x)	msp430->syntax = x
#define UNSUPPORTED()	msp430->syntax = "*unknown*"

#define DC(c)		OP (0, MSP430_Operand_Immediate, 0, c)
#define DR(r)		OP (0, MSP430_Operand_Register, r, 0)
#define DM(r, a)	OP (0, MSP430_Operand_Indirect, r, a)
#define DA(a)		OP (0, MSP430_Operand_Indirect, MSR_None, a)
#define AD(r, ad)	encode_ad (r, ad, ld, 0)
#define ADX(r, ad, x)	encode_ad (r, ad, ld, x)

#define SC(c)		OP (1, MSP430_Operand_Immediate, 0, c)
#define SR(r)		OP (1, MSP430_Operand_Register, r, 0)
#define SM(r, a)	OP (1, MSP430_Operand_Indirect, r, a)
#define SA(a)		OP (1, MSP430_Operand_Indirect, MSR_None, a)
#define SI(r)		OP (1, MSP430_Operand_Indirect_Postinc, r, 0)
#define AS(r, as)	encode_as (r, as, ld, 0)
#define ASX(r, as, x)	encode_as (r, as, ld, x)

#define BW(x)		msp430->size = (x ? 8 : 16)
/* The last 20 is for SWPBX.Z and SXTX.A.  */
#define ABW(a,x)	msp430->size = (a ? ((x ? 8 : 16)) : (x ? 20 : 20))

#define IMMU(bytes)	immediate (bytes, 0, ld)
#define IMMS(bytes)	immediate (bytes, 1, ld)

/* Helper macros for known status bits settings.  */
#define	F_____		msp430->flags_1 = msp430->flags_0 = 0; msp430->flags_set = 0
#define	F_VNZC		msp430->flags_1 = msp430->flags_0 = 0; msp430->flags_set = 0x87
#define	F_0NZC		msp430->flags_1 = 0; msp430->flags_0 = 0x80; msp430->flags_set = 0x07


/* The chip is little-endian, but GETBYTE byte-swaps words because the
   decoder is based on 16-bit "words" so *this* logic is big-endian.  */

static int
immediate (int bytes, int sign_extend, LocalData *ld)
{
  unsigned long i = 0;

  switch (bytes)
    {
    case 1:
      i |= B;
      if (sign_extend && (i & 0x80))
	i -= 0x100;
      break;
    case 2:
      i |= B << 8;
      i |= B;
      if (sign_extend && (i & 0x8000))
	i -= 0x10000;
      break;
    case 3:
      i |= B << 16;
      i |= B << 8;
      i |= B;
      if (sign_extend && (i & 0x800000))
	i -= 0x1000000;
      break;
    case 4:
      i |= B << 24;
      i |= B << 16;
      i |= B << 8;
      i |= B;
      if (sign_extend && (i & 0x80000000ULL))
	i -= 0x100000000ULL;
      break;
    default:
      opcodes_error_handler
	(_("internal error: immediate() called with invalid byte count %d"),
	   bytes);
      abort ();
    }
  return i;
}

/*
		PC	SP	SR	CG
  As
  00	Rn	-	-	R2	#0
  01	X(Rn)	Sym	-	X(abs)	#1
  10	(Rn)	-	-	#4	#2
  11	(Rn++)	#imm	-	#8	#-1

  Ad
  0	Rn	-	-	-	-
  1	X(Rn)	Sym	-	X(abs)	-   */

static void
encode_ad (int reg, int ad, LocalData *ld, int ext)
{
  MSP430_Opcode_Decoded *msp430 = ld->msp430;

  if (ad)
    {
      int x = IMMU(2) | (ext << 16);
      switch (reg)
	{
	case 0: /* (PC) -> Symbolic.  */
	  DA (x + ld->pc + ld->op_ptr - 2);
	  break;
	case 2: /* (SR) -> Absolute.  */
	  DA (x);
	  break;
	default:
	  DM (reg, x);
	  break;
	}
    }
  else
    {
      DR (reg);
    }
}

static void
encode_as (int reg, int as, LocalData *ld, int ext)
{
  MSP430_Opcode_Decoded *msp430 = ld->msp430;
  int x;

  switch (as)
    {
    case 0:
      switch (reg)
	{
	case 3:
	  SC (0);
	  break;
	default:
	  SR (reg);
	  break;
	}
      break;
    case 1:
      switch (reg)
	{
	case 0: /* PC -> Symbolic.  */
	  x = IMMU(2) | (ext << 16);
	  SA (x + ld->pc + ld->op_ptr - 2);
	  break;
	case 2: /* SR -> Absolute.  */
	  x = IMMU(2) | (ext << 16);
	  SA (x);
	  break;
	case 3:
	  SC (1);
	  break;
	default:
	  x = IMMU(2) | (ext << 16);
	  SM (reg, x);
	  break;
	}
      break;
    case 2:
      switch (reg)
	{
	case 2:
	  SC (4);
	  break;
	case 3:
	  SC (2);
	  break;
	case MSR_None:
	  SA (0);
	  break;
	default:
	  SM (reg, 0);
	  break;
	}
      break;
    case 3:
      switch (reg)
	{
	case 0:
	  {
	    /* This fetch *is* the *PC++ that the opcode encodes :-)  */
	    x = IMMU(2) | (ext << 16);
	    SC (x);
	  }
	  break;
	case 2:
	  SC (8);
	  break;
	case 3:
	  SC (-1);
	  break;
	default:
	  SI (reg);
	  break;
	}
      break;
    }
}

static void
encode_rep_zc (int srxt, int dsxt, LocalData *ld)
{
  MSP430_Opcode_Decoded *msp430 = ld->msp430;

  msp430->repeat_reg = srxt & 1;
  msp430->repeats = dsxt;
  msp430->zc = (srxt & 2) ? 1 : 0;
}

#define REPZC(s,d) encode_rep_zc (s, d, ld)

static int
dopc_to_id (int dopc)
{
  switch (dopc)
    {
    case 4: return MSO_mov;
    case 5: return MSO_add;
    case 6: return MSO_addc;
    case 7: return MSO_subc;
    case 8: return MSO_sub;
    case 9: return MSO_cmp;
    case 10: return MSO_dadd;
    case 11: return MSO_bit;
    case 12: return MSO_bic;
    case 13: return MSO_bis;
    case 14: return MSO_xor;
    case 15: return MSO_and;
    default: return MSO_unknown;
    }
}

static int
sopc_to_id (int sop, int c)
{
  switch (sop * 2 + c)
    {
    case 0: return MSO_rrc;
    case 1: return MSO_swpb;
    case 2: return MSO_rra;
    case 3: return MSO_sxt;
    case 4: return MSO_push;
    case 5: return MSO_call;
    case 6: return MSO_reti;
    default: return MSO_unknown;
    }
}

int
msp430_decode_opcode (unsigned long pc,
		      MSP430_Opcode_Decoded *msp430,
		      int (*getbyte)(void *),
		      void *ptr)
{
  LocalData lds, *ld = &lds;
  unsigned char op_buf[20] = {0};
  unsigned char *op = op_buf;
  int raddr;
  int al_bit;
  int srxt_bits, dsxt_bits;

  lds.msp430 = msp430;
  lds.getbyte = getbyte;
  lds.ptr = ptr;
  lds.op = op;
  lds.op_ptr = 0;
  lds.pc = pc;

  memset (msp430, 0, sizeof (*msp430));

  /* These are overridden by an extension word.  */
  al_bit = 1;
  srxt_bits = 0;
  dsxt_bits = 0;

 post_extension_word:
  ;

  /* 430X extention word.  */
/** 0001 1srx t l 00 dsxt 	430x */

  al_bit = l;
  srxt_bits = srx * 2 + t;
  dsxt_bits = dsxt;
  op = op_buf + lds.op_ptr;
  msp430->ofs_430x = 1;
  goto post_extension_word;

/* double-op insns:
   opcode:4 sreg:4 Ad:1 BW:1 As:2 Dreg:4

   single-op insn:
   opcode:9 BW:1 Ad:2 DSreg:4

   jumps:
   opcode:3 Cond:3  pcrel:10. */

/* Double-Operand "opcode" fields.  */
/** VARY dopc 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 */

/** dopc sreg a b as dreg	%D%b	%1,%0				*/

  ID (dopc_to_id (dopc)); ASX (sreg, as, srxt_bits); ADX (dreg, a, dsxt_bits); ABW (al_bit, b);
  if (a == 0 && as == 0)
    REPZC (srxt_bits, dsxt_bits);

  switch (msp430->id)
    {
    case MSO_mov:	F_____; break;
    case MSO_add:	F_VNZC; break;
    case MSO_addc:	F_VNZC; break;
    case MSO_subc:	F_VNZC; break;
    case MSO_sub:	F_VNZC; break;
    case MSO_cmp:	F_VNZC; break;
    case MSO_dadd:	F_VNZC; break;
    case MSO_bit:	F_0NZC; break;
    case MSO_bic:	F_____; break;
    case MSO_bis:	F_____; break;
    case MSO_xor:	F_VNZC; break;
    case MSO_and:	F_0NZC; break;
    default: break;
    }

/** 0001 00so c b ad dreg	%S%b	%1				*/

  ID (sopc_to_id (so,c)); ASX (dreg, ad, srxt_bits); ABW (al_bit, b);

  if (ad == 0)
    REPZC (srxt_bits, dsxt_bits);

  /* The helper functions encode for source, but it's
     both source and dest, with a few documented exceptions.  */
  msp430->op[0] = msp430->op[1];

  /* RETI ignores the operand.  */
  if (msp430->id == MSO_reti)
    msp430->syntax = "%S";

  switch (msp430->id)
    {
    case MSO_rrc:	F_VNZC; break;
    case MSO_swpb:	F_____; break;
    case MSO_rra:	F_0NZC; break;
    case MSO_sxt:	F_0NZC; break;
    case MSO_push:	F_____; break;
    case MSO_call:	F_____; break;
    case MSO_reti:	F_VNZC; break;
    default: break;
    }

  /* 20xx 0010 0000 ---- ----
     3cxx 0011 1100 ---- ----
          001j mp-- ---- ----.  */
/** 001jmp aa addrlsbs		%J	%1				*/

  raddr = (aa << 9) | (addrlsbs << 1);
  if (raddr & 0x400)
    raddr = raddr - 0x800;
  /* This is a pc-relative jump, but we don't use SM because that
     would load the target address from the memory at X(PC), not use
     PC+X *as* the address.  So we use SC to use the address, not the
     data at that address.  */
  ID (MSO_jmp); SC (pc + raddr + msp430->n_bytes);
  msp430->cond = jmp;

  /* Extended instructions.  */

/** 0000 srcr 0000 dstr		MOVA @%1, %0 */
  ID (MSO_mov); SM (srcr, 0); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0000 srcr 0001 dstr		MOVA @%1+, %0 */
  ID (MSO_mov); SI (srcr); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0000 srcr 0010 dstr		MOVA &%1, %0 */
  ID (MSO_mov); SA ((srcr << 16) + IMMU(2)); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0000 srcr 0011 dstr		MOVA %1, %0 */
  ID (MSO_mov); SM (srcr, IMMS(2)); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0000 srcr 0110 dstr		MOVA %1, &%0 */
  ID (MSO_mov); SR (srcr); DA ((dstr << 16) + IMMU(2));
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0000 srcr 0111 dstr		MOVA %1, &%0 */
  ID (MSO_mov); SR (srcr); DM (dstr, IMMS(2));
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0000 srcr 1000 dstr		MOVA %1, %0 */
  ID (MSO_mov); SC ((srcr << 16) + IMMU(2)); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0000 srcr 1001 dstr		CMPA %1, %0 */
  ID (MSO_cmp); SC ((srcr << 16) + IMMU(2)); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;
  F_VNZC;

/** 0000 srcr 1010 dstr		ADDA %1, %0 */
  ID (MSO_add); SC ((srcr << 16) + IMMU(2)); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;
  F_VNZC;

/** 0000 srcr 1011 dstr		SUBA %1, %0 */
  ID (MSO_sub); SC ((srcr << 16) + IMMU(2)); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;
  F_VNZC;

/** 0000 srcr 1011 dstr		SUBA %1, %0 */
  ID (MSO_sub); SC ((srcr << 16) + IMMU(2)); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;
  F_VNZC;

/** 0000 srcr 1100 dstr		MOVA %1, %0 */
  ID (MSO_mov); SR (srcr); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0000 srcr 1101 dstr		CMPA %1, %0 */
  ID (MSO_cmp); SR (srcr); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;
  F_VNZC;

/** 0000 srcr 1110 dstr		ADDA %1, %0 */
  ID (MSO_add); SR (srcr); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;
  F_VNZC;

/** 0000 srcr 1111 dstr		SUBA %1, %0 */
  ID (MSO_sub); SR (srcr); DR (dstr);
  msp430->size = 20;
  msp430->ofs_430x = 1;
  F_VNZC;

/** 0000 bt00 010w dstr		RRCM.A %c, %0 */
  ID (MSO_rrc); DR (dstr); SR (dstr);
  msp430->repeats = bt;
  msp430->size = w ? 16 : 20;
  msp430->ofs_430x = 1;
  F_0NZC;

/** 0000 bt01 010w dstr		RRAM.A %c, %0 */
  ID (MSO_rra); DR (dstr); SR (dstr);
  msp430->repeats = bt;
  msp430->size = w ? 16 : 20;
  msp430->ofs_430x = 1;
  F_0NZC;

/** 0000 bt10 010w dstr		RLAM.A %c, %0 */
  ID (MSO_add); DR (dstr); SR (dstr);
  msp430->repeats = bt;
  msp430->size = w ? 16 : 20;
  msp430->ofs_430x = 1;
  F_0NZC;

/** 0000 bt11 010w dstr		RRUM.A %c, %0 */
  ID (MSO_rru); DR (dstr); SR (dstr);
  msp430->repeats = bt;
  msp430->size = w ? 16 : 20;
  msp430->ofs_430x = 1;
  F_0NZC;

/** 0001 0011 0000 0000		RETI */
  ID (MSO_reti);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0001 0011 01as dstr		CALLA %0 */
  ID (MSO_call); AS (dstr, as);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0001 0011 1000 extb		CALLA %0 */
  ID (MSO_call); SA (IMMU(2) | (extb << 16));
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0001 0011 1001 extb		CALLA %0 */
  raddr = IMMU(2) | (extb << 16);
  if (raddr & 0x80000)
    raddr -= 0x100000;
  ID (MSO_call); SA (pc + raddr + msp430->n_bytes);
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0001 0011 1011 extb		CALLA %0 */
  ID (MSO_call); SC (IMMU(2) | (extb << 16));
  msp430->size = 20;
  msp430->ofs_430x = 1;

/** 0001 010w bits srcr		PUSHM.A %0 */
  ID (MSO_push); SR (srcr);
  msp430->size = w ? 16 : 20;
  msp430->repeats = bits;
  msp430->ofs_430x = 1;

/** 0001 011w bits dstr		POPM.A %0 */
  ID (MSO_pop); DR (dstr);
  msp430->size = w ? 16 : 20;
  msp430->repeats = bits;
  msp430->ofs_430x = 1;

/** */

  return msp430->n_bytes;
}