Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
  <title>GMP Development Projects</title>
  <link rel="shortcut icon" href="favicon.ico">
  <link rel="stylesheet" href="gmp.css">
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>

<center>
  <h1>
    GMP Development Projects
  </h1>
</center>

<font size=-1>
<pre>
Copyright 2000-2006, 2008-2011 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 2 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library.  If not,
see https://www.gnu.org/licenses/.
</pre>
</font>

<hr>
<!-- NB. timestamp updated automatically by emacs -->
  This file current as of 29 Jan 2014.  An up-to-date version is available at
  <a href="https://gmplib.org/projects.html">https://gmplib.org/projects.html</a>.
  Please send comments about this page to gmp-devel<font>@</font>gmplib.org.

<p> This file lists projects suitable for volunteers.  Please see the
    <a href="tasks.html">tasks file</a> for smaller tasks.

<p> If you want to work on any of the projects below, please let
    gmp-devel<font>@</font>gmplib.org know.  If you want to help with a project
    that already somebody else is working on, you will get in touch through
    gmp-devel<font>@</font>gmplib.org.  (There are no email addresses of
    volunteers below, due to spamming problems.)

<ul>
<li> <strong>Faster multiplication</strong>

  <ol>

    <li> Work on the algorithm selection code for unbalanced multiplication.

    <li> Implement an FFT variant computing the coefficients mod m different
	 limb size primes of the form l*2^k+1. i.e., compute m separate FFTs.
	 The wanted coefficients will at the end be found by lifting with CRT
	 (Chinese Remainder Theorem).  If we let m = 3, i.e., use 3 primes, we
	 can split the operands into coefficients at limb boundaries, and if
	 our machine uses b-bit limbs, we can multiply numbers with close to
	 2^b limbs without coefficient overflow.  For smaller multiplication,
	 we might perhaps let m = 1, and instead of splitting our operands at
	 limb boundaries, split them in much smaller pieces.  We might also use
	 4 or more primes, and split operands into bigger than b-bit chunks.
	 By using more primes, the gain in shorter transform length, but lose
	 in having to do more FFTs, but that is a slight total save.  We then
	 lose in more expensive CRT. <br><br>

	 <p> [We now have two implementations of this algorithm, one by Tommy
	 Färnqvist and one by Niels Möller.]

    <li> Work on short products.  Our mullo and mulmid are probably K, but we
         lack mulhi.

  </ol>

  <p> Another possibility would be an optimized cube.  In the basecase that
      should definitely be able to save cross-products in a similar fashion to
      squaring, but some investigation might be needed for how best to adapt
      the higher-order algorithms.  Not sure whether cubing or further small
      powers have any particularly important uses though.


<li> <strong>Assembly routines</strong>

  <p> Write new and improve existing assembly routines.  The tests/devel
      programs and the tune/speed.c and tune/many.pl programs are useful for
      testing and timing the routines you write.  See the README files in those
      directories for more information.

  <p> Please make sure your new routines are fast for these three situations:
      <ol>
	<li> Small operands of less than, say, 10 limbs.
	<li> Medium size operands, that fit into the cache.
	<li> Huge operands that does not fit into the cache.
      </ol>

  <p> The most important routines are mpn_addmul_1, mpn_mul_basecase and
      mpn_sqr_basecase.  The latter two don't exist for all machines, while
      mpn_addmul_1 exists for almost all machines.

  <p> Standard techniques for these routines are unrolling, software
      pipelining, and specialization for common operand values.  For machines
      with poor integer multiplication, it is sometimes possible to remedy the
      situation using floating-point operations or SIMD operations such as MMX
      (x86) (x86), SSE (x86), VMX (PowerPC), VIS (Sparc).

  <p> Using floating-point operations is interesting but somewhat tricky.
      Since IEEE double has 53 bit of mantissa, one has to split the operands
      in small pieces, so that no intermediates are greater than 2^53.  For
      32-bit computers, splitting one operand into 16-bit pieces works.  For
      64-bit machines, one operand can be split into 21-bit pieces and the
      other into 32-bit pieces.  (A 64-bit operand can be split into just three
      21-bit pieces if one allows the split operands to be negative!)


<li> <strong>Faster sqrt</strong>

  <p> The current code uses divisions, which are reasonably fast, but it'd be
      possible to use only multiplications by computing 1/sqrt(A) using this
      iteration:
      <pre>
				    2
		   x   = x  (3 &minus; A x )/2
		    i+1	  i	    i  </pre>
      The square root can then be computed like this:
      <pre>
		     sqrt(A) = A x
				  n  </pre>
  <p> That final multiply might be the full size of the input (though it might
      only need the high half of that), so there may or may not be any speedup
      overall.

  <p> We should probably allow a special exponent-like parameter, to speed
      computations of a precise square root of a small number in mpf and mpfr.


<li> <strong>Nth root</strong>

  <p> Improve mpn_rootrem.  The current code is not too bad, but its time
      complexity is a function of the input, while it is possible to make
      the <i>average</i> complexity a function of the output.


<li> <strong>Fat binaries</strong>

  <p> Add more functions to the set of fat functions.

  <p> The speed of multiplication is today highly dependent on combination
  functions like <code>addlsh1_n</code>.  A fat binary will never use any such
  functions, since they are classified as optional.  Ideally, we should use
  them, but making the current compile-time selections of optional functions
  become run-time selections for fat binaries.

  <p> If we make fat binaries work really well, we should move away frm tehe
  current configure scheme (at least by default) and instead include all code
  always.


<li> <strong>Exceptions</strong>

  <p> Some sort of scheme for exceptions handling would be desirable.
      Presently the only thing documented is that divide by zero in GMP
      functions provokes a deliberate machine divide by zero (on those systems
      where such a thing exists at least).  The global <code>gmp_errno</code>
      is not actually documented, except for the old <code>gmp_randinit</code>
      function.  Being currently just a plain global means it's not
      thread-safe.

  <p> The basic choices for exceptions are returning an error code or having a
      handler function to be called.  The disadvantage of error returns is they
      have to be checked, leading to tedious and rarely executed code, and
      strictly speaking such a scheme wouldn't be source or binary compatible.
      The disadvantage of a handler function is that a <code>longjmp</code> or
      similar recovery from it may be difficult.  A combination would be
      possible, for instance by allowing the handler to return an error code.

  <p> Divide-by-zero, sqrt-of-negative, and similar operand range errors can
      normally be detected at the start of functions, so exception handling
      would have a clean state.  What's worth considering though is that the
      GMP function detecting the exception may have been called via some third
      party library or self contained application module, and hence have
      various bits of state to be cleaned up above it.  It'd be highly
      desirable for an exceptions scheme to allow for such cleanups.

  <p> The C++ destructor mechanism could help with cleanups both internally and
      externally, but being a plain C library we don't want to depend on that.

  <p> A C++ <code>throw</code> might be a good optional extra exceptions
      mechanism, perhaps under a build option.  For
      GCC <code>-fexceptions</code> will add the necessary frame information to
      plain C code, or GMP could be compiled as C++.

  <p> Out-of-memory exceptions are expected to be handled by the
      <code>mp_set_memory_functions</code> routines, rather than being a
      prospective part of divide-by-zero etc.  Some similar considerations
      apply but what differs is that out-of-memory can arise deep within GMP
      internals.  Even fundamental routines like <code>mpn_add_n</code> and
      <code>mpn_addmul_1</code> can use temporary memory (for instance on Cray
      vector systems).  Allowing for an error code return would require an
      awful lot of checking internally.  Perhaps it'd still be worthwhile, but
      it'd be a lot of changes and the extra code would probably be rather
      rarely executed in normal usages.

  <p> A <code>longjmp</code> recovery for out-of-memory will currently, in
      general, lead to memory leaks and may leave GMP variables operated on in
      inconsistent states.  Maybe it'd be possible to record recovery
      information for use by the relevant allocate or reallocate function, but
      that too would be a lot of changes.

  <p> One scheme for out-of-memory would be to note that all GMP allocations go
      through the <code>mp_set_memory_functions</code> routines.  So if the
      application has an intended <code>setjmp</code> recovery point it can
      record memory activity by GMP and abandon space allocated and variables
      initialized after that point.  This might be as simple as directing the
      allocation functions to a separate pool, but in general would have the
      disadvantage of needing application-level bookkeeping on top of the
      normal system <code>malloc</code>.  An advantage however is that it needs
      nothing from GMP itself and on that basis doesn't burden applications not
      needing recovery.  Note that there's probably some details to be worked
      out here about reallocs of existing variables, and perhaps about copying
      or swapping between "permanent" and "temporary" variables.

  <p> Applications desiring a fine-grained error control, for instance a
      language interpreter, would very possibly not be well served by a scheme
      requiring <code>longjmp</code>.  Wrapping every GMP function call with a
      <code>setjmp</code> would be very inconvenient.

  <p> Another option would be to let <code>mpz_t</code> etc hold a sort of NaN,
      a special value indicating an out-of-memory or other failure.  This would
      be similar to NaNs in mpfr.  Unfortunately such a scheme could only be
      used by programs prepared to handle such special values, since for
      instance a program waiting for some condition to be satisfied could
      become an infinite loop if it wasn't also watching for NaNs.  The work to
      implement this would be significant too, lots of checking of inputs and
      intermediate results.  And if <code>mpn</code> routines were to
      participate in this (which they would have to internally) a lot of new
      return values would need to be added, since of course there's no
      <code>mpz_t</code> etc structure for them to indicate failure in.

  <p> Stack overflow is another possible exception, but perhaps not one that
      can be easily detected in general.  On i386 GNU/Linux for instance GCC
      normally doesn't generate stack probes for an <code>alloca</code>, but
      merely adjusts <code>%esp</code>.  A big enough <code>alloca</code> can
      miss the stack redzone and hit arbitrary data.  GMP stack usage is
      normally a function of operand size, which might be enough for some
      applications to know they'll be safe.  Otherwise a fixed maximum usage
      can probably be obtained by building with
      <code>--enable-alloca=malloc-reentrant</code> (or
      <code>notreentrant</code>).  Arranging the default to be
      <code>alloca</code> only on blocks up to a certain size and
      <code>malloc</code> thereafter might be a better approach and would have
      the advantage of not having calculations limited by available stack.

  <p> Actually recovering from stack overflow is of course another problem.  It
      might be possible to catch a <code>SIGSEGV</code> in the stack redzone
      and do something in a <code>sigaltstack</code>, on systems which have
      that, but recovery might otherwise not be possible.  This is worth
      bearing in mind because there's no point worrying about tight and careful
      out-of-memory recovery if an out-of-stack is fatal.

  <p> Operand overflow is another exception to be addressed.  It's easy for
      instance to ask <code>mpz_pow_ui</code> for a result bigger than an
      <code>mpz_t</code> can possibly represent.  Currently overflows in limb
      or byte count calculations will go undetected.  Often they'll still end
      up asking the memory functions for blocks bigger than available memory,
      but that's by no means certain and results are unpredictable in general.
      It'd be desirable to tighten up such size calculations.  Probably only
      selected routines would need checks, if it's assumed say that no input
      will be more than half of all memory and hence size additions like say
      <code>mpz_mul</code> won't overflow.


<li> <strong>Performance Tool</strong>

  <p> It'd be nice to have some sort of tool for getting an overview of
      performance.  Clearly a great many things could be done, but some primary
      uses would be,

      <ol>
	<li> Checking speed variations between compilers.
	<li> Checking relative performance between systems or CPUs.
      </ol>

  <p> A combination of measuring some fundamental routines and some
      representative application routines might satisfy these.

  <p> The tune/time.c routines would be the easiest way to get good accurate
      measurements on lots of different systems.  The high level
      <code>speed_measure</code> may or may not suit, but the basic
      <code>speed_starttime</code> and <code>speed_endtime</code> would cover
      lots of portability and accuracy questions.


<li> <strong>Using <code>restrict</code></strong>

  <p> There might be some value in judicious use of C99 style
      <code>restrict</code> on various pointers, but this would need some
      careful thought about what it implies for the various operand overlaps
      permitted in GMP.

  <p> Rumour has it some pre-C99 compilers had <code>restrict</code>, but
      expressing tighter (or perhaps looser) requirements.  Might be worth
      investigating that before using <code>restrict</code> unconditionally.

  <p> Loops are presumably where the greatest benefit would be had, by allowing
      the compiler to advance reads ahead of writes, perhaps as part of loop
      unrolling.  However critical loops are generally coded in assembler, so
      there might not be very much to gain.  And on Cray systems the explicit
      use of <code>_Pragma</code> gives an equivalent effect.

  <p> One thing to note is that Microsoft C headers (on ia64 at least) contain
      <code>__declspec(restrict)</code>, so a <code>#define</code> of
      <code>restrict</code> should be avoided.  It might be wisest to setup a
      <code>gmp_restrict</code>.


<li> <strong>Prime Testing</strong>

  <p> GMP is not really a number theory library and probably shouldn't have
      large amounts of code dedicated to sophisticated prime testing
      algorithms, but basic things well-implemented would suit.  Tests offering
      certainty are probably all too big or too slow (or both!) to justify
      inclusion in the main library.  Demo programs showing some possibilities
      would be good though.

  <p> The present "repetitions" argument to <code>mpz_probab_prime_p</code> is
      rather specific to the Miller-Rabin tests of the current implementation.
      Better would be some sort of parameter asking perhaps for a maximum
      chance 1/2^x of a probable prime in fact being composite.  If
      applications follow the advice that the present reps gives 1/4^reps
      chance then perhaps such a change is unnecessary, but an explicitly
      described 1/2^x would allow for changes in the implementation or even for
      new proofs about the theory.

  <p> <code>mpz_probab_prime_p</code> always initializes a new
      <code>gmp_randstate_t</code> for randomized tests, which unfortunately
      means it's not really very random and in particular always runs the same
      tests for a given input.  Perhaps a new interface could accept an rstate
      to use, so successive tests could increase confidence in the result.

  <p> <code>mpn_mod_34lsub1</code> is an obvious and easy improvement to the
      trial divisions.  And since the various prime factors are constants, the
      remainder can be tested with something like
<pre>
#define MP_LIMB_DIVISIBLE_7_P(n) \
  ((n) * MODLIMB_INVERSE_7 &lt;= MP_LIMB_T_MAX/7)
</pre>
      Which would help compilers that don't know how to optimize divisions by
      constants, and is even an improvement on current gcc 3.2 code.  This
      technique works for any modulus, see Granlund and Montgomery "Division by
      Invariant Integers" section 9.

  <p> The trial divisions are done with primes generated and grouped at
      runtime.  This could instead be a table of data, with pre-calculated
      inverses too.  Storing deltas, ie. amounts to add, rather than actual
      primes would save space.  <code>udiv_qrnnd_preinv</code> style inverses
      can be made to exist by adding dummy factors of 2 if necessary.  Some
      thought needs to be given as to how big such a table should be, based on
      how much dividing would be profitable for what sort of size inputs.  The
      data could be shared by the perfect power testing.

  <p> Jason Moxham points out that if a sqrt(-1) mod N exists then any factor
      of N must be == 1 mod 4, saving half the work in trial dividing.  (If
      x^2==-1 mod N then for a prime factor p we have x^2==-1 mod p and so the
      jacobi symbol (-1/p)=1.  But also (-1/p)=(-1)^((p-1)/2), hence must have
      p==1 mod 4.)  But knowing whether sqrt(-1) mod N exists is not too easy.
      A strong pseudoprime test can reveal one, so perhaps such a test could be
      inserted part way though the dividing.

  <p> Jon Grantham "Frobenius Pseudoprimes" (www.pseudoprime.com) describes a
      quadratic pseudoprime test taking about 3x longer than a plain test, but
      with only a 1/7710 chance of error (whereas 3 plain Miller-Rabin tests
      would offer only (1/4)^3 == 1/64).  Such a test needs completely random
      parameters to satisfy the theory, though single-limb values would run
      faster.  It's probably best to do at least one plain Miller-Rabin before
      any quadratic tests, since that can identify composites in less total
      time.

  <p> Some thought needs to be given to the structure of which tests (trial
      division, Miller-Rabin, quadratic) and how many are done, based on what
      sort of inputs we expect, with a view to minimizing average time.

  <p> It might be a good idea to break out subroutines for the various tests,
      so that an application can combine them in ways it prefers, if sensible
      defaults in <code>mpz_probab_prime_p</code> don't suit.  In particular
      this would let applications skip tests it knew would be unprofitable,
      like trial dividing when an input is already known to have no small
      factors.

  <p> For small inputs, combinations of theory and explicit search make it
      relatively easy to offer certainty.  For instance numbers up to 2^32
      could be handled with a strong pseudoprime test and table lookup.  But
      it's rather doubtful whether a smallnum prime test belongs in a bignum
      library.  Perhaps if it had other internal uses.

  <p> An <code>mpz_nthprime</code> might be cute, but is almost certainly
      impractical for anything but small n.


<li> <strong>Intra-Library Calls</strong>

  <p> On various systems, calls within libgmp still go through the PLT, TOC or
      other mechanism, which makes the code bigger and slower than it needs to
      be.

  <p> The theory would be to have all GMP intra-library calls resolved directly
      to the routines in the library.  An application wouldn't be able to
      replace a routine, the way it can normally, but there seems no good
      reason to do that, in normal circumstances.

  <p> The <code>visibility</code> attribute in recent gcc is good for this,
      because it lets gcc omit unnecessary GOT pointer setups or whatever if it
      finds all calls are local and there's no global data references.
      Documented entrypoints would be <code>protected</code>, and purely
      internal things not wanted by test programs or anything can be
      <code>internal</code>.

  <p> Unfortunately, on i386 it seems <code>protected</code> ends up causing
      text segment relocations within libgmp.so, meaning the library code can't
      be shared between processes, defeating the purpose of a shared library.
      Perhaps this is just a gremlin in binutils (debian packaged
      2.13.90.0.16-1).

  <p> The linker can be told directly (with a link script, or options) to do
      the same sort of thing.  This doesn't change the code emitted by gcc of
      course, but it does mean calls are resolved directly to their targets,
      avoiding a PLT entry.

  <p> Keeping symbols private to libgmp.so is probably a good thing in general
      too, to stop anyone even attempting to access them.  But some
      undocumented things will need or want to be kept visible, for use by
      mpfr, or the test and tune programs.  Libtool has a standard option for
      selecting public symbols (used now for libmp).


<li> <strong>Math functions for the mpf layer</strong>

  <p> Implement the functions of math.h for the GMP mpf layer!	Check the book
      "Pi and the AGM" by Borwein and Borwein for ideas how to do this.  These
      functions are desirable: acos, acosh, asin, asinh, atan, atanh, atan2,
      cos, cosh, exp, log, log10, pow, sin, sinh, tan, tanh.

  <p> Note that the <a href="http://mpfr.org">mpfr</a> functions already
  provide these functions, and that we usually recommend new programs to use
  mpfr instead of mpf.
</ul>
<hr>

</body>
</html>

<!--
Local variables:
eval: (add-hook 'write-file-hooks 'time-stamp)
time-stamp-start: "This file current as of "
time-stamp-format: "%:d %3b %:y"
time-stamp-end: "\\."
time-stamp-line-limit: 50
End:
-->