Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
.\" Man page generated from reStructuredText.
.
.TH "LIBUV" "3" "May 24, 2020" "1.38.0" "libuv API documentation"
.SH NAME
libuv \- libuv documentation
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.SH OVERVIEW
.sp
libuv is a multi\-platform support library with a focus on asynchronous I/O. It
was primarily developed for use by \fI\%Node.js\fP, but it\(aqs also used by \fI\%Luvit\fP,
\fI\%Julia\fP, \fI\%pyuv\fP, and \fI\%others\fP\&.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
In case you find errors in this documentation you can help by sending
\fI\%pull requests\fP!
.UNINDENT
.UNINDENT
.SH FEATURES
.INDENT 0.0
.IP \(bu 2
Full\-featured event loop backed by epoll, kqueue, IOCP, event ports.
.IP \(bu 2
Asynchronous TCP and UDP sockets
.IP \(bu 2
Asynchronous DNS resolution
.IP \(bu 2
Asynchronous file and file system operations
.IP \(bu 2
File system events
.IP \(bu 2
ANSI escape code controlled TTY
.IP \(bu 2
IPC with socket sharing, using Unix domain sockets or named pipes (Windows)
.IP \(bu 2
Child processes
.IP \(bu 2
Thread pool
.IP \(bu 2
Signal handling
.IP \(bu 2
High resolution clock
.IP \(bu 2
Threading and synchronization primitives
.UNINDENT
.SH DOCUMENTATION
.SS Design overview
.sp
libuv is cross\-platform support library which was originally written for \fI\%Node.js\fP\&. It\(aqs designed
around the event\-driven asynchronous I/O model.
.sp
The library provides much more than a simple abstraction over different I/O polling mechanisms:
\(aqhandles\(aq and \(aqstreams\(aq provide a high level abstraction for sockets and other entities;
cross\-platform file I/O and threading functionality is also provided, amongst other things.
.sp
Here is a diagram illustrating the different parts that compose libuv and what subsystem they
relate to:
[image]
.SS Handles and requests
.sp
libuv provides users with 2 abstractions to work with, in combination with the event loop:
handles and requests.
.sp
Handles represent long\-lived objects capable of performing certain operations while active. Some examples:
.INDENT 0.0
.IP \(bu 2
A prepare handle gets its callback called once every loop iteration when active.
.IP \(bu 2
A TCP server handle that gets its connection callback called every time there is a new connection.
.UNINDENT
.sp
Requests represent (typically) short\-lived operations. These operations can be performed over a
handle: write requests are used to write data on a handle; or standalone: getaddrinfo requests
don\(aqt need a handle they run directly on the loop.
.SS The I/O loop
.sp
The I/O (or event) loop is the central part of libuv. It establishes the content for all I/O
operations, and it\(aqs meant to be tied to a single thread. One can run multiple event loops
as long as each runs in a different thread. The libuv event loop (or any other API involving
the loop or handles, for that matter) \fBis not thread\-safe\fP except where stated otherwise.
.sp
The event loop follows the rather usual single threaded asynchronous I/O approach: all (network)
I/O is performed on non\-blocking sockets which are polled using the best mechanism available
on the given platform: epoll on Linux, kqueue on OSX and other BSDs, event ports on SunOS and IOCP
on Windows. As part of a loop iteration the loop will block waiting for I/O activity on sockets
which have been added to the poller and callbacks will be fired indicating socket conditions
(readable, writable hangup) so handles can read, write or perform the desired I/O operation.
.sp
In order to better understand how the event loop operates, the following diagram illustrates all
stages of a loop iteration:
[image]
.INDENT 0.0
.IP 1. 4
The loop concept of \(aqnow\(aq is updated. The event loop caches the current time at the start of
the event loop tick in order to reduce the number of time\-related system calls.
.IP 2. 4
If the loop is \fIalive\fP  an iteration is started, otherwise the loop will exit immediately. So,
when is a loop considered to be \fIalive\fP? If a loop has active and ref\(aqd handles, active
requests or closing handles it\(aqs considered to be \fIalive\fP\&.
.IP 3. 4
Due timers are run. All active timers scheduled for a time before the loop\(aqs concept of \fInow\fP
get their callbacks called.
.IP 4. 4
Pending callbacks are called. All I/O callbacks are called right after polling for I/O, for the
most part. There are cases, however, in which calling such a callback is deferred for the next
loop iteration. If the previous iteration deferred any I/O callback it will be run at this point.
.IP 5. 4
Idle handle callbacks are called. Despite the unfortunate name, idle handles are run on every
loop iteration, if they are active.
.IP 6. 4
Prepare handle callbacks are called. Prepare handles get their callbacks called right before
the loop will block for I/O.
.IP 7. 4
Poll timeout is calculated. Before blocking for I/O the loop calculates for how long it should
block. These are the rules when calculating the timeout:
.INDENT 4.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
If the loop was run with the \fBUV_RUN_NOWAIT\fP flag, the timeout is 0.
.IP \(bu 2
If the loop is going to be stopped (\fBuv_stop()\fP was called), the timeout is 0.
.IP \(bu 2
If there are no active handles or requests, the timeout is 0.
.IP \(bu 2
If there are any idle handles active, the timeout is 0.
.IP \(bu 2
If there are any handles pending to be closed, the timeout is 0.
.IP \(bu 2
If none of the above cases matches, the timeout of the closest timer is taken, or
if there are no active timers, infinity.
.UNINDENT
.UNINDENT
.UNINDENT
.IP 8. 4
The loop blocks for I/O. At this point the loop will block for I/O for the duration calculated
in the previous step. All I/O related handles that were monitoring a given file descriptor
for a read or write operation get their callbacks called at this point.
.IP 9. 4
Check handle callbacks are called. Check handles get their callbacks called right after the
loop has blocked for I/O. Check handles are essentially the counterpart of prepare handles.
.IP 10. 4
Close callbacks are called. If a handle was closed by calling \fBuv_close()\fP it will
get the close callback called.
.IP 11. 4
Special case in case the loop was run with \fBUV_RUN_ONCE\fP, as it implies forward progress.
It\(aqs possible that no I/O callbacks were fired after blocking for I/O, but some time has passed
so there might be timers which are due, those timers get their callbacks called.
.IP 12. 4
Iteration ends. If the loop was run with \fBUV_RUN_NOWAIT\fP or \fBUV_RUN_ONCE\fP modes the
iteration ends and \fBuv_run()\fP will return. If the loop was run with \fBUV_RUN_DEFAULT\fP
it will continue from the start if it\(aqs still \fIalive\fP, otherwise it will also end.
.UNINDENT
.sp
\fBIMPORTANT:\fP
.INDENT 0.0
.INDENT 3.5
libuv uses a thread pool to make asynchronous file I/O operations possible, but
network I/O is \fBalways\fP performed in a single thread, each loop\(aqs thread.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
While the polling mechanism is different, libuv makes the execution model consistent
across Unix systems and Windows.
.UNINDENT
.UNINDENT
.SS File I/O
.sp
Unlike network I/O, there are no platform\-specific file I/O primitives libuv could rely on,
so the current approach is to run blocking file I/O operations in a thread pool.
.sp
For a thorough explanation of the cross\-platform file I/O landscape, checkout
\fI\%this post\fP\&.
.sp
libuv currently uses a global thread pool on which all loops can queue work. 3 types of
operations are currently run on this pool:
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
File system operations
.IP \(bu 2
DNS functions (getaddrinfo and getnameinfo)
.IP \(bu 2
User specified code via \fBuv_queue_work()\fP
.UNINDENT
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
See the threadpool section for more details, but keep in mind the thread pool size
is quite limited.
.UNINDENT
.UNINDENT
.SS API documentation
.SS Error handling
.sp
In libuv errors are negative numbered constants. As a rule of thumb, whenever
there is a status parameter, or an API functions returns an integer, a negative
number will imply an error.
.sp
When a function which takes a callback returns an error, the callback will never
be called.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
Implementation detail: on Unix error codes are the negated \fIerrno\fP (or \fI\-errno\fP), while on
Windows they are defined by libuv to arbitrary negative numbers.
.UNINDENT
.UNINDENT
.SS Error constants
.INDENT 0.0
.TP
.B UV_E2BIG
argument list too long
.UNINDENT
.INDENT 0.0
.TP
.B UV_EACCES
permission denied
.UNINDENT
.INDENT 0.0
.TP
.B UV_EADDRINUSE
address already in use
.UNINDENT
.INDENT 0.0
.TP
.B UV_EADDRNOTAVAIL
address not available
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAFNOSUPPORT
address family not supported
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAGAIN
resource temporarily unavailable
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_ADDRFAMILY
address family not supported
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_AGAIN
temporary failure
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_BADFLAGS
bad ai_flags value
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_BADHINTS
invalid value for hints
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_CANCELED
request canceled
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_FAIL
permanent failure
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_FAMILY
ai_family not supported
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_MEMORY
out of memory
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_NODATA
no address
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_NONAME
unknown node or service
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_OVERFLOW
argument buffer overflow
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_PROTOCOL
resolved protocol is unknown
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_SERVICE
service not available for socket type
.UNINDENT
.INDENT 0.0
.TP
.B UV_EAI_SOCKTYPE
socket type not supported
.UNINDENT
.INDENT 0.0
.TP
.B UV_EALREADY
connection already in progress
.UNINDENT
.INDENT 0.0
.TP
.B UV_EBADF
bad file descriptor
.UNINDENT
.INDENT 0.0
.TP
.B UV_EBUSY
resource busy or locked
.UNINDENT
.INDENT 0.0
.TP
.B UV_ECANCELED
operation canceled
.UNINDENT
.INDENT 0.0
.TP
.B UV_ECHARSET
invalid Unicode character
.UNINDENT
.INDENT 0.0
.TP
.B UV_ECONNABORTED
software caused connection abort
.UNINDENT
.INDENT 0.0
.TP
.B UV_ECONNREFUSED
connection refused
.UNINDENT
.INDENT 0.0
.TP
.B UV_ECONNRESET
connection reset by peer
.UNINDENT
.INDENT 0.0
.TP
.B UV_EDESTADDRREQ
destination address required
.UNINDENT
.INDENT 0.0
.TP
.B UV_EEXIST
file already exists
.UNINDENT
.INDENT 0.0
.TP
.B UV_EFAULT
bad address in system call argument
.UNINDENT
.INDENT 0.0
.TP
.B UV_EFBIG
file too large
.UNINDENT
.INDENT 0.0
.TP
.B UV_EHOSTUNREACH
host is unreachable
.UNINDENT
.INDENT 0.0
.TP
.B UV_EINTR
interrupted system call
.UNINDENT
.INDENT 0.0
.TP
.B UV_EINVAL
invalid argument
.UNINDENT
.INDENT 0.0
.TP
.B UV_EIO
i/o error
.UNINDENT
.INDENT 0.0
.TP
.B UV_EISCONN
socket is already connected
.UNINDENT
.INDENT 0.0
.TP
.B UV_EISDIR
illegal operation on a directory
.UNINDENT
.INDENT 0.0
.TP
.B UV_ELOOP
too many symbolic links encountered
.UNINDENT
.INDENT 0.0
.TP
.B UV_EMFILE
too many open files
.UNINDENT
.INDENT 0.0
.TP
.B UV_EMSGSIZE
message too long
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENAMETOOLONG
name too long
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENETDOWN
network is down
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENETUNREACH
network is unreachable
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENFILE
file table overflow
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOBUFS
no buffer space available
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENODEV
no such device
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOENT
no such file or directory
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOMEM
not enough memory
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENONET
machine is not on the network
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOPROTOOPT
protocol not available
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOSPC
no space left on device
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOSYS
function not implemented
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOTCONN
socket is not connected
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOTDIR
not a directory
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOTEMPTY
directory not empty
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOTSOCK
socket operation on non\-socket
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENOTSUP
operation not supported on socket
.UNINDENT
.INDENT 0.0
.TP
.B UV_EPERM
operation not permitted
.UNINDENT
.INDENT 0.0
.TP
.B UV_EPIPE
broken pipe
.UNINDENT
.INDENT 0.0
.TP
.B UV_EPROTO
protocol error
.UNINDENT
.INDENT 0.0
.TP
.B UV_EPROTONOSUPPORT
protocol not supported
.UNINDENT
.INDENT 0.0
.TP
.B UV_EPROTOTYPE
protocol wrong type for socket
.UNINDENT
.INDENT 0.0
.TP
.B UV_ERANGE
result too large
.UNINDENT
.INDENT 0.0
.TP
.B UV_EROFS
read\-only file system
.UNINDENT
.INDENT 0.0
.TP
.B UV_ESHUTDOWN
cannot send after transport endpoint shutdown
.UNINDENT
.INDENT 0.0
.TP
.B UV_ESPIPE
invalid seek
.UNINDENT
.INDENT 0.0
.TP
.B UV_ESRCH
no such process
.UNINDENT
.INDENT 0.0
.TP
.B UV_ETIMEDOUT
connection timed out
.UNINDENT
.INDENT 0.0
.TP
.B UV_ETXTBSY
text file is busy
.UNINDENT
.INDENT 0.0
.TP
.B UV_EXDEV
cross\-device link not permitted
.UNINDENT
.INDENT 0.0
.TP
.B UV_UNKNOWN
unknown error
.UNINDENT
.INDENT 0.0
.TP
.B UV_EOF
end of file
.UNINDENT
.INDENT 0.0
.TP
.B UV_ENXIO
no such device or address
.UNINDENT
.INDENT 0.0
.TP
.B UV_EMLINK
too many links
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B UV_ERRNO_MAP(iter_macro)
Macro that expands to a series of invocations of \fIiter_macro\fP for
each of the error constants above. \fIiter_macro\fP is invoked with two
arguments: the name of the error constant without the \fIUV_\fP prefix,
and the error message string literal.
.UNINDENT
.INDENT 0.0
.TP
.B const char* uv_strerror(int\fI\ err\fP)
Returns the error message for the given error code.  Leaks a few bytes
of memory when you call it with an unknown error code.
.UNINDENT
.INDENT 0.0
.TP
.B char* uv_strerror_r(int\fI\ err\fP, char*\fI\ buf\fP, size_t\fI\ buflen\fP)
Returns the error message for the given error code. The zero\-terminated
message is stored in the user\-supplied buffer \fIbuf\fP of at most \fIbuflen\fP bytes.
.sp
New in version 1.22.0.

.UNINDENT
.INDENT 0.0
.TP
.B const char* uv_err_name(int\fI\ err\fP)
Returns the error name for the given error code.  Leaks a few bytes
of memory when you call it with an unknown error code.
.UNINDENT
.INDENT 0.0
.TP
.B char* uv_err_name_r(int\fI\ err\fP, char*\fI\ buf\fP, size_t\fI\ buflen\fP)
Returns the error name for the given error code. The zero\-terminated
name is stored in the user\-supplied buffer \fIbuf\fP of at most \fIbuflen\fP bytes.
.sp
New in version 1.22.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_translate_sys_error(int\fI\ sys_errno\fP)
Returns the libuv error code equivalent to the given platform dependent error
code: POSIX error codes on Unix (the ones stored in \fIerrno\fP), and Win32 error
codes on Windows (those returned by \fIGetLastError()\fP or \fIWSAGetLastError()\fP).
.sp
If \fIsys_errno\fP is already a libuv error, it is simply returned.
.sp
Changed in version 1.10.0: function declared public.

.UNINDENT
.SS Version\-checking macros and functions
.sp
Starting with version 1.0.0 libuv follows the \fI\%semantic versioning\fP
scheme. This means that new APIs can be introduced throughout the lifetime of
a major release. In this section you\(aqll find all macros and functions that
will allow you to write or compile code conditionally, in order to work with
multiple libuv versions.
.SS Macros
.INDENT 0.0
.TP
.B UV_VERSION_MAJOR
libuv version\(aqs major number.
.UNINDENT
.INDENT 0.0
.TP
.B UV_VERSION_MINOR
libuv version\(aqs minor number.
.UNINDENT
.INDENT 0.0
.TP
.B UV_VERSION_PATCH
libuv version\(aqs patch number.
.UNINDENT
.INDENT 0.0
.TP
.B UV_VERSION_IS_RELEASE
Set to 1 to indicate a release version of libuv, 0 for a development
snapshot.
.UNINDENT
.INDENT 0.0
.TP
.B UV_VERSION_SUFFIX
libuv version suffix. Certain development releases such as Release Candidates
might have a suffix such as "rc".
.UNINDENT
.INDENT 0.0
.TP
.B UV_VERSION_HEX
Returns the libuv version packed into a single integer. 8 bits are used for
each component, with the patch number stored in the 8 least significant
bits. E.g. for libuv 1.2.3 this would be 0x010203.
.sp
New in version 1.7.0.

.UNINDENT
.SS Functions
.INDENT 0.0
.TP
.B unsigned int uv_version(void)
Returns \fI\%UV_VERSION_HEX\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B const char* uv_version_string(void)
Returns the libuv version number as a string. For non\-release versions the
version suffix is included.
.UNINDENT
.SS \fI\%uv_loop_t\fP \-\-\- Event loop
.sp
The event loop is the central part of libuv\(aqs functionality. It takes care
of polling for i/o and scheduling callbacks to be run based on different sources
of events.
.SS Data types
.INDENT 0.0
.TP
.B uv_loop_t
Loop data type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_run_mode
Mode used to run the loop with \fI\%uv_run()\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
    UV_RUN_DEFAULT = 0,
    UV_RUN_ONCE,
    UV_RUN_NOWAIT
} uv_run_mode;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_walk_cb)(uv_handle_t*\fI\ handle\fP, void*\fI\ arg\fP)
Type definition for callback passed to \fI\%uv_walk()\fP\&.
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B void* uv_loop_t.data
Space for user\-defined arbitrary data. libuv does not use and does not
touch this field.
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_loop_init(uv_loop_t*\fI\ loop\fP)
Initializes the given \fIuv_loop_t\fP structure.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_loop_configure(uv_loop_t*\fI\ loop\fP, uv_loop_option\fI\ option\fP, \&...)
New in version 1.0.2.

.sp
Set additional loop options.  You should normally call this before the
first call to \fI\%uv_run()\fP unless mentioned otherwise.
.sp
Returns 0 on success or a UV_E* error code on failure.  Be prepared to
handle UV_ENOSYS; it means the loop option is not supported by the platform.
.sp
Supported options:
.INDENT 7.0
.IP \(bu 2
UV_LOOP_BLOCK_SIGNAL: Block a signal when polling for new events.  The
second argument to \fI\%uv_loop_configure()\fP is the signal number.
.sp
This operation is currently only implemented for SIGPROF signals,
to suppress unnecessary wakeups when using a sampling profiler.
Requesting other signals will fail with UV_EINVAL.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_loop_close(uv_loop_t*\fI\ loop\fP)
Releases all internal loop resources. Call this function only when the loop
has finished executing and all open handles and requests have been closed,
or it will return UV_EBUSY. After this function returns, the user can free
the memory allocated for the loop.
.UNINDENT
.INDENT 0.0
.TP
.B uv_loop_t* uv_default_loop(void)
Returns the initialized default loop. It may return NULL in case of
allocation failure.
.sp
This function is just a convenient way for having a global loop throughout
an application, the default loop is in no way different than the ones
initialized with \fI\%uv_loop_init()\fP\&. As such, the default loop can (and
should) be closed with \fI\%uv_loop_close()\fP so the resources associated
with it are freed.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
This function is not thread safe.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_run(uv_loop_t*\fI\ loop\fP, uv_run_mode\fI\ mode\fP)
This function runs the event loop. It will act differently depending on the
specified mode:
.INDENT 7.0
.IP \(bu 2
UV_RUN_DEFAULT: Runs the event loop until there are no more active and
referenced handles or requests. Returns non\-zero if \fI\%uv_stop()\fP
was called and there are still active handles or requests.  Returns
zero in all other cases.
.IP \(bu 2
UV_RUN_ONCE: Poll for i/o once. Note that this function blocks if
there are no pending callbacks. Returns zero when done (no active handles
or requests left), or non\-zero if more callbacks are expected (meaning
you should run the event loop again sometime in the future).
.IP \(bu 2
UV_RUN_NOWAIT: Poll for i/o once but don\(aqt block if there are no
pending callbacks. Returns zero if done (no active handles
or requests left), or non\-zero if more callbacks are expected (meaning
you should run the event loop again sometime in the future).
.UNINDENT
.sp
\fI\%uv_run()\fP is not reentrant. It must not be called from a callback.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_loop_alive(const uv_loop_t*\fI\ loop\fP)
Returns non\-zero if there are referenced active handles, active
requests or closing handles in the loop.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_stop(uv_loop_t*\fI\ loop\fP)
Stop the event loop, causing \fI\%uv_run()\fP to end as soon as
possible. This will happen not sooner than the next loop iteration.
If this function was called before blocking for i/o, the loop won\(aqt block
for i/o on this iteration.
.UNINDENT
.INDENT 0.0
.TP
.B size_t uv_loop_size(void)
Returns the size of the \fIuv_loop_t\fP structure. Useful for FFI binding
writers who don\(aqt want to know the structure layout.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_backend_fd(const uv_loop_t*\fI\ loop\fP)
Get backend file descriptor. Only kqueue, epoll and event ports are
supported.
.sp
This can be used in conjunction with \fIuv_run(loop, UV_RUN_NOWAIT)\fP to
poll in one thread and run the event loop\(aqs callbacks in another see
test/test\-embed.c for an example.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Embedding a kqueue fd in another kqueue pollset doesn\(aqt work on all platforms. It\(aqs not
an error to add the fd but it never generates events.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_backend_timeout(const uv_loop_t*\fI\ loop\fP)
Get the poll timeout. The return value is in milliseconds, or \-1 for no
timeout.
.UNINDENT
.INDENT 0.0
.TP
.B uint64_t uv_now(const uv_loop_t*\fI\ loop\fP)
Return the current timestamp in milliseconds. The timestamp is cached at
the start of the event loop tick, see \fI\%uv_update_time()\fP for details
and rationale.
.sp
The timestamp increases monotonically from some arbitrary point in time.
Don\(aqt make assumptions about the starting point, you will only get
disappointed.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Use \fBuv_hrtime()\fP if you need sub\-millisecond granularity.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void uv_update_time(uv_loop_t*\fI\ loop\fP)
Update the event loop\(aqs concept of "now". Libuv caches the current time
at the start of the event loop tick in order to reduce the number of
time\-related system calls.
.sp
You won\(aqt normally need to call this function unless you have callbacks
that block the event loop for longer periods of time, where "longer" is
somewhat subjective but probably on the order of a millisecond or more.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_walk(uv_loop_t*\fI\ loop\fP, uv_walk_cb\fI\ walk_cb\fP, void*\fI\ arg\fP)
Walk the list of handles: \fIwalk_cb\fP will be executed with the given \fIarg\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_loop_fork(uv_loop_t*\fI\ loop\fP)
New in version 1.12.0.

.sp
Reinitialize any kernel state necessary in the child process after
a \fI\%fork(2)\fP system call.
.sp
Previously started watchers will continue to be started in the
child process.
.sp
It is necessary to explicitly call this function on every event
loop created in the parent process that you plan to continue to
use in the child, including the default loop (even if you don\(aqt
continue to use it in the parent). This function must be called
before calling \fI\%uv_run()\fP or any other API function using
the loop in the child. Failure to do so will result in undefined
behaviour, possibly including duplicate events delivered to both
parent and child or aborting the child process.
.sp
When possible, it is preferred to create a new loop in the child
process instead of reusing a loop created in the parent. New loops
created in the child process after the fork should not use this
function.
.sp
This function is not implemented on Windows, where it returns \fBUV_ENOSYS\fP\&.
.sp
\fBCAUTION:\fP
.INDENT 7.0
.INDENT 3.5
This function is experimental. It may contain bugs, and is subject to
change or removal. API and ABI stability is not guaranteed.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Mac OS X, if directory FS event handles were in use in the
parent process \fIfor any event loop\fP, the child process will no
longer be able to use the most efficient FSEvent
implementation. Instead, uses of directory FS event handles in
the child will fall back to the same implementation used for
files and on other kqueue\-based systems.
.UNINDENT
.UNINDENT
.sp
\fBCAUTION:\fP
.INDENT 7.0
.INDENT 3.5
On AIX and SunOS, FS event handles that were already started in
the parent process at the time of forking will \fInot\fP deliver
events in the child process; they must be closed and restarted.
On all other platforms, they will continue to work normally
without any further intervention.
.UNINDENT
.UNINDENT
.sp
\fBCAUTION:\fP
.INDENT 7.0
.INDENT 3.5
Any previous value returned from \fI\%uv_backend_fd()\fP is now
invalid. That function must be called again to determine the
correct backend file descriptor.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void* uv_loop_get_data(const uv_loop_t*\fI\ loop\fP)
Returns \fIloop\->data\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B void* uv_loop_set_data(uv_loop_t*\fI\ loop\fP, void*\fI\ data\fP)
Sets \fIloop\->data\fP to \fIdata\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.SS \fI\%uv_handle_t\fP \-\-\- Base handle
.sp
\fIuv_handle_t\fP is the base type for all libuv handle types.
.sp
Structures are aligned so that any libuv handle can be cast to \fIuv_handle_t\fP\&.
All API functions defined here work with any handle type.
.sp
Libuv handles are not movable. Pointers to handle structures passed to
functions must remain valid for the duration of the requested operation. Take
care when using stack allocated handles.
.SS Data types
.INDENT 0.0
.TP
.B uv_handle_t
The base libuv handle type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_handle_type
The kind of the libuv handle.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
  UV_UNKNOWN_HANDLE = 0,
  UV_ASYNC,
  UV_CHECK,
  UV_FS_EVENT,
  UV_FS_POLL,
  UV_HANDLE,
  UV_IDLE,
  UV_NAMED_PIPE,
  UV_POLL,
  UV_PREPARE,
  UV_PROCESS,
  UV_STREAM,
  UV_TCP,
  UV_TIMER,
  UV_TTY,
  UV_UDP,
  UV_SIGNAL,
  UV_FILE,
  UV_HANDLE_TYPE_MAX
} uv_handle_type;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_any_handle
Union of all handle types.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_alloc_cb)(uv_handle_t*\fI\ handle\fP, size_t\fI\ suggested_size\fP, uv_buf_t*\fI\ buf\fP)
Type definition for callback passed to \fBuv_read_start()\fP and
\fBuv_udp_recv_start()\fP\&. The user must allocate memory and fill the supplied
\fBuv_buf_t\fP structure. If NULL is assigned as the buffer\(aqs base or 0 as its length,
a \fBUV_ENOBUFS\fP error will be triggered in the \fBuv_udp_recv_cb\fP or the
\fBuv_read_cb\fP callback.
.sp
Each buffer is used only once and the user is responsible for freeing it in the
\fBuv_udp_recv_cb\fP or the \fBuv_read_cb\fP callback.
.sp
A suggested size (65536 at the moment in most cases) is provided, but it\(aqs just an indication,
not related in any way to the pending data to be read. The user is free to allocate the amount
of memory they decide.
.sp
As an example, applications with custom allocation schemes such as using freelists, allocation
pools or slab based allocators may decide to use a different size which matches the memory
chunks they already have.
.sp
Example:
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
static void my_alloc_cb(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf) {
  buf\->base = malloc(suggested_size);
  buf\->len = suggested_size;
}
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_close_cb)(uv_handle_t*\fI\ handle\fP)
Type definition for callback passed to \fI\%uv_close()\fP\&.
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B uv_loop_t* uv_handle_t.loop
Pointer to the \fBuv_loop_t\fP the handle is running on. Readonly.
.UNINDENT
.INDENT 0.0
.TP
.B uv_handle_type uv_handle_t.type
The \fI\%uv_handle_type\fP, indicating the type of the underlying handle. Readonly.
.UNINDENT
.INDENT 0.0
.TP
.B void* uv_handle_t.data
Space for user\-defined arbitrary data. libuv does not use this field.
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B UV_HANDLE_TYPE_MAP(iter_macro)
Macro that expands to a series of invocations of \fIiter_macro\fP for
each of the handle types. \fIiter_macro\fP is invoked with two
arguments: the name of the \fIuv_handle_type\fP element without the
\fIUV_\fP prefix, and the name of the corresponding structure type
without the \fIuv_\fP prefix and \fI_t\fP suffix.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_is_active(const uv_handle_t*\fI\ handle\fP)
Returns non\-zero if the handle is active, zero if it\(aqs inactive. What
"active" means depends on the type of handle:
.INDENT 7.0
.IP \(bu 2
A uv_async_t handle is always active and cannot be deactivated, except
by closing it with uv_close().
.IP \(bu 2
A uv_pipe_t, uv_tcp_t, uv_udp_t, etc. handle \- basically any handle that
deals with i/o \- is active when it is doing something that involves i/o,
like reading, writing, connecting, accepting new connections, etc.
.IP \(bu 2
A uv_check_t, uv_idle_t, uv_timer_t, etc. handle is active when it has
been started with a call to uv_check_start(), uv_idle_start(), etc.
.UNINDENT
.sp
Rule of thumb: if a handle of type \fIuv_foo_t\fP has a \fIuv_foo_start()\fP
function, then it\(aqs active from the moment that function is called.
Likewise, \fIuv_foo_stop()\fP deactivates the handle again.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_is_closing(const uv_handle_t*\fI\ handle\fP)
Returns non\-zero if the handle is closing or closed, zero otherwise.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
This function should only be used between the initialization of the handle and the
arrival of the close callback.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void uv_close(uv_handle_t*\fI\ handle\fP, uv_close_cb\fI\ close_cb\fP)
Request handle to be closed. \fIclose_cb\fP will be called asynchronously after
this call. This MUST be called on each handle before memory is released.
Moreover, the memory can only be released in \fIclose_cb\fP or after it has
returned.
.sp
Handles that wrap file descriptors are closed immediately but
\fIclose_cb\fP will still be deferred to the next iteration of the event loop.
It gives you a chance to free up any resources associated with the handle.
.sp
In\-progress requests, like uv_connect_t or uv_write_t, are cancelled and
have their callbacks called asynchronously with status=UV_ECANCELED.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_ref(uv_handle_t*\fI\ handle\fP)
Reference the given handle. References are idempotent, that is, if a handle
is already referenced calling this function again will have no effect.
.sp
See \fI\%Reference counting\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_unref(uv_handle_t*\fI\ handle\fP)
Un\-reference the given handle. References are idempotent, that is, if a handle
is not referenced calling this function again will have no effect.
.sp
See \fI\%Reference counting\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_has_ref(const uv_handle_t*\fI\ handle\fP)
Returns non\-zero if the handle referenced, zero otherwise.
.sp
See \fI\%Reference counting\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B size_t uv_handle_size(uv_handle_type\fI\ type\fP)
Returns the size of the given handle type. Useful for FFI binding writers
who don\(aqt want to know the structure layout.
.UNINDENT
.SS Miscellaneous API functions
.sp
The following API functions take a \fI\%uv_handle_t\fP argument but they work
just for some handle types.
.INDENT 0.0
.TP
.B int uv_send_buffer_size(uv_handle_t*\fI\ handle\fP, int*\fI\ value\fP)
Gets or sets the size of the send buffer that the operating
system uses for the socket.
.sp
If \fI*value\fP == 0, then it will set \fI*value\fP to the current send buffer size.
If \fI*value\fP > 0 then it will use \fI*value\fP to set the new send buffer size.
.sp
On success, zero is returned. On error, a negative result is
returned.
.sp
This function works for TCP, pipe and UDP handles on Unix and for TCP and
UDP handles on Windows.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Linux will set double the size and return double the size of the original set value.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_recv_buffer_size(uv_handle_t*\fI\ handle\fP, int*\fI\ value\fP)
Gets or sets the size of the receive buffer that the operating
system uses for the socket.
.sp
If \fI*value\fP == 0, then it will set \fI*value\fP to the current receive buffer size.
If \fI*value\fP > 0 then it will use \fI*value\fP to set the new receive buffer size.
.sp
On success, zero is returned. On error, a negative result is
returned.
.sp
This function works for TCP, pipe and UDP handles on Unix and for TCP and
UDP handles on Windows.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Linux will set double the size and return double the size of the original set value.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fileno(const uv_handle_t*\fI\ handle\fP, uv_os_fd_t*\fI\ fd\fP)
Gets the platform dependent file descriptor equivalent.
.sp
The following handles are supported: TCP, pipes, TTY, UDP and poll. Passing
any other handle type will fail with \fIUV_EINVAL\fP\&.
.sp
If a handle doesn\(aqt have an attached file descriptor yet or the handle
itself has been closed, this function will return \fIUV_EBADF\fP\&.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
Be very careful when using this function. libuv assumes it\(aqs in control of the file
descriptor so any change to it may lead to malfunction.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_loop_t* uv_handle_get_loop(const uv_handle_t*\fI\ handle\fP)
Returns \fIhandle\->loop\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B void* uv_handle_get_data(const uv_handle_t*\fI\ handle\fP)
Returns \fIhandle\->data\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B void* uv_handle_set_data(uv_handle_t*\fI\ handle\fP, void*\fI\ data\fP)
Sets \fIhandle\->data\fP to \fIdata\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B uv_handle_type uv_handle_get_type(const uv_handle_t*\fI\ handle\fP)
Returns \fIhandle\->type\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B const char* uv_handle_type_name(uv_handle_type\fI\ type\fP)
Returns the name for the equivalent struct for a given handle type,
e.g. \fI"pipe"\fP (as in \fBuv_pipe_t\fP) for \fIUV_NAMED_PIPE\fP\&.
.sp
If no such handle type exists, this returns \fINULL\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.SS Reference counting
.sp
The libuv event loop (if run in the default mode) will run until there are no
active \fIand\fP referenced handles left. The user can force the loop to exit early
by unreferencing handles which are active, for example by calling \fI\%uv_unref()\fP
after calling \fBuv_timer_start()\fP\&.
.sp
A handle can be referenced or unreferenced, the refcounting scheme doesn\(aqt use
a counter, so both operations are idempotent.
.sp
All handles are referenced when active by default, see \fI\%uv_is_active()\fP
for a more detailed explanation on what being \fIactive\fP involves.
.SS \fI\%uv_req_t\fP \-\-\- Base request
.sp
\fIuv_req_t\fP is the base type for all libuv request types.
.sp
Structures are aligned so that any libuv request can be cast to \fIuv_req_t\fP\&.
All API functions defined here work with any request type.
.SS Data types
.INDENT 0.0
.TP
.B uv_req_t
The base libuv request structure.
.UNINDENT
.INDENT 0.0
.TP
.B uv_any_req
Union of all request types.
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B void* uv_req_t.data
Space for user\-defined arbitrary data. libuv does not use this field.
.UNINDENT
.INDENT 0.0
.TP
.B uv_req_type uv_req_t.type
Indicated the type of request. Readonly.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
    UV_UNKNOWN_REQ = 0,
    UV_REQ,
    UV_CONNECT,
    UV_WRITE,
    UV_SHUTDOWN,
    UV_UDP_SEND,
    UV_FS,
    UV_WORK,
    UV_GETADDRINFO,
    UV_GETNAMEINFO,
    UV_REQ_TYPE_MAX,
} uv_req_type;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B UV_REQ_TYPE_MAP(iter_macro)
Macro that expands to a series of invocations of \fIiter_macro\fP for
each of the request types. \fIiter_macro\fP is invoked with two
arguments: the name of the \fIuv_req_type\fP element without the \fIUV_\fP
prefix, and the name of the corresponding structure type without the
\fIuv_\fP prefix and \fI_t\fP suffix.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_cancel(uv_req_t*\fI\ req\fP)
Cancel a pending request. Fails if the request is executing or has finished
executing.
.sp
Returns 0 on success, or an error code < 0 on failure.
.sp
Only cancellation of \fBuv_fs_t\fP, \fBuv_getaddrinfo_t\fP,
\fBuv_getnameinfo_t\fP, \fBuv_random_t\fP and \fBuv_work_t\fP
requests is currently supported.
.sp
Cancelled requests have their callbacks invoked some time in the future.
It\(aqs \fBnot\fP safe to free the memory associated with the request until the
callback is called.
.sp
Here is how cancellation is reported to the callback:
.INDENT 7.0
.IP \(bu 2
A \fBuv_fs_t\fP request has its req\->result field set to \fIUV_ECANCELED\fP\&.
.IP \(bu 2
A \fBuv_work_t\fP, \fBuv_getaddrinfo_t\fP,
\fBuv_getnameinfo_t\fP or \fBuv_random_t\fP request has its
callback invoked with status == \fIUV_ECANCELED\fP\&.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B size_t uv_req_size(uv_req_type\fI\ type\fP)
Returns the size of the given request type. Useful for FFI binding writers
who don\(aqt want to know the structure layout.
.UNINDENT
.INDENT 0.0
.TP
.B void* uv_req_get_data(const uv_req_t*\fI\ req\fP)
Returns \fIreq\->data\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B void* uv_req_set_data(uv_req_t*\fI\ req\fP, void*\fI\ data\fP)
Sets \fIreq\->data\fP to \fIdata\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B uv_req_type uv_req_get_type(const uv_req_t*\fI\ req\fP)
Returns \fIreq\->type\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B const char* uv_req_type_name(uv_req_type\fI\ type\fP)
Returns the name for the equivalent struct for a given request type,
e.g. \fI"connect"\fP (as in \fBuv_connect_t\fP) for \fIUV_CONNECT\fP\&.
.sp
If no such request type exists, this returns \fINULL\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.SS \fI\%uv_timer_t\fP \-\-\- Timer handle
.sp
Timer handles are used to schedule callbacks to be called in the future.
.SS Data types
.INDENT 0.0
.TP
.B uv_timer_t
Timer handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_timer_cb)(uv_timer_t*\fI\ handle\fP)
Type definition for callback passed to \fI\%uv_timer_start()\fP\&.
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_timer_init(uv_loop_t*\fI\ loop\fP, uv_timer_t*\fI\ handle\fP)
Initialize the handle.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_timer_start(uv_timer_t*\fI\ handle\fP, uv_timer_cb\fI\ cb\fP, uint64_t\fI\ timeout\fP, uint64_t\fI\ repeat\fP)
Start the timer. \fItimeout\fP and \fIrepeat\fP are in milliseconds.
.sp
If \fItimeout\fP is zero, the callback fires on the next event loop iteration.
If \fIrepeat\fP is non\-zero, the callback fires first after \fItimeout\fP
milliseconds and then repeatedly after \fIrepeat\fP milliseconds.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Does not update the event loop\(aqs concept of "now". See \fBuv_update_time()\fP for more information.
.sp
If the timer is already active, it is simply updated.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_timer_stop(uv_timer_t*\fI\ handle\fP)
Stop the timer, the callback will not be called anymore.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_timer_again(uv_timer_t*\fI\ handle\fP)
Stop the timer, and if it is repeating restart it using the repeat value
as the timeout. If the timer has never been started before it returns
UV_EINVAL.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_timer_set_repeat(uv_timer_t*\fI\ handle\fP, uint64_t\fI\ repeat\fP)
Set the repeat interval value in milliseconds. The timer will be scheduled
to run on the given interval, regardless of the callback execution
duration, and will follow normal timer semantics in the case of a
time\-slice overrun.
.sp
For example, if a 50ms repeating timer first runs for 17ms, it will be
scheduled to run again 33ms later. If other tasks consume more than the
33ms following the first timer callback, then the callback will run as soon
as possible.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
If the repeat value is set from a timer callback it does not immediately take effect.
If the timer was non\-repeating before, it will have been stopped. If it was repeating,
then the old repeat value will have been used to schedule the next timeout.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uint64_t uv_timer_get_repeat(const uv_timer_t*\fI\ handle\fP)
Get the timer repeat value.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_prepare_t\fP \-\-\- Prepare handle
.sp
Prepare handles will run the given callback once per loop iteration, right
before polling for i/o.
.SS Data types
.INDENT 0.0
.TP
.B uv_prepare_t
Prepare handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_prepare_cb)(uv_prepare_t*\fI\ handle\fP)
Type definition for callback passed to \fI\%uv_prepare_start()\fP\&.
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_prepare_init(uv_loop_t*\fI\ loop\fP, uv_prepare_t*\fI\ prepare\fP)
Initialize the handle. This function always succeeds.
.INDENT 7.0
.TP
.B Returns
0
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_prepare_start(uv_prepare_t*\fI\ prepare\fP, uv_prepare_cb\fI\ cb\fP)
Start the handle with the given callback. This function always succeeds,
except when \fIcb\fP is \fINULL\fP\&.
.INDENT 7.0
.TP
.B Returns
0 on success, or \fIUV_EINVAL\fP when \fIcb == NULL\fP\&.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_prepare_stop(uv_prepare_t*\fI\ prepare\fP)
Stop the handle, the callback will no longer be called.
This function always succeeds.
.INDENT 7.0
.TP
.B Returns
0
.UNINDENT
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_check_t\fP \-\-\- Check handle
.sp
Check handles will run the given callback once per loop iteration, right
after polling for i/o.
.SS Data types
.INDENT 0.0
.TP
.B uv_check_t
Check handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_check_cb)(uv_check_t*\fI\ handle\fP)
Type definition for callback passed to \fI\%uv_check_start()\fP\&.
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_check_init(uv_loop_t*\fI\ loop\fP, uv_check_t*\fI\ check\fP)
Initialize the handle. This function always succeeds.
.INDENT 7.0
.TP
.B Returns
0
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_check_start(uv_check_t*\fI\ check\fP, uv_check_cb\fI\ cb\fP)
Start the handle with the given callback. This function always succeeds,
except when \fIcb\fP is \fINULL\fP\&.
.INDENT 7.0
.TP
.B Returns
0 on success, or \fIUV_EINVAL\fP when \fIcb == NULL\fP\&.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_check_stop(uv_check_t*\fI\ check\fP)
Stop the handle, the callback will no longer be called.
This function always succeeds.
.INDENT 7.0
.TP
.B Returns
0
.UNINDENT
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_idle_t\fP \-\-\- Idle handle
.sp
Idle handles will run the given callback once per loop iteration, right
before the \fBuv_prepare_t\fP handles.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The notable difference with prepare handles is that when there are active idle handles,
the loop will perform a zero timeout poll instead of blocking for i/o.
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
Despite the name, idle handles will get their callbacks called on every loop iteration,
not when the loop is actually "idle".
.UNINDENT
.UNINDENT
.SS Data types
.INDENT 0.0
.TP
.B uv_idle_t
Idle handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_idle_cb)(uv_idle_t*\fI\ handle\fP)
Type definition for callback passed to \fI\%uv_idle_start()\fP\&.
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_idle_init(uv_loop_t*\fI\ loop\fP, uv_idle_t*\fI\ idle\fP)
Initialize the handle. This function always succeeds.
.INDENT 7.0
.TP
.B Returns
0
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_idle_start(uv_idle_t*\fI\ idle\fP, uv_idle_cb\fI\ cb\fP)
Start the handle with the given callback. This function always succeeds,
except when \fIcb\fP is \fINULL\fP\&.
.INDENT 7.0
.TP
.B Returns
0 on success, or \fIUV_EINVAL\fP when \fIcb == NULL\fP\&.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_idle_stop(uv_idle_t*\fI\ idle\fP)
Stop the handle, the callback will no longer be called.
This function always succeeds.
.INDENT 7.0
.TP
.B Returns
0
.UNINDENT
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_async_t\fP \-\-\- Async handle
.sp
Async handles allow the user to "wakeup" the event loop and get a callback
called from another thread.
.SS Data types
.INDENT 0.0
.TP
.B uv_async_t
Async handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_async_cb)(uv_async_t*\fI\ handle\fP)
Type definition for callback passed to \fI\%uv_async_init()\fP\&.
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_async_init(uv_loop_t*\fI\ loop\fP, uv_async_t*\fI\ async\fP, uv_async_cb\fI\ async_cb\fP)
Initialize the handle. A NULL callback is allowed.
.INDENT 7.0
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Unlike other handle initialization  functions, it immediately starts the handle.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_async_send(uv_async_t*\fI\ async\fP)
Wake up the event loop and call the async handle\(aqs callback.
.INDENT 7.0
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
It\(aqs safe to call this function from any thread. The callback will be called on the
loop thread.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fI\%uv_async_send()\fP is \fI\%async\-signal\-safe\fP\&.
It\(aqs safe to call this function from a signal handler.
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
libuv will coalesce calls to \fI\%uv_async_send()\fP, that is, not every call to it will
yield an execution of the callback. For example: if \fI\%uv_async_send()\fP is called 5
times in a row before the callback is called, the callback will only be called once. If
\fI\%uv_async_send()\fP is called again after the callback was called, it will be called
again.
.UNINDENT
.UNINDENT
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_poll_t\fP \-\-\- Poll handle
.sp
Poll handles are used to watch file descriptors for readability,
writability and disconnection similar to the purpose of \fI\%poll(2)\fP\&.
.sp
The purpose of poll handles is to enable integrating external libraries that
rely on the event loop to signal it about the socket status changes, like
c\-ares or libssh2. Using uv_poll_t for any other purpose is not recommended;
\fBuv_tcp_t\fP, \fBuv_udp_t\fP, etc. provide an implementation that is faster and
more scalable than what can be achieved with \fI\%uv_poll_t\fP, especially on
Windows.
.sp
It is possible that poll handles occasionally signal that a file descriptor is
readable or writable even when it isn\(aqt. The user should therefore always
be prepared to handle EAGAIN or equivalent when it attempts to read from or
write to the fd.
.sp
It is not okay to have multiple active poll handles for the same socket, this
can cause libuv to busyloop or otherwise malfunction.
.sp
The user should not close a file descriptor while it is being polled by an
active poll handle. This can cause the handle to report an error,
but it might also start polling another socket. However the fd can be safely
closed immediately after a call to \fI\%uv_poll_stop()\fP or \fBuv_close()\fP\&.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
On windows only sockets can be polled with poll handles. On Unix any file
descriptor that would be accepted by \fI\%poll(2)\fP can be used.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
On AIX, watching for disconnection is not supported.
.UNINDENT
.UNINDENT
.SS Data types
.INDENT 0.0
.TP
.B uv_poll_t
Poll handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_poll_cb)(uv_poll_t*\fI\ handle\fP, int\fI\ status\fP, int\fI\ events\fP)
Type definition for callback passed to \fI\%uv_poll_start()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B uv_poll_event
Poll event types
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
enum uv_poll_event {
    UV_READABLE = 1,
    UV_WRITABLE = 2,
    UV_DISCONNECT = 4,
    UV_PRIORITIZED = 8
};
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_poll_init(uv_loop_t*\fI\ loop\fP, uv_poll_t*\fI\ handle\fP, int\fI\ fd\fP)
Initialize the handle using a file descriptor.
.sp
Changed in version 1.2.2: the file descriptor is set to non\-blocking mode.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_poll_init_socket(uv_loop_t*\fI\ loop\fP, uv_poll_t*\fI\ handle\fP, uv_os_sock_t\fI\ socket\fP)
Initialize the handle using a socket descriptor. On Unix this is identical
to \fI\%uv_poll_init()\fP\&. On windows it takes a SOCKET handle.
.sp
Changed in version 1.2.2: the socket is set to non\-blocking mode.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_poll_start(uv_poll_t*\fI\ handle\fP, int\fI\ events\fP, uv_poll_cb\fI\ cb\fP)
Starts polling the file descriptor. \fIevents\fP is a bitmask made up of
UV_READABLE, UV_WRITABLE, UV_PRIORITIZED and UV_DISCONNECT. As soon as an
event is detected the callback will be called with \fIstatus\fP set to 0, and the
detected events set on the \fIevents\fP field.
.sp
The UV_PRIORITIZED event is used to watch for sysfs interrupts or TCP out\-of\-band
messages.
.sp
The UV_DISCONNECT event is optional in the sense that it may not be
reported and the user is free to ignore it, but it can help optimize the shutdown
path because an extra read or write call might be avoided.
.sp
If an error happens while polling, \fIstatus\fP will be < 0 and corresponds
with one of the UV_E* error codes (see errors). The user should
not close the socket while the handle is active. If the user does that
anyway, the callback \fImay\fP be called reporting an error status, but this
is \fBnot\fP guaranteed.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Calling \fI\%uv_poll_start()\fP on a handle that is already active is fine. Doing so
will update the events mask that is being watched for.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Though UV_DISCONNECT can be set, it is unsupported on AIX and as such will not be set
on the \fIevents\fP field in the callback.
.UNINDENT
.UNINDENT
.sp
Changed in version 1.9.0: Added the UV_DISCONNECT event.

.sp
Changed in version 1.14.0: Added the UV_PRIORITIZED event.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_poll_stop(uv_poll_t*\fI\ poll\fP)
Stop polling the file descriptor, the callback will no longer be called.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_signal_t\fP \-\-\- Signal handle
.sp
Signal handles implement Unix style signal handling on a per\-event loop bases.
.SS Windows notes
.sp
Reception of some signals is emulated:
.INDENT 0.0
.IP \(bu 2
SIGINT is normally delivered when the user presses CTRL+C. However, like
on Unix, it is not generated when terminal raw mode is enabled.
.IP \(bu 2
SIGBREAK is delivered when the user pressed CTRL + BREAK.
.IP \(bu 2
SIGHUP is generated when the user closes the console window. On SIGHUP the
program is given approximately 10 seconds to perform cleanup. After that
Windows will unconditionally terminate it.
.IP \(bu 2
SIGWINCH is raised whenever libuv detects that the console has been
resized. When a libuv app is running under a console emulator, or when a
32\-bit libuv app is running on 64\-bit system, SIGWINCH will be emulated. In
such cases SIGWINCH signals may not always be delivered in a timely manner.
For a writable \fBuv_tty_t\fP handle libuv will only detect size changes
when the cursor is moved. When a readable \fBuv_tty_t\fP handle is used,
resizing of the console buffer will be detected only if the handle is in raw
mode and is being read.
.IP \(bu 2
Watchers for other signals can be successfully created, but these signals
are never received. These signals are: \fISIGILL\fP, \fISIGABRT\fP, \fISIGFPE\fP, \fISIGSEGV\fP,
\fISIGTERM\fP and \fISIGKILL.\fP
.IP \(bu 2
Calls to raise() or abort() to programmatically raise a signal are
not detected by libuv; these will not trigger a signal watcher.
.UNINDENT
.sp
Changed in version 1.15.0: SIGWINCH support on Windows was improved.

.sp
Changed in version 1.31.0: 32\-bit libuv SIGWINCH support on 64\-bit Windows was
rolled back to old implementation.

.SS Unix notes
.INDENT 0.0
.IP \(bu 2
SIGKILL and SIGSTOP are impossible to catch.
.IP \(bu 2
Handling SIGBUS, SIGFPE, SIGILL or SIGSEGV via libuv results into undefined behavior.
.IP \(bu 2
SIGABRT will not be caught by libuv if generated by \fIabort()\fP, e.g. through \fIassert()\fP\&.
.IP \(bu 2
On Linux SIGRT0 and SIGRT1 (signals 32 and 33) are used by the NPTL pthreads library to
manage threads. Installing watchers for those signals will lead to unpredictable behavior
and is strongly discouraged. Future versions of libuv may simply reject them.
.UNINDENT
.SS Data types
.INDENT 0.0
.TP
.B uv_signal_t
Signal handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_signal_cb)(uv_signal_t*\fI\ handle\fP, int\fI\ signum\fP)
Type definition for callback passed to \fI\%uv_signal_start()\fP\&.
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B int uv_signal_t.signum
Signal being monitored by this handle. Readonly.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_signal_init(uv_loop_t*\fI\ loop\fP, uv_signal_t*\fI\ signal\fP)
Initialize the handle.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_signal_start(uv_signal_t*\fI\ signal\fP, uv_signal_cb\fI\ cb\fP, int\fI\ signum\fP)
Start the handle with the given callback, watching for the given signal.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_signal_start_oneshot(uv_signal_t*\fI\ signal\fP, uv_signal_cb\fI\ cb\fP, int\fI\ signum\fP)
New in version 1.12.0.

.sp
Same functionality as \fI\%uv_signal_start()\fP but the signal handler is reset the moment
the signal is received.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_signal_stop(uv_signal_t*\fI\ signal\fP)
Stop the handle, the callback will no longer be called.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_process_t\fP \-\-\- Process handle
.sp
Process handles will spawn a new process and allow the user to control it and
establish communication channels with it using streams.
.SS Data types
.INDENT 0.0
.TP
.B uv_process_t
Process handle type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t
Options for spawning the process (passed to \fI\%uv_spawn()\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_process_options_s {
    uv_exit_cb exit_cb;
    const char* file;
    char** args;
    char** env;
    const char* cwd;
    unsigned int flags;
    int stdio_count;
    uv_stdio_container_t* stdio;
    uv_uid_t uid;
    uv_gid_t gid;
} uv_process_options_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_exit_cb)(uv_process_t*, int64_t\fI\ exit_status\fP, int\fI\ term_signal\fP)
Type definition for callback passed in \fI\%uv_process_options_t\fP which
will indicate the exit status and the signal that caused the process to
terminate, if any.
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_flags
Flags to be set on the flags field of \fI\%uv_process_options_t\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
enum uv_process_flags {
    /*
    * Set the child process\(aq user id.
    */
    UV_PROCESS_SETUID = (1 << 0),
    /*
    * Set the child process\(aq group id.
    */
    UV_PROCESS_SETGID = (1 << 1),
    /*
    * Do not wrap any arguments in quotes, or perform any other escaping, when
    * converting the argument list into a command line string. This option is
    * only meaningful on Windows systems. On Unix it is silently ignored.
    */
    UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS = (1 << 2),
    /*
    * Spawn the child process in a detached state \- this will make it a process
    * group leader, and will effectively enable the child to keep running after
    * the parent exits. Note that the child process will still keep the
    * parent\(aqs event loop alive unless the parent process calls uv_unref() on
    * the child\(aqs process handle.
    */
    UV_PROCESS_DETACHED = (1 << 3),
    /*
    * Hide the subprocess window that would normally be created. This option is
    * only meaningful on Windows systems. On Unix it is silently ignored.
    */
    UV_PROCESS_WINDOWS_HIDE = (1 << 4),
    /*
    * Hide the subprocess console window that would normally be created. This
    * option is only meaningful on Windows systems. On Unix it is silently
    * ignored.
    */
    UV_PROCESS_WINDOWS_HIDE_CONSOLE = (1 << 5),
    /*
    * Hide the subprocess GUI window that would normally be created. This
    * option is only meaningful on Windows systems. On Unix it is silently
    * ignored.
    */
    UV_PROCESS_WINDOWS_HIDE_GUI = (1 << 6)
};
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_stdio_container_t
Container for each stdio handle or fd passed to a child process.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_stdio_container_s {
    uv_stdio_flags flags;
    union {
        uv_stream_t* stream;
        int fd;
    } data;
} uv_stdio_container_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_stdio_flags
Flags specifying how a stdio should be transmitted to the child process.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
    UV_IGNORE = 0x00,
    UV_CREATE_PIPE = 0x01,
    UV_INHERIT_FD = 0x02,
    UV_INHERIT_STREAM = 0x04,
    /*
    * When UV_CREATE_PIPE is specified, UV_READABLE_PIPE and UV_WRITABLE_PIPE
    * determine the direction of flow, from the child process\(aq perspective. Both
    * flags may be specified to create a duplex data stream.
    */
    UV_READABLE_PIPE = 0x10,
    UV_WRITABLE_PIPE = 0x20
    /*
     * Open the child pipe handle in overlapped mode on Windows.
     * On Unix it is silently ignored.
     */
    UV_OVERLAPPED_PIPE = 0x40
} uv_stdio_flags;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B uv_process_t.pid
The PID of the spawned process. It\(aqs set after calling \fI\%uv_spawn()\fP\&.
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.exit_cb
Callback called after the process exits.
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.file
Path pointing to the program to be executed.
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.args
Command line arguments. args[0] should be the path to the program. On
Windows this uses \fICreateProcess\fP which concatenates the arguments into a
string this can cause some strange errors. See the
\fBUV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS\fP flag on \fI\%uv_process_flags\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.env
Environment for the new process. If NULL the parents environment is used.
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.cwd
Current working directory for the subprocess.
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.flags
Various flags that control how \fI\%uv_spawn()\fP behaves. See
\fI\%uv_process_flags\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.stdio_count
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.stdio
The \fIstdio\fP field points to an array of \fI\%uv_stdio_container_t\fP
structs that describe the file descriptors that will be made available to
the child process. The convention is that stdio[0] points to stdin,
fd 1 is used for stdout, and fd 2 is stderr.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Windows file descriptors greater than 2 are available to the child process only if
the child processes uses the MSVCRT runtime.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.uid
.UNINDENT
.INDENT 0.0
.TP
.B uv_process_options_t.gid
Libuv can change the child process\(aq user/group id. This happens only when
the appropriate bits are set in the flags fields.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
This is not supported on Windows, \fI\%uv_spawn()\fP will fail and set the error
to \fBUV_ENOTSUP\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_stdio_container_t.flags
Flags specifying how the stdio container should be passed to the child. See
\fI\%uv_stdio_flags\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B uv_stdio_container_t.data
Union containing either the stream or fd to be passed on to the child
process.
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B void uv_disable_stdio_inheritance(void)
Disables inheritance for file descriptors / handles that this process
inherited from its parent. The effect is that child processes spawned by
this process don\(aqt accidentally inherit these handles.
.sp
It is recommended to call this function as early in your program as possible,
before the inherited file descriptors can be closed or duplicated.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
This function works on a best\-effort basis: there is no guarantee that libuv can discover
all file descriptors that were inherited. In general it does a better job on Windows than
it does on Unix.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_spawn(uv_loop_t*\fI\ loop\fP, uv_process_t*\fI\ handle\fP, const uv_process_options_t*\fI\ options\fP)
Initializes the process handle and starts the process. If the process is
successfully spawned, this function will return 0. Otherwise, the
negative error code corresponding to the reason it couldn\(aqt spawn is
returned.
.sp
Possible reasons for failing to spawn would include (but not be limited to)
the file to execute not existing, not having permissions to use the setuid or
setgid specified, or not having enough memory to allocate for the new
process.
.sp
Changed in version 1.24.0: Added \fIUV_PROCESS_WINDOWS_HIDE_CONSOLE\fP and
\fIUV_PROCESS_WINDOWS_HIDE_GUI\fP flags.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_process_kill(uv_process_t*\fI\ handle\fP, int\fI\ signum\fP)
Sends the specified signal to the given process handle. Check the documentation
on signal for signal support, specially on Windows.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_kill(int\fI\ pid\fP, int\fI\ signum\fP)
Sends the specified signal to the given PID. Check the documentation
on signal for signal support, specially on Windows.
.UNINDENT
.INDENT 0.0
.TP
.B uv_pid_t uv_process_get_pid(const uv_process_t*\fI\ handle\fP)
Returns \fIhandle\->pid\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_stream_t\fP \-\-\- Stream handle
.sp
Stream handles provide an abstraction of a duplex communication channel.
\fI\%uv_stream_t\fP is an abstract type, libuv provides 3 stream implementations
in the form of \fBuv_tcp_t\fP, \fBuv_pipe_t\fP and \fBuv_tty_t\fP\&.
.SS Data types
.INDENT 0.0
.TP
.B uv_stream_t
Stream handle type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_connect_t
Connect request type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_shutdown_t
Shutdown request type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_write_t
Write request type. Careful attention must be paid when reusing objects of
this type. When a stream is in non\-blocking mode, write requests sent
with \fBuv_write\fP will be queued. Reusing objects at this point is undefined
behaviour. It is safe to reuse the \fBuv_write_t\fP object only after the
callback passed to \fBuv_write\fP is fired.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_read_cb)(uv_stream_t*\fI\ stream\fP, ssize_t\fI\ nread\fP, const uv_buf_t*\fI\ buf\fP)
Callback called when data was read on a stream.
.sp
\fInread\fP is > 0 if there is data available or < 0 on error. When we\(aqve
reached EOF, \fInread\fP will be set to \fBUV_EOF\fP\&. When \fInread\fP < 0,
the \fIbuf\fP parameter might not point to a valid buffer; in that case
\fIbuf.len\fP and \fIbuf.base\fP are both set to 0.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fInread\fP might be 0, which does \fInot\fP indicate an error or EOF. This
is equivalent to \fBEAGAIN\fP or \fBEWOULDBLOCK\fP under \fBread(2)\fP\&.
.UNINDENT
.UNINDENT
.sp
The callee is responsible for stopping/closing the stream when an error happens
by calling \fI\%uv_read_stop()\fP or \fBuv_close()\fP\&. Trying to read
from the stream again is undefined.
.sp
The callee is responsible for freeing the buffer, libuv does not reuse it.
The buffer may be a null buffer (where \fIbuf\->base\fP == NULL and \fIbuf\->len\fP == 0)
on error.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_write_cb)(uv_write_t*\fI\ req\fP, int\fI\ status\fP)
Callback called after data was written on a stream. \fIstatus\fP will be 0 in
case of success, < 0 otherwise.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_connect_cb)(uv_connect_t*\fI\ req\fP, int\fI\ status\fP)
Callback called after a connection started by \fBuv_connect()\fP is done.
\fIstatus\fP will be 0 in case of success, < 0 otherwise.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_shutdown_cb)(uv_shutdown_t*\fI\ req\fP, int\fI\ status\fP)
Callback called after a shutdown request has been completed. \fIstatus\fP will
be 0 in case of success, < 0 otherwise.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_connection_cb)(uv_stream_t*\fI\ server\fP, int\fI\ status\fP)
Callback called when a stream server has received an incoming connection.
The user can accept the connection by calling \fI\%uv_accept()\fP\&.
\fIstatus\fP will be 0 in case of success, < 0 otherwise.
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B size_t uv_stream_t.write_queue_size
Contains the amount of queued bytes waiting to be sent. Readonly.
.UNINDENT
.INDENT 0.0
.TP
.B uv_stream_t* uv_connect_t.handle
Pointer to the stream where this connection request is running.
.UNINDENT
.INDENT 0.0
.TP
.B uv_stream_t* uv_shutdown_t.handle
Pointer to the stream where this shutdown request is running.
.UNINDENT
.INDENT 0.0
.TP
.B uv_stream_t* uv_write_t.handle
Pointer to the stream where this write request is running.
.UNINDENT
.INDENT 0.0
.TP
.B uv_stream_t* uv_write_t.send_handle
Pointer to the stream being sent using this write request.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_shutdown(uv_shutdown_t*\fI\ req\fP, uv_stream_t*\fI\ handle\fP, uv_shutdown_cb\fI\ cb\fP)
Shutdown the outgoing (write) side of a duplex stream. It waits for pending
write requests to complete. The \fIhandle\fP should refer to a initialized stream.
\fIreq\fP should be an uninitialized shutdown request struct. The \fIcb\fP is called
after shutdown is complete.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_listen(uv_stream_t*\fI\ stream\fP, int\fI\ backlog\fP, uv_connection_cb\fI\ cb\fP)
Start listening for incoming connections. \fIbacklog\fP indicates the number of
connections the kernel might queue, same as \fI\%listen(2)\fP\&. When a new
incoming connection is received the \fI\%uv_connection_cb\fP callback is
called.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_accept(uv_stream_t*\fI\ server\fP, uv_stream_t*\fI\ client\fP)
This call is used in conjunction with \fI\%uv_listen()\fP to accept incoming
connections. Call this function after receiving a \fI\%uv_connection_cb\fP
to accept the connection. Before calling this function the client handle must
be initialized. < 0 return value indicates an error.
.sp
When the \fI\%uv_connection_cb\fP callback is called it is guaranteed that
this function will complete successfully the first time. If you attempt to use
it more than once, it may fail. It is suggested to only call this function once
per \fI\%uv_connection_cb\fP call.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIserver\fP and \fIclient\fP must be handles running on the same loop.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_read_start(uv_stream_t*\fI\ stream\fP, uv_alloc_cb\fI\ alloc_cb\fP, uv_read_cb\fI\ read_cb\fP)
Read data from an incoming stream. The \fI\%uv_read_cb\fP callback will
be made several times until there is no more data to read or
\fI\%uv_read_stop()\fP is called.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_read_stop(uv_stream_t*)
Stop reading data from the stream. The \fI\%uv_read_cb\fP callback will
no longer be called.
.sp
This function is idempotent and may be safely called on a stopped stream.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_write(uv_write_t*\fI\ req\fP, uv_stream_t*\fI\ handle\fP, const uv_buf_t\fI\ bufs[]\fP, unsigned int\fI\ nbufs\fP, uv_write_cb\fI\ cb\fP)
Write data to stream. Buffers are written in order. Example:
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
void cb(uv_write_t* req, int status) {
    /* Logic which handles the write result */
}

uv_buf_t a[] = {
    { .base = "1", .len = 1 },
    { .base = "2", .len = 1 }
};

uv_buf_t b[] = {
    { .base = "3", .len = 1 },
    { .base = "4", .len = 1 }
};

uv_write_t req1;
uv_write_t req2;

/* writes "1234" */
uv_write(&req1, stream, a, 2, cb);
uv_write(&req2, stream, b, 2, cb);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
The memory pointed to by the buffers must remain valid until the callback gets called.
This also holds for \fI\%uv_write2()\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_write2(uv_write_t*\fI\ req\fP, uv_stream_t*\fI\ handle\fP, const uv_buf_t\fI\ bufs[]\fP, unsigned int\fI\ nbufs\fP, uv_stream_t*\fI\ send_handle\fP, uv_write_cb\fI\ cb\fP)
Extended write function for sending handles over a pipe. The pipe must be
initialized with \fIipc\fP == 1.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIsend_handle\fP must be a TCP socket or pipe, which is a server or a connection (listening
or connected state). Bound sockets or pipes will be assumed to be servers.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_try_write(uv_stream_t*\fI\ handle\fP, const uv_buf_t\fI\ bufs[]\fP, unsigned int\fI\ nbufs\fP)
Same as \fI\%uv_write()\fP, but won\(aqt queue a write request if it can\(aqt be
completed immediately.
.sp
Will return either:
.INDENT 7.0
.IP \(bu 2
> 0: number of bytes written (can be less than the supplied buffer size).
.IP \(bu 2
< 0: negative error code (\fBUV_EAGAIN\fP is returned if no data can be sent
immediately).
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_is_readable(const uv_stream_t*\fI\ handle\fP)
Returns 1 if the stream is readable, 0 otherwise.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_is_writable(const uv_stream_t*\fI\ handle\fP)
Returns 1 if the stream is writable, 0 otherwise.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_stream_set_blocking(uv_stream_t*\fI\ handle\fP, int\fI\ blocking\fP)
Enable or disable blocking mode for a stream.
.sp
When blocking mode is enabled all writes complete synchronously. The
interface remains unchanged otherwise, e.g. completion or failure of the
operation will still be reported through a callback which is made
asynchronously.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
Relying too much on this API is not recommended. It is likely to change
significantly in the future.
.sp
Currently only works on Windows for \fBuv_pipe_t\fP handles.
On UNIX platforms, all \fI\%uv_stream_t\fP handles are supported.
.sp
Also libuv currently makes no ordering guarantee when the blocking mode
is changed after write requests have already been submitted. Therefore it is
recommended to set the blocking mode immediately after opening or creating
the stream.
.UNINDENT
.UNINDENT
.sp
Changed in version 1.4.0: UNIX implementation added.

.UNINDENT
.INDENT 0.0
.TP
.B size_t uv_stream_get_write_queue_size(const uv_stream_t*\fI\ stream\fP)
Returns \fIstream\->write_queue_size\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_tcp_t\fP \-\-\- TCP handle
.sp
TCP handles are used to represent both TCP streams and servers.
.sp
\fI\%uv_tcp_t\fP is a \(aqsubclass\(aq of \fBuv_stream_t\fP\&.
.SS Data types
.INDENT 0.0
.TP
.B uv_tcp_t
TCP handle type.
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_stream_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_tcp_init(uv_loop_t*\fI\ loop\fP, uv_tcp_t*\fI\ handle\fP)
Initialize the handle. No socket is created as of yet.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_init_ex(uv_loop_t*\fI\ loop\fP, uv_tcp_t*\fI\ handle\fP, unsigned int\fI\ flags\fP)
Initialize the handle with the specified flags. At the moment only the lower 8 bits
of the \fIflags\fP parameter are used as the socket domain. A socket will be created
for the given domain. If the specified domain is \fBAF_UNSPEC\fP no socket is created,
just like \fI\%uv_tcp_init()\fP\&.
.sp
New in version 1.7.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_open(uv_tcp_t*\fI\ handle\fP, uv_os_sock_t\fI\ sock\fP)
Open an existing file descriptor or SOCKET as a TCP handle.
.sp
Changed in version 1.2.1: the file descriptor is set to non\-blocking mode.

.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
The passed file descriptor or SOCKET is not checked for its type, but
it\(aqs required that it represents a valid stream socket.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_nodelay(uv_tcp_t*\fI\ handle\fP, int\fI\ enable\fP)
Enable \fITCP_NODELAY\fP, which disables Nagle\(aqs algorithm.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_keepalive(uv_tcp_t*\fI\ handle\fP, int\fI\ enable\fP, unsigned int\fI\ delay\fP)
Enable / disable TCP keep\-alive. \fIdelay\fP is the initial delay in seconds,
ignored when \fIenable\fP is zero.
.sp
After \fIdelay\fP has been reached, 10 successive probes, each spaced 1 second
from the previous one, will still happen. If the connection is still lost
at the end of this procedure, then the handle is destroyed with a
\fBUV_ETIMEDOUT\fP error passed to the corresponding callback.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_simultaneous_accepts(uv_tcp_t*\fI\ handle\fP, int\fI\ enable\fP)
Enable / disable simultaneous asynchronous accept requests that are
queued by the operating system when listening for new TCP connections.
.sp
This setting is used to tune a TCP server for the desired performance.
Having simultaneous accepts can significantly improve the rate of accepting
connections (which is why it is enabled by default) but may lead to uneven
load distribution in multi\-process setups.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_bind(uv_tcp_t*\fI\ handle\fP, const struct sockaddr*\fI\ addr\fP, unsigned int\fI\ flags\fP)
Bind the handle to an address and port. \fIaddr\fP should point to an
initialized \fBstruct sockaddr_in\fP or \fBstruct sockaddr_in6\fP\&.
.sp
When the port is already taken, you can expect to see an \fBUV_EADDRINUSE\fP
error from either \fI\%uv_tcp_bind()\fP, \fBuv_listen()\fP or
\fI\%uv_tcp_connect()\fP\&. That is, a successful call to this function does
not guarantee that the call to \fBuv_listen()\fP or \fI\%uv_tcp_connect()\fP
will succeed as well.
.sp
\fIflags\fP can contain \fBUV_TCP_IPV6ONLY\fP, in which case dual\-stack support
is disabled and only IPv6 is used.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_getsockname(const uv_tcp_t*\fI\ handle\fP, struct sockaddr*\fI\ name\fP, int*\fI\ namelen\fP)
Get the current address to which the handle is bound. \fIname\fP must point to
a valid and big enough chunk of memory, \fBstruct sockaddr_storage\fP is
recommended for IPv4 and IPv6 support.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_getpeername(const uv_tcp_t*\fI\ handle\fP, struct sockaddr*\fI\ name\fP, int*\fI\ namelen\fP)
Get the address of the peer connected to the handle. \fIname\fP must point to
a valid and big enough chunk of memory, \fBstruct sockaddr_storage\fP is
recommended for IPv4 and IPv6 support.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_connect(uv_connect_t*\fI\ req\fP, uv_tcp_t*\fI\ handle\fP, const struct sockaddr*\fI\ addr\fP, uv_connect_cb\fI\ cb\fP)
Establish an IPv4 or IPv6 TCP connection. Provide an initialized TCP handle
and an uninitialized \fBuv_connect_t\fP\&. \fIaddr\fP should point to an
initialized \fBstruct sockaddr_in\fP or \fBstruct sockaddr_in6\fP\&.
.sp
On Windows if the \fIaddr\fP is initialized to point to an unspecified address
(\fB0.0.0.0\fP or \fB::\fP) it will be changed to point to \fBlocalhost\fP\&.
This is done to match the behavior of Linux systems.
.sp
The callback is made when the connection has been established or when a
connection error happened.
.sp
Changed in version 1.19.0: added \fB0.0.0.0\fP and \fB::\fP to \fBlocalhost\fP
mapping

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_stream_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tcp_close_reset(uv_tcp_t*\fI\ handle\fP, uv_close_cb\fI\ close_cb\fP)
Resets a TCP connection by sending a RST packet. This is accomplished by
setting the \fISO_LINGER\fP socket option with a linger interval of zero and
then calling \fBuv_close()\fP\&.
Due to some platform inconsistencies, mixing of \fBuv_shutdown()\fP and
\fI\%uv_tcp_close_reset()\fP calls is not allowed.
.sp
New in version 1.32.0.

.UNINDENT
.SS \fI\%uv_pipe_t\fP \-\-\- Pipe handle
.sp
Pipe handles provide an abstraction over streaming files on Unix (including
local domain sockets, pipes, and FIFOs) and named pipes on Windows.
.sp
\fI\%uv_pipe_t\fP is a \(aqsubclass\(aq of \fBuv_stream_t\fP\&.
.SS Data types
.INDENT 0.0
.TP
.B uv_pipe_t
Pipe handle type.
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B int uv_pipe_t.ipc
Whether this pipe is suitable for handle passing between processes.
Only a connected pipe that will be passing the handles should have this flag
set, not the listening pipe that uv_accept is called on.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_stream_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_pipe_init(uv_loop_t*\fI\ loop\fP, uv_pipe_t*\fI\ handle\fP, int\fI\ ipc\fP)
Initialize a pipe handle. The \fIipc\fP argument is a boolean to indicate if
this pipe will be used for handle passing between processes (which may
change the bytes on the wire). Only a connected pipe that will be
passing the handles should have this flag set, not the listening pipe
that uv_accept is called on.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_pipe_open(uv_pipe_t*\fI\ handle\fP, uv_file\fI\ file\fP)
Open an existing file descriptor or HANDLE as a pipe.
.sp
Changed in version 1.2.1: the file descriptor is set to non\-blocking mode.

.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
The passed file descriptor or HANDLE is not checked for its type, but
it\(aqs required that it represents a valid pipe.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_pipe_bind(uv_pipe_t*\fI\ handle\fP, const char*\fI\ name\fP)
Bind the pipe to a file path (Unix) or a name (Windows).
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Paths on Unix get truncated to \fBsizeof(sockaddr_un.sun_path)\fP bytes, typically between
92 and 108 bytes.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void uv_pipe_connect(uv_connect_t*\fI\ req\fP, uv_pipe_t*\fI\ handle\fP, const char*\fI\ name\fP, uv_connect_cb\fI\ cb\fP)
Connect to the Unix domain socket or the named pipe.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Paths on Unix get truncated to \fBsizeof(sockaddr_un.sun_path)\fP bytes, typically between
92 and 108 bytes.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_pipe_getsockname(const uv_pipe_t*\fI\ handle\fP, char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Get the name of the Unix domain socket or the named pipe.
.sp
A preallocated buffer must be provided. The size parameter holds the length
of the buffer and it\(aqs set to the number of bytes written to the buffer on
output. If the buffer is not big enough \fBUV_ENOBUFS\fP will be returned and
len will contain the required size.
.sp
Changed in version 1.3.0: the returned length no longer includes the terminating null byte,
and the buffer is not null terminated.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_pipe_getpeername(const uv_pipe_t*\fI\ handle\fP, char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Get the name of the Unix domain socket or the named pipe to which the handle
is connected.
.sp
A preallocated buffer must be provided. The size parameter holds the length
of the buffer and it\(aqs set to the number of bytes written to the buffer on
output. If the buffer is not big enough \fBUV_ENOBUFS\fP will be returned and
len will contain the required size.
.sp
New in version 1.3.0.

.UNINDENT
.INDENT 0.0
.TP
.B void uv_pipe_pending_instances(uv_pipe_t*\fI\ handle\fP, int\fI\ count\fP)
Set the number of pending pipe instance handles when the pipe server is
waiting for connections.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
This setting applies to Windows only.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_pipe_pending_count(uv_pipe_t*\fI\ handle\fP)
.UNINDENT
.INDENT 0.0
.TP
.B uv_handle_type uv_pipe_pending_type(uv_pipe_t*\fI\ handle\fP)
Used to receive handles over IPC pipes.
.sp
First \- call \fI\%uv_pipe_pending_count()\fP, if it\(aqs > 0 then initialize
a handle of the given \fItype\fP, returned by \fI\%uv_pipe_pending_type()\fP
and call \fBuv_accept(pipe, handle)\fP\&.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_stream_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_pipe_chmod(uv_pipe_t*\fI\ handle\fP, int\fI\ flags\fP)
Alters pipe permissions, allowing it to be accessed from processes run by
different users. Makes the pipe writable or readable by all users. Mode can
be \fBUV_WRITABLE\fP, \fBUV_READABLE\fP or \fBUV_WRITABLE | UV_READABLE\fP\&. This
function is blocking.
.sp
New in version 1.16.0.

.UNINDENT
.SS \fI\%uv_tty_t\fP \-\-\- TTY handle
.sp
TTY handles represent a stream for the console.
.sp
\fI\%uv_tty_t\fP is a \(aqsubclass\(aq of \fBuv_stream_t\fP\&.
.SS Data types
.INDENT 0.0
.TP
.B uv_tty_t
TTY handle type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_tty_mode_t
New in version 1.2.0.

.sp
TTY mode type:
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
    /* Initial/normal terminal mode */
    UV_TTY_MODE_NORMAL,
    /* Raw input mode (On Windows, ENABLE_WINDOW_INPUT is also enabled) */
    UV_TTY_MODE_RAW,
    /* Binary\-safe I/O mode for IPC (Unix\-only) */
    UV_TTY_MODE_IO
} uv_tty_mode_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_tty_vtermstate_t
.TP
.B Console virtual terminal mode type:
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
    /*
     * The console supports handling of virtual terminal sequences
     * (Windows10 new console, ConEmu)
     */
    UV_TTY_SUPPORTED,
    /* The console cannot process virtual terminal sequences.  (Legacy
     * console)
     */
    UV_TTY_UNSUPPORTED
} uv_tty_vtermstate_t
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_stream_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_tty_init(uv_loop_t*\fI\ loop\fP, uv_tty_t*\fI\ handle\fP, uv_file\fI\ fd\fP, int\fI\ unused\fP)
Initialize a new TTY stream with the given file descriptor. Usually the
file descriptor will be:
.INDENT 7.0
.IP \(bu 2
0 = stdin
.IP \(bu 2
1 = stdout
.IP \(bu 2
2 = stderr
.UNINDENT
.sp
On Unix this function will determine the path of the fd of the terminal
using \fI\%ttyname_r(3)\fP, open it, and use it if the passed file descriptor
refers to a TTY. This lets libuv put the tty in non\-blocking mode without
affecting other processes that share the tty.
.sp
This function is not thread safe on systems that don\(aqt support
ioctl TIOCGPTN or TIOCPTYGNAME, for instance OpenBSD and Solaris.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
If reopening the TTY fails, libuv falls back to blocking writes.
.UNINDENT
.UNINDENT
.sp
Changed in version 1.23.1:: the \fIreadable\fP parameter is now unused and ignored.
The correct value will now be auto\-detected from the kernel.

.sp
Changed in version 1.9.0:: the path of the TTY is determined by
\fI\%ttyname_r(3)\fP\&. In earlier versions libuv opened
\fI/dev/tty\fP instead.

.sp
Changed in version 1.5.0:: trying to initialize a TTY stream with a file
descriptor that refers to a file returns \fIUV_EINVAL\fP
on UNIX.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_tty_set_mode(uv_tty_t*\fI\ handle\fP, uv_tty_mode_t\fI\ mode\fP)
Changed in version 1.2.0:: the mode is specified as a
\fI\%uv_tty_mode_t\fP value.

.sp
Set the TTY using the specified terminal mode.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tty_reset_mode(void)
To be called when the program exits. Resets TTY settings to default
values for the next process to take over.
.sp
This function is async signal\-safe on Unix platforms but can fail with error
code \fBUV_EBUSY\fP if you call it when execution is inside
\fI\%uv_tty_set_mode()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_tty_get_winsize(uv_tty_t*\fI\ handle\fP, int*\fI\ width\fP, int*\fI\ height\fP)
Gets the current Window size. On success it returns 0.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_stream_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void uv_tty_set_vterm_state(uv_tty_vtermstate_t\fI\ state\fP)
Controls whether console virtual terminal sequences are processed by libuv
or console.
Useful in particular for enabling ConEmu support of ANSI X3.64 and Xterm
256 colors. Otherwise Windows10 consoles are usually detected automatically.
.sp
This function is only meaningful on Windows systems. On Unix it is silently
ignored.
.sp
New in version 1.33.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_tty_get_vterm_state(uv_tty_vtermstate_t*\fI\ state\fP)
Get the current state of whether console virtual terminal sequences are
handled by libuv or the console.
.sp
This function is not implemented on Unix, where it returns \fBUV_ENOTSUP\fP\&.
.sp
New in version 1.33.0.

.UNINDENT
.SS \fI\%uv_udp_t\fP \-\-\- UDP handle
.sp
UDP handles encapsulate UDP communication for both clients and servers.
.SS Data types
.INDENT 0.0
.TP
.B uv_udp_t
UDP handle type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_udp_send_t
UDP send request type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_udp_flags
Flags used in \fI\%uv_udp_bind()\fP and \fI\%uv_udp_recv_cb\fP\&..
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
enum uv_udp_flags {
    /* Disables dual stack mode. */
    UV_UDP_IPV6ONLY = 1,
    /*
    * Indicates message was truncated because read buffer was too small. The
    * remainder was discarded by the OS. Used in uv_udp_recv_cb.
    */
    UV_UDP_PARTIAL = 2,
    /*
    * Indicates if SO_REUSEADDR will be set when binding the handle in
    * uv_udp_bind.
    * This sets the SO_REUSEPORT socket flag on the BSDs and OS X. On other
    * Unix platforms, it sets the SO_REUSEADDR flag. What that means is that
    * multiple threads or processes can bind to the same address without error
    * (provided they all set the flag) but only the last one to bind will receive
    * any traffic, in effect "stealing" the port from the previous listener.
    */
    UV_UDP_REUSEADDR = 4,
    /*
     * Indicates that the message was received by recvmmsg, so the buffer provided
     * must not be freed by the recv_cb callback.
     */
    UV_UDP_MMSG_CHUNK = 8,
    /*
    * Indicates that recvmmsg should be used, if available.
    */
    UV_UDP_RECVMMSG = 256
};
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_udp_send_cb)(uv_udp_send_t*\fI\ req\fP, int\fI\ status\fP)
Type definition for callback passed to \fI\%uv_udp_send()\fP, which is
called after the data was sent.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_udp_recv_cb)(uv_udp_t*\fI\ handle\fP, ssize_t\fI\ nread\fP, const uv_buf_t*\fI\ buf\fP, const struct sockaddr*\fI\ addr\fP, unsigned\fI\ flags\fP)
Type definition for callback passed to \fI\%uv_udp_recv_start()\fP, which
is called when the endpoint receives data.
.INDENT 7.0
.IP \(bu 2
\fIhandle\fP: UDP handle
.IP \(bu 2
\fInread\fP:  Number of bytes that have been received.
0 if there is no more data to read. Note that 0 may also mean that an
empty datagram was received (in this case \fIaddr\fP is not NULL). < 0 if
a transmission error was detected.
.IP \(bu 2
\fIbuf\fP: \fBuv_buf_t\fP with the received data.
.IP \(bu 2
\fIaddr\fP: \fBstruct sockaddr*\fP containing the address of the sender.
Can be NULL. Valid for the duration of the callback only.
.IP \(bu 2
\fIflags\fP: One or more or\(aqed UV_UDP_* constants.
.UNINDENT
.sp
The callee is responsible for freeing the buffer, libuv does not reuse it.
The buffer may be a null buffer (where \fIbuf\->base\fP == NULL and \fIbuf\->len\fP == 0)
on error.
.sp
When using \fI\%recvmmsg(2)\fP, chunks will have the \fIUV_UDP_MMSG_CHUNK\fP flag set,
those must not be freed. There will be a final callback with \fInread\fP set to 0,
\fIaddr\fP set to NULL and the buffer pointing at the initially allocated data with
the \fIUV_UDP_MMSG_CHUNK\fP flag cleared. This is a good chance for the callee to
free the provided buffer.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
The receive callback will be called with \fInread\fP == 0 and \fIaddr\fP == NULL when there is
nothing to read, and with \fInread\fP == 0 and \fIaddr\fP != NULL when an empty UDP packet is
received.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_membership
Membership type for a multicast address.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
    UV_LEAVE_GROUP = 0,
    UV_JOIN_GROUP
} uv_membership;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B size_t uv_udp_t.send_queue_size
Number of bytes queued for sending. This field strictly shows how much
information is currently queued.
.UNINDENT
.INDENT 0.0
.TP
.B size_t uv_udp_t.send_queue_count
Number of send requests currently in the queue awaiting to be processed.
.UNINDENT
.INDENT 0.0
.TP
.B uv_udp_t* uv_udp_send_t.handle
UDP handle where this send request is taking place.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_udp_init(uv_loop_t*\fI\ loop\fP, uv_udp_t*\fI\ handle\fP)
Initialize a new UDP handle. The actual socket is created lazily.
Returns 0 on success.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_init_ex(uv_loop_t*\fI\ loop\fP, uv_udp_t*\fI\ handle\fP, unsigned int\fI\ flags\fP)
Initialize the handle with the specified flags. The lower 8 bits of the \fIflags\fP
parameter are used as the socket domain. A socket will be created for the given domain.
If the specified domain is \fBAF_UNSPEC\fP no socket is created, just like \fI\%uv_udp_init()\fP\&.
.sp
The remaining bits can be used to set one of these flags:
.INDENT 7.0
.IP \(bu 2
\fIUV_UDP_RECVMMSG\fP: if set, and the platform supports it, \fI\%recvmmsg(2)\fP will
be used.
.UNINDENT
.sp
New in version 1.7.0.

.sp
Changed in version 1.37.0: added the \fIUV_UDP_RECVMMSG\fP flag.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_open(uv_udp_t*\fI\ handle\fP, uv_os_sock_t\fI\ sock\fP)
Opens an existing file descriptor or Windows SOCKET as a UDP handle.
.sp
Unix only:
The only requirement of the \fIsock\fP argument is that it follows the datagram
contract (works in unconnected mode, supports sendmsg()/recvmsg(), etc).
In other words, other datagram\-type sockets like raw sockets or netlink
sockets can also be passed to this function.
.sp
Changed in version 1.2.1: the file descriptor is set to non\-blocking mode.

.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
The passed file descriptor or SOCKET is not checked for its type, but
it\(aqs required that it represents a valid datagram socket.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_bind(uv_udp_t*\fI\ handle\fP, const struct sockaddr*\fI\ addr\fP, unsigned int\fI\ flags\fP)
Bind the UDP handle to an IP address and port.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBaddr\fP \-\- \fIstruct sockaddr_in\fP or \fIstruct sockaddr_in6\fP
with the address and port to bind to.
.IP \(bu 2
\fBflags\fP \-\- Indicate how the socket will be bound,
\fBUV_UDP_IPV6ONLY\fP and \fBUV_UDP_REUSEADDR\fP are supported.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_connect(uv_udp_t*\fI\ handle\fP, const struct sockaddr*\fI\ addr\fP)
Associate the UDP handle to a remote address and port, so every
message sent by this handle is automatically sent to that destination.
Calling this function with a \fINULL\fP \fIaddr\fP disconnects the handle.
Trying to call \fIuv_udp_connect()\fP on an already connected handle will result
in an \fIUV_EISCONN\fP error. Trying to disconnect a handle that is not
connected will return an \fIUV_ENOTCONN\fP error.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBaddr\fP \-\- \fIstruct sockaddr_in\fP or \fIstruct sockaddr_in6\fP
with the address and port to associate to.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.sp
New in version 1.27.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_getpeername(const uv_udp_t*\fI\ handle\fP, struct sockaddr*\fI\ name\fP, int*\fI\ namelen\fP)
Get the remote IP and port of the UDP handle on connected UDP handles.
On unconnected handles, it returns \fIUV_ENOTCONN\fP\&.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP and bound.
.IP \(bu 2
\fBname\fP \-\- Pointer to the structure to be filled with the address data.
In order to support IPv4 and IPv6 \fIstruct sockaddr_storage\fP should be
used.
.IP \(bu 2
\fBnamelen\fP \-\- On input it indicates the data of the \fIname\fP field. On
output it indicates how much of it was filled.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure
.UNINDENT
.sp
New in version 1.27.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_getsockname(const uv_udp_t*\fI\ handle\fP, struct sockaddr*\fI\ name\fP, int*\fI\ namelen\fP)
Get the local IP and port of the UDP handle.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP and bound.
.IP \(bu 2
\fBname\fP \-\- Pointer to the structure to be filled with the address data.
In order to support IPv4 and IPv6 \fIstruct sockaddr_storage\fP should be
used.
.IP \(bu 2
\fBnamelen\fP \-\- On input it indicates the data of the \fIname\fP field. On
output it indicates how much of it was filled.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_set_membership(uv_udp_t*\fI\ handle\fP, const char*\fI\ multicast_addr\fP, const char*\fI\ interface_addr\fP, uv_membership\fI\ membership\fP)
Set membership for a multicast address
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBmulticast_addr\fP \-\- Multicast address to set membership for.
.IP \(bu 2
\fBinterface_addr\fP \-\- Interface address.
.IP \(bu 2
\fBmembership\fP \-\- Should be \fBUV_JOIN_GROUP\fP or \fBUV_LEAVE_GROUP\fP\&.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_set_source_membership(uv_udp_t*\fI\ handle\fP, const char*\fI\ multicast_addr\fP, const char*\fI\ interface_addr\fP, const char*\fI\ source_addr\fP, uv_membership\fI\ membership\fP)
Set membership for a source\-specific multicast group.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBmulticast_addr\fP \-\- Multicast address to set membership for.
.IP \(bu 2
\fBinterface_addr\fP \-\- Interface address.
.IP \(bu 2
\fBsource_addr\fP \-\- Source address.
.IP \(bu 2
\fBmembership\fP \-\- Should be \fBUV_JOIN_GROUP\fP or \fBUV_LEAVE_GROUP\fP\&.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.sp
New in version 1.32.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_set_multicast_loop(uv_udp_t*\fI\ handle\fP, int\fI\ on\fP)
Set IP multicast loop flag. Makes multicast packets loop back to
local sockets.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBon\fP \-\- 1 for on, 0 for off.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_set_multicast_ttl(uv_udp_t*\fI\ handle\fP, int\fI\ ttl\fP)
Set the multicast ttl.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBttl\fP \-\- 1 through 255.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_set_multicast_interface(uv_udp_t*\fI\ handle\fP, const char*\fI\ interface_addr\fP)
Set the multicast interface to send or receive data on.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBinterface_addr\fP \-\- interface address.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_set_broadcast(uv_udp_t*\fI\ handle\fP, int\fI\ on\fP)
Set broadcast on or off.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBon\fP \-\- 1 for on, 0 for off.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_set_ttl(uv_udp_t*\fI\ handle\fP, int\fI\ ttl\fP)
Set the time to live.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBttl\fP \-\- 1 through 255.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_send(uv_udp_send_t*\fI\ req\fP, uv_udp_t*\fI\ handle\fP, const uv_buf_t\fI\ bufs[]\fP, unsigned int\fI\ nbufs\fP, const struct sockaddr*\fI\ addr\fP, uv_udp_send_cb\fI\ send_cb\fP)
Send data over the UDP socket. If the socket has not previously been bound
with \fI\%uv_udp_bind()\fP it will be bound to 0.0.0.0
(the "all interfaces" IPv4 address) and a random port number.
.sp
On Windows if the \fIaddr\fP is initialized to point to an unspecified address
(\fB0.0.0.0\fP or \fB::\fP) it will be changed to point to \fBlocalhost\fP\&.
This is done to match the behavior of Linux systems.
.sp
For connected UDP handles, \fIaddr\fP must be set to \fINULL\fP, otherwise it will
return \fIUV_EISCONN\fP error.
.sp
For connectionless UDP handles, \fIaddr\fP cannot be \fINULL\fP, otherwise it will
return \fIUV_EDESTADDRREQ\fP error.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBreq\fP \-\- UDP request handle. Need not be initialized.
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBbufs\fP \-\- List of buffers to send.
.IP \(bu 2
\fBnbufs\fP \-\- Number of buffers in \fIbufs\fP\&.
.IP \(bu 2
\fBaddr\fP \-\- \fIstruct sockaddr_in\fP or \fIstruct sockaddr_in6\fP with the
address and port of the remote peer.
.IP \(bu 2
\fBsend_cb\fP \-\- Callback to invoke when the data has been sent out.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.sp
Changed in version 1.19.0: added \fB0.0.0.0\fP and \fB::\fP to \fBlocalhost\fP
mapping

.sp
Changed in version 1.27.0: added support for connected sockets

.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_try_send(uv_udp_t*\fI\ handle\fP, const uv_buf_t\fI\ bufs[]\fP, unsigned int\fI\ nbufs\fP, const struct sockaddr*\fI\ addr\fP)
Same as \fI\%uv_udp_send()\fP, but won\(aqt queue a send request if it can\(aqt
be completed immediately.
.sp
For connected UDP handles, \fIaddr\fP must be set to \fINULL\fP, otherwise it will
return \fIUV_EISCONN\fP error.
.sp
For connectionless UDP handles, \fIaddr\fP cannot be \fINULL\fP, otherwise it will
return \fIUV_EDESTADDRREQ\fP error.
.INDENT 7.0
.TP
.B Returns
>= 0: number of bytes sent (it matches the given buffer size).
< 0: negative error code (\fBUV_EAGAIN\fP is returned when the message
can\(aqt be sent immediately).
.UNINDENT
.sp
Changed in version 1.27.0: added support for connected sockets

.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_recv_start(uv_udp_t*\fI\ handle\fP, uv_alloc_cb\fI\ alloc_cb\fP, uv_udp_recv_cb\fI\ recv_cb\fP)
Prepare for receiving data. If the socket has not previously been bound
with \fI\%uv_udp_bind()\fP it is bound to 0.0.0.0 (the "all interfaces"
IPv4 address) and a random port number.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.IP \(bu 2
\fBalloc_cb\fP \-\- Callback to invoke when temporary storage is needed.
.IP \(bu 2
\fBrecv_cb\fP \-\- Callback to invoke with received data.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.sp
Changed in version 1.35.0: added support for \fI\%recvmmsg(2)\fP on supported platforms).
The use of this feature requires a buffer larger than
2 * 64KB to be passed to \fIalloc_cb\fP\&.

.sp
Changed in version 1.37.0: \fI\%recvmmsg(2)\fP support is no longer enabled implicitly,
it must be explicitly requested by passing the \fIUV_UDP_RECVMMSG\fP flag to
\fI\%uv_udp_init_ex()\fP\&.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_udp_recv_stop(uv_udp_t*\fI\ handle\fP)
Stop listening for incoming datagrams.
.INDENT 7.0
.TP
.B Parameters
.INDENT 7.0
.IP \(bu 2
\fBhandle\fP \-\- UDP handle. Should have been initialized with
\fI\%uv_udp_init()\fP\&.
.UNINDENT
.TP
.B Returns
0 on success, or an error code < 0 on failure.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B size_t uv_udp_get_send_queue_size(const uv_udp_t*\fI\ handle\fP)
Returns \fIhandle\->send_queue_size\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B size_t uv_udp_get_send_queue_count(const uv_udp_t*\fI\ handle\fP)
Returns \fIhandle\->send_queue_count\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_fs_event_t\fP \-\-\- FS Event handle
.sp
FS Event handles allow the user to monitor a given path for changes, for example,
if the file was renamed or there was a generic change in it. This handle uses
the best backend for the job on each platform.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
For AIX, the non default IBM bos.ahafs package has to be installed.
The AIX Event Infrastructure file system (ahafs) has some limitations:
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
ahafs tracks monitoring per process and is not thread safe. A separate process
must be spawned for each monitor for the same event.
.IP \(bu 2
Events for file modification (writing to a file) are not received if only the
containing folder is watched.
.UNINDENT
.UNINDENT
.UNINDENT
.sp
See \fI\%documentation\fP for more details.
.sp
The z/OS file system events monitoring infrastructure does not notify of file
creation/deletion within a directory that is being monitored.
See the \fI\%IBM Knowledge centre\fP for more details.
.UNINDENT
.UNINDENT
.SS Data types
.INDENT 0.0
.TP
.B uv_fs_event_t
FS Event handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_fs_event_cb)(uv_fs_event_t*\fI\ handle\fP, const char*\fI\ filename\fP, int\fI\ events\fP, int\fI\ status\fP)
Callback passed to \fI\%uv_fs_event_start()\fP which will be called repeatedly
after the handle is started. If the handle was started with a directory the
\fIfilename\fP parameter will be a relative path to a file contained in the directory.
The \fIevents\fP parameter is an ORed mask of \fI\%uv_fs_event\fP elements.
.UNINDENT
.INDENT 0.0
.TP
.B uv_fs_event
Event types that \fI\%uv_fs_event_t\fP handles monitor.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
enum uv_fs_event {
    UV_RENAME = 1,
    UV_CHANGE = 2
};
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_fs_event_flags
Flags that can be passed to \fI\%uv_fs_event_start()\fP to control its
behavior.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
enum uv_fs_event_flags {
    /*
    * By default, if the fs event watcher is given a directory name, we will
    * watch for all events in that directory. This flags overrides this behavior
    * and makes fs_event report only changes to the directory entry itself. This
    * flag does not affect individual files watched.
    * This flag is currently not implemented yet on any backend.
    */
    UV_FS_EVENT_WATCH_ENTRY = 1,
    /*
    * By default uv_fs_event will try to use a kernel interface such as inotify
    * or kqueue to detect events. This may not work on remote file systems such
    * as NFS mounts. This flag makes fs_event fall back to calling stat() on a
    * regular interval.
    * This flag is currently not implemented yet on any backend.
    */
    UV_FS_EVENT_STAT = 2,
    /*
    * By default, event watcher, when watching directory, is not registering
    * (is ignoring) changes in its subdirectories.
    * This flag will override this behaviour on platforms that support it.
    */
    UV_FS_EVENT_RECURSIVE = 4
};
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_fs_event_init(uv_loop_t*\fI\ loop\fP, uv_fs_event_t*\fI\ handle\fP)
Initialize the handle.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_event_start(uv_fs_event_t*\fI\ handle\fP, uv_fs_event_cb\fI\ cb\fP, const char*\fI\ path\fP, unsigned int\fI\ flags\fP)
Start the handle with the given callback, which will watch the specified
\fIpath\fP for changes. \fIflags\fP can be an ORed mask of \fI\%uv_fs_event_flags\fP\&.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Currently the only supported flag is \fBUV_FS_EVENT_RECURSIVE\fP and
only on OSX and Windows.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_event_stop(uv_fs_event_t*\fI\ handle\fP)
Stop the handle, the callback will no longer be called.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_event_getpath(uv_fs_event_t*\fI\ handle\fP, char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Get the path being monitored by the handle. The buffer must be preallocated
by the user. Returns 0 on success or an error code < 0 in case of failure.
On success, \fIbuffer\fP will contain the path and \fIsize\fP its length. If the buffer
is not big enough \fIUV_ENOBUFS\fP will be returned and \fIsize\fP will be set to
the required size, including the null terminator.
.sp
Changed in version 1.3.0: the returned length no longer includes the terminating null byte,
and the buffer is not null terminated.

.sp
Changed in version 1.9.0: the returned length includes the terminating null
byte on \fIUV_ENOBUFS\fP, and the buffer is null terminated
on success.

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS \fI\%uv_fs_poll_t\fP \-\-\- FS Poll handle
.sp
FS Poll handles allow the user to monitor a given path for changes. Unlike
\fBuv_fs_event_t\fP, fs poll handles use \fIstat\fP to detect when a file has
changed so they can work on file systems where fs event handles can\(aqt.
.SS Data types
.INDENT 0.0
.TP
.B uv_fs_poll_t
FS Poll handle type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_fs_poll_cb)(uv_fs_poll_t*\fI\ handle\fP, int\fI\ status\fP, const uv_stat_t*\fI\ prev\fP, const uv_stat_t*\fI\ curr\fP)
Callback passed to \fI\%uv_fs_poll_start()\fP which will be called repeatedly
after the handle is started, when any change happens to the monitored path.
.sp
The callback is invoked with \fIstatus < 0\fP if \fIpath\fP does not exist
or is inaccessible. The watcher is \fInot\fP stopped but your callback is
not called again until something changes (e.g. when the file is created
or the error reason changes).
.sp
When \fIstatus == 0\fP, the callback receives pointers to the old and new
\fBuv_stat_t\fP structs. They are valid for the duration of the
callback only.
.UNINDENT
.SS Public members
.sp
N/A
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_fs_poll_init(uv_loop_t*\fI\ loop\fP, uv_fs_poll_t*\fI\ handle\fP)
Initialize the handle.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_poll_start(uv_fs_poll_t*\fI\ handle\fP, uv_fs_poll_cb\fI\ poll_cb\fP, const char*\fI\ path\fP, unsigned int\fI\ interval\fP)
Check the file at \fIpath\fP for changes every \fIinterval\fP milliseconds.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
For maximum portability, use multi\-second intervals. Sub\-second intervals will not detect
all changes on many file systems.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_poll_stop(uv_fs_poll_t*\fI\ handle\fP)
Stop the handle, the callback will no longer be called.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_poll_getpath(uv_fs_poll_t*\fI\ handle\fP, char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Get the path being monitored by the handle. The buffer must be preallocated
by the user. Returns 0 on success or an error code < 0 in case of failure.
On success, \fIbuffer\fP will contain the path and \fIsize\fP its length. If the buffer
is not big enough \fIUV_ENOBUFS\fP will be returned and \fIsize\fP will be set to
the required size.
.sp
Changed in version 1.3.0: the returned length no longer includes the terminating null byte,
and the buffer is not null terminated.

.sp
Changed in version 1.9.0: the returned length includes the terminating null
byte on \fIUV_ENOBUFS\fP, and the buffer is null terminated
on success.

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_handle_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS File system operations
.sp
libuv provides a wide variety of cross\-platform sync and async file system
operations. All functions defined in this document take a callback, which is
allowed to be NULL. If the callback is NULL the request is completed synchronously,
otherwise it will be performed asynchronously.
.sp
All file operations are run on the threadpool. See threadpool for information
on the threadpool size.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
On Windows \fIuv_fs_*\fP functions use utf\-8 encoding.
.UNINDENT
.UNINDENT
.SS Data types
.INDENT 0.0
.TP
.B uv_fs_t
File system request type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_timespec_t
Portable equivalent of \fBstruct timespec\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct {
    long tv_sec;
    long tv_nsec;
} uv_timespec_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_stat_t
Portable equivalent of \fBstruct stat\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct {
    uint64_t st_dev;
    uint64_t st_mode;
    uint64_t st_nlink;
    uint64_t st_uid;
    uint64_t st_gid;
    uint64_t st_rdev;
    uint64_t st_ino;
    uint64_t st_size;
    uint64_t st_blksize;
    uint64_t st_blocks;
    uint64_t st_flags;
    uint64_t st_gen;
    uv_timespec_t st_atim;
    uv_timespec_t st_mtim;
    uv_timespec_t st_ctim;
    uv_timespec_t st_birthtim;
} uv_stat_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_fs_type
File system request type.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
    UV_FS_UNKNOWN = \-1,
    UV_FS_CUSTOM,
    UV_FS_OPEN,
    UV_FS_CLOSE,
    UV_FS_READ,
    UV_FS_WRITE,
    UV_FS_SENDFILE,
    UV_FS_STAT,
    UV_FS_LSTAT,
    UV_FS_FSTAT,
    UV_FS_FTRUNCATE,
    UV_FS_UTIME,
    UV_FS_FUTIME,
    UV_FS_ACCESS,
    UV_FS_CHMOD,
    UV_FS_FCHMOD,
    UV_FS_FSYNC,
    UV_FS_FDATASYNC,
    UV_FS_UNLINK,
    UV_FS_RMDIR,
    UV_FS_MKDIR,
    UV_FS_MKDTEMP,
    UV_FS_RENAME,
    UV_FS_SCANDIR,
    UV_FS_LINK,
    UV_FS_SYMLINK,
    UV_FS_READLINK,
    UV_FS_CHOWN,
    UV_FS_FCHOWN,
    UV_FS_REALPATH,
    UV_FS_COPYFILE,
    UV_FS_LCHOWN,
    UV_FS_OPENDIR,
    UV_FS_READDIR,
    UV_FS_CLOSEDIR,
    UV_FS_MKSTEMP,
    UV_FS_LUTIME
} uv_fs_type;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_statfs_t
Reduced cross platform equivalent of \fBstruct statfs\fP\&.
Used in \fI\%uv_fs_statfs()\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_statfs_s {
    uint64_t f_type;
    uint64_t f_bsize;
    uint64_t f_blocks;
    uint64_t f_bfree;
    uint64_t f_bavail;
    uint64_t f_files;
    uint64_t f_ffree;
    uint64_t f_spare[4];
} uv_statfs_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_dirent_t
Cross platform (reduced) equivalent of \fBstruct dirent\fP\&.
Used in \fI\%uv_fs_scandir_next()\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef enum {
    UV_DIRENT_UNKNOWN,
    UV_DIRENT_FILE,
    UV_DIRENT_DIR,
    UV_DIRENT_LINK,
    UV_DIRENT_FIFO,
    UV_DIRENT_SOCKET,
    UV_DIRENT_CHAR,
    UV_DIRENT_BLOCK
} uv_dirent_type_t;

typedef struct uv_dirent_s {
    const char* name;
    uv_dirent_type_t type;
} uv_dirent_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_dir_t
Data type used for streaming directory iteration.
Used by \fI\%uv_fs_opendir()\fP, \fI\%uv_fs_readdir()\fP, and
\fI\%uv_fs_closedir()\fP\&. \fIdirents\fP represents a user provided array of
\fIuv_dirent_t\(gas used to hold results. \(ganentries\fP is the user provided maximum
array size of \fIdirents\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_dir_s {
    uv_dirent_t* dirents;
    size_t nentries;
} uv_dir_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B uv_loop_t* uv_fs_t.loop
Loop that started this request and where completion will be reported.
Readonly.
.UNINDENT
.INDENT 0.0
.TP
.B uv_fs_type uv_fs_t.fs_type
FS request type.
.UNINDENT
.INDENT 0.0
.TP
.B const char* uv_fs_t.path
Path affecting the request.
.UNINDENT
.INDENT 0.0
.TP
.B ssize_t uv_fs_t.result
Result of the request. < 0 means error, success otherwise. On requests such
as \fI\%uv_fs_read()\fP or \fI\%uv_fs_write()\fP it indicates the amount of
data that was read or written, respectively.
.UNINDENT
.INDENT 0.0
.TP
.B uv_stat_t uv_fs_t.statbuf
Stores the result of \fI\%uv_fs_stat()\fP and other stat requests.
.UNINDENT
.INDENT 0.0
.TP
.B void* uv_fs_t.ptr
Stores the result of \fI\%uv_fs_readlink()\fP and
\fI\%uv_fs_realpath()\fP and serves as an alias to \fIstatbuf\fP\&.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_req_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B void uv_fs_req_cleanup(uv_fs_t*\fI\ req\fP)
Cleanup request. Must be called after a request is finished to deallocate
any memory libuv might have allocated.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_close(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%close(2)\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_open(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, int\fI\ flags\fP, int\fI\ mode\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%open(2)\fP\&.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Windows libuv uses \fICreateFileW\fP and thus the file is always opened
in binary mode. Because of this the O_BINARY and O_TEXT flags are not
supported.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_read(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, const uv_buf_t\fI\ bufs[]\fP, unsigned int\fI\ nbufs\fP, int64_t\fI\ offset\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%preadv(2)\fP\&.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
On Windows, under non\-MSVC environments (e.g. when GCC or Clang is used
to build libuv), files opened using \fBUV_FS_O_FILEMAP\fP may cause a fatal
crash if the memory mapped read operation fails.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_unlink(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%unlink(2)\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_write(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, const uv_buf_t\fI\ bufs[]\fP, unsigned int\fI\ nbufs\fP, int64_t\fI\ offset\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%pwritev(2)\fP\&.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
On Windows, under non\-MSVC environments (e.g. when GCC or Clang is used
to build libuv), files opened using \fBUV_FS_O_FILEMAP\fP may cause a fatal
crash if the memory mapped write operation fails.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_mkdir(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, int\fI\ mode\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%mkdir(2)\fP\&.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fImode\fP is currently not implemented on Windows.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_mkdtemp(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ tpl\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%mkdtemp(3)\fP\&. The result can be found as a null terminated string at \fIreq\->path\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_mkstemp(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ tpl\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%mkstemp(3)\fP\&. The created file path can be found as a null terminated string at \fIreq\->path\fP\&.
The file descriptor can be found as an integer at \fIreq\->result\fP\&.
.sp
New in version 1.34.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_rmdir(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%rmdir(2)\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_opendir(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_fs_cb\fI\ cb\fP)
Opens \fIpath\fP as a directory stream. On success, a \fIuv_dir_t\fP is allocated
and returned via \fIreq\->ptr\fP\&. This memory is not freed by
\fIuv_fs_req_cleanup()\fP, although \fIreq\->ptr\fP is set to \fINULL\fP\&. The allocated
memory must be freed by calling \fIuv_fs_closedir()\fP\&. On failure, no memory
is allocated.
.sp
The contents of the directory can be iterated over by passing the resulting
\fIuv_dir_t\fP to \fIuv_fs_readdir()\fP\&.
.sp
New in version 1.28.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_closedir(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_dir_t*\fI\ dir\fP, uv_fs_cb\fI\ cb\fP)
Closes the directory stream represented by \fIdir\fP and frees the memory
allocated by \fIuv_fs_opendir()\fP\&.
.sp
New in version 1.28.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_readdir(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_dir_t*\fI\ dir\fP, uv_fs_cb\fI\ cb\fP)
Iterates over the directory stream, \fIdir\fP, returned by a successful
\fIuv_fs_opendir()\fP call. Prior to invoking \fIuv_fs_readdir()\fP, the caller
must set \fIdir\->dirents\fP and \fIdir\->nentries\fP, representing the array of
\fI\%uv_dirent_t\fP elements used to hold the read directory entries and
its size.
.sp
On success, the result is an integer >= 0 representing the number of entries
read from the stream.
.sp
New in version 1.28.0.

.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
\fIuv_fs_readdir()\fP is not thread safe.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
This function does not return the "." and ".." entries.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On success this function allocates memory that must be freed using
\fIuv_fs_req_cleanup()\fP\&. \fIuv_fs_req_cleanup()\fP must be called before
closing the directory with \fIuv_fs_closedir()\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_scandir(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, int\fI\ flags\fP, uv_fs_cb\fI\ cb\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_scandir_next(uv_fs_t*\fI\ req\fP, uv_dirent_t*\fI\ ent\fP)
Equivalent to \fI\%scandir(3)\fP, with a slightly different API. Once the callback
for the request is called, the user can use \fI\%uv_fs_scandir_next()\fP to
get \fIent\fP populated with the next directory entry data. When there are no
more entries \fBUV_EOF\fP will be returned.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Unlike \fIscandir(3)\fP, this function does not return the "." and ".." entries.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Linux, getting the type of an entry is only supported by some file systems (btrfs, ext2,
ext3 and ext4 at the time of this writing), check the \fI\%getdents(2)\fP man page.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_stat(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_fs_cb\fI\ cb\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_fstat(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, uv_fs_cb\fI\ cb\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_lstat(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%stat(2)\fP, \fI\%fstat(2)\fP and \fI\%lstat(2)\fP respectively.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_statfs(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%statfs(2)\fP\&. On success, a \fIuv_statfs_t\fP is allocated
and returned via \fIreq\->ptr\fP\&. This memory is freed by \fIuv_fs_req_cleanup()\fP\&.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Any fields in the resulting \fIuv_statfs_t\fP that are not supported by the
underlying operating system are set to zero.
.UNINDENT
.UNINDENT
.sp
New in version 1.31.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_rename(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, const char*\fI\ new_path\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%rename(2)\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_fsync(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%fsync(2)\fP\&.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
For AIX, \fIuv_fs_fsync\fP returns \fIUV_EBADF\fP on file descriptors referencing
non regular files.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_fdatasync(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%fdatasync(2)\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_ftruncate(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, int64_t\fI\ offset\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%ftruncate(2)\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_copyfile(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, const char*\fI\ new_path\fP, int\fI\ flags\fP, uv_fs_cb\fI\ cb\fP)
Copies a file from \fIpath\fP to \fInew_path\fP\&. Supported \fIflags\fP are described below.
.INDENT 7.0
.IP \(bu 2
\fIUV_FS_COPYFILE_EXCL\fP: If present, \fIuv_fs_copyfile()\fP will fail with
\fIUV_EEXIST\fP if the destination path already exists. The default behavior
is to overwrite the destination if it exists.
.IP \(bu 2
\fIUV_FS_COPYFILE_FICLONE\fP: If present, \fIuv_fs_copyfile()\fP will attempt to
create a copy\-on\-write reflink. If the underlying platform does not
support copy\-on\-write, or an error occurs while attempting to use
copy\-on\-write, a fallback copy mechanism based on
\fI\%uv_fs_sendfile()\fP is used.
.IP \(bu 2
\fIUV_FS_COPYFILE_FICLONE_FORCE\fP: If present, \fIuv_fs_copyfile()\fP will
attempt to create a copy\-on\-write reflink. If the underlying platform does
not support copy\-on\-write, or an error occurs while attempting to use
copy\-on\-write, then an error is returned.
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
If the destination path is created, but an error occurs while copying
the data, then the destination path is removed. There is a brief window
of time between closing and removing the file where another process
could access the file.
.UNINDENT
.UNINDENT
.sp
New in version 1.14.0.

.sp
Changed in version 1.20.0: \fIUV_FS_COPYFILE_FICLONE\fP and
\fIUV_FS_COPYFILE_FICLONE_FORCE\fP are supported.

.sp
Changed in version 1.33.0: If an error occurs while using
\fIUV_FS_COPYFILE_FICLONE_FORCE\fP, that error is returned. Previously,
all errors were mapped to \fIUV_ENOTSUP\fP\&.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_sendfile(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ out_fd\fP, uv_file\fI\ in_fd\fP, int64_t\fI\ in_offset\fP, size_t\fI\ length\fP, uv_fs_cb\fI\ cb\fP)
Limited equivalent to \fI\%sendfile(2)\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_access(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, int\fI\ mode\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%access(2)\fP on Unix. Windows uses \fBGetFileAttributesW()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_chmod(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, int\fI\ mode\fP, uv_fs_cb\fI\ cb\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_fchmod(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, int\fI\ mode\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%chmod(2)\fP and \fI\%fchmod(2)\fP respectively.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_utime(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, double\fI\ atime\fP, double\fI\ mtime\fP, uv_fs_cb\fI\ cb\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_futime(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, double\fI\ atime\fP, double\fI\ mtime\fP, uv_fs_cb\fI\ cb\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_lutime(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, double\fI\ atime\fP, double\fI\ mtime\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%utime(2)\fP, \fI\%futimes(3)\fP and \fI\%lutimes(3)\fP respectively.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
z/OS: \fIuv_fs_lutime()\fP is not implemented for z/OS. It can still be called but will return
\fBUV_ENOSYS\fP\&.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
AIX: \fIuv_fs_futime()\fP and \fIuv_fs_lutime()\fP functions only work for AIX 7.1 and newer.
They can still be called on older versions but will return \fBUV_ENOSYS\fP\&.
.UNINDENT
.UNINDENT
.sp
Changed in version 1.10.0: sub\-second precission is supported on Windows

.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_link(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, const char*\fI\ new_path\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%link(2)\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_symlink(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, const char*\fI\ new_path\fP, int\fI\ flags\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%symlink(2)\fP\&.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Windows the \fIflags\fP parameter can be specified to control how the symlink will
be created:
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
\fBUV_FS_SYMLINK_DIR\fP: indicates that \fIpath\fP points to a directory.
.IP \(bu 2
\fBUV_FS_SYMLINK_JUNCTION\fP: request that the symlink is created
using junction points.
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_readlink(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%readlink(2)\fP\&.
The resulting string is stored in \fIreq\->ptr\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_realpath(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%realpath(3)\fP on Unix. Windows uses \fI\%GetFinalPathNameByHandle\fP\&.
The resulting string is stored in \fIreq\->ptr\fP\&.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
This function has certain platform\-specific caveats that were discovered when used in Node.
.INDENT 0.0
.IP \(bu 2
macOS and other BSDs: this function will fail with UV_ELOOP if more than 32 symlinks are
found while resolving the given path.  This limit is hardcoded and cannot be sidestepped.
.IP \(bu 2
Windows: while this function works in the common case, there are a number of corner cases
where it doesn\(aqt:
.INDENT 2.0
.IP \(bu 2
Paths in ramdisk volumes created by tools which sidestep the Volume Manager (such as ImDisk)
cannot be resolved.
.IP \(bu 2
Inconsistent casing when using drive letters.
.IP \(bu 2
Resolved path bypasses subst\(aqd drives.
.UNINDENT
.UNINDENT
.sp
While this function can still be used, it\(aqs not recommended if scenarios such as the
above need to be supported.
.sp
The background story and some more details on these issues can be checked
\fI\%here\fP\&.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
This function is not implemented on Windows XP and Windows Server 2003.
On these systems, UV_ENOSYS is returned.
.UNINDENT
.UNINDENT
.sp
New in version 1.8.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_chown(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_uid_t\fI\ uid\fP, uv_gid_t\fI\ gid\fP, uv_fs_cb\fI\ cb\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_fchown(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, uv_file\fI\ file\fP, uv_uid_t\fI\ uid\fP, uv_gid_t\fI\ gid\fP, uv_fs_cb\fI\ cb\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_lchown(uv_loop_t*\fI\ loop\fP, uv_fs_t*\fI\ req\fP, const char*\fI\ path\fP, uv_uid_t\fI\ uid\fP, uv_gid_t\fI\ gid\fP, uv_fs_cb\fI\ cb\fP)
Equivalent to \fI\%chown(2)\fP, \fI\%fchown(2)\fP and \fI\%lchown(2)\fP respectively.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
These functions are not implemented on Windows.
.UNINDENT
.UNINDENT
.sp
Changed in version 1.21.0: implemented uv_fs_lchown

.UNINDENT
.INDENT 0.0
.TP
.B uv_fs_type uv_fs_get_type(const uv_fs_t*\fI\ req\fP)
Returns \fIreq\->fs_type\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B ssize_t uv_fs_get_result(const uv_fs_t*\fI\ req\fP)
Returns \fIreq\->result\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_fs_get_system_error(const uv_fs_t*\fI\ req\fP)
Returns the platform specific error code \- \fIGetLastError()\fP value on Windows
and \fI\-(req\->result)\fP on other platforms.
.sp
New in version 1.38.0.

.UNINDENT
.INDENT 0.0
.TP
.B void* uv_fs_get_ptr(const uv_fs_t*\fI\ req\fP)
Returns \fIreq\->ptr\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B const char* uv_fs_get_path(const uv_fs_t*\fI\ req\fP)
Returns \fIreq\->path\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.INDENT 0.0
.TP
.B uv_stat_t* uv_fs_get_statbuf(uv_fs_t*\fI\ req\fP)
Returns \fI&req\->statbuf\fP\&.
.sp
New in version 1.19.0.

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_req_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS Helper functions
.INDENT 0.0
.TP
.B uv_os_fd_t uv_get_osfhandle(int\fI\ fd\fP)
For a file descriptor in the C runtime, get the OS\-dependent handle.
On UNIX, returns the \fBfd\fP intact. On Windows, this calls \fI\%_get_osfhandle\fP\&.
Note that the return value is still owned by the C runtime,
any attempts to close it or to use it after closing the fd may lead to malfunction.
.INDENT 7.0
.INDENT 3.5
New in version 1.12.0.

.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_open_osfhandle(uv_os_fd_t\fI\ os_fd\fP)
For a OS\-dependent handle, get the file descriptor in the C runtime.
On UNIX, returns the \fBos_fd\fP intact. On Windows, this calls \fI\%_open_osfhandle\fP\&.
Note that the return value is still owned by the CRT,
any attempts to close it or to use it after closing the handle may lead to malfunction.
.INDENT 7.0
.INDENT 3.5
New in version 1.23.0.

.UNINDENT
.UNINDENT
.UNINDENT
.SS File open constants
.INDENT 0.0
.TP
.B UV_FS_O_APPEND
The file is opened in append mode. Before each write, the file offset is
positioned at the end of the file.
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_CREAT
The file is created if it does not already exist.
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_DIRECT
File I/O is done directly to and from user\-space buffers, which must be
aligned. Buffer size and address should be a multiple of the physical sector
size of the block device.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_DIRECT\fP is supported on Linux, and on Windows via
\fI\%FILE_FLAG_NO_BUFFERING\fP\&.
\fIUV_FS_O_DIRECT\fP is not supported on macOS.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_DIRECTORY
If the path is not a directory, fail the open.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_DIRECTORY\fP is not supported on Windows.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_DSYNC
The file is opened for synchronous I/O. Write operations will complete once
all data and a minimum of metadata are flushed to disk.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_DSYNC\fP is supported on Windows via
\fI\%FILE_FLAG_WRITE_THROUGH\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_EXCL
If the \fIO_CREAT\fP flag is set and the file already exists, fail the open.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
In general, the behavior of \fIO_EXCL\fP is undefined if it is used without
\fIO_CREAT\fP\&. There is one exception: on Linux 2.6 and later, \fIO_EXCL\fP can
be used without \fIO_CREAT\fP if pathname refers to a block device. If the
block device is in use by the system (e.g., mounted), the open will fail
with the error \fIEBUSY\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_EXLOCK
Atomically obtain an exclusive lock.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_EXLOCK\fP is only supported on macOS and Windows.
.UNINDENT
.UNINDENT
.sp
Changed in version 1.17.0: support is added for Windows.

.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_FILEMAP
Use a memory file mapping to access the file. When using this flag, the
file cannot be open multiple times concurrently.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_FILEMAP\fP is only supported on Windows.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_NOATIME
Do not update the file access time when the file is read.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_NOATIME\fP is not supported on Windows.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_NOCTTY
If the path identifies a terminal device, opening the path will not cause
that terminal to become the controlling terminal for the process (if the
process does not already have one).
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_NOCTTY\fP is not supported on Windows.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_NOFOLLOW
If the path is a symbolic link, fail the open.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_NOFOLLOW\fP is not supported on Windows.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_NONBLOCK
Open the file in nonblocking mode if possible.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_NONBLOCK\fP is not supported on Windows.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_RANDOM
Access is intended to be random. The system can use this as a hint to
optimize file caching.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_RANDOM\fP is only supported on Windows via
\fI\%FILE_FLAG_RANDOM_ACCESS\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_RDONLY
Open the file for read\-only access.
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_RDWR
Open the file for read\-write access.
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_SEQUENTIAL
Access is intended to be sequential from beginning to end. The system can
use this as a hint to optimize file caching.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_SEQUENTIAL\fP is only supported on Windows via
\fI\%FILE_FLAG_SEQUENTIAL_SCAN\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_SHORT_LIVED
The file is temporary and should not be flushed to disk if possible.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_SHORT_LIVED\fP is only supported on Windows via
\fI\%FILE_ATTRIBUTE_TEMPORARY\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_SYMLINK
Open the symbolic link itself rather than the resource it points to.
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_SYNC
The file is opened for synchronous I/O. Write operations will complete once
all data and all metadata are flushed to disk.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_SYNC\fP is supported on Windows via
\fI\%FILE_FLAG_WRITE_THROUGH\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_TEMPORARY
The file is temporary and should not be flushed to disk if possible.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
\fIUV_FS_O_TEMPORARY\fP is only supported on Windows via
\fI\%FILE_ATTRIBUTE_TEMPORARY\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_TRUNC
If the file exists and is a regular file, and the file is opened
successfully for write access, its length shall be truncated to zero.
.UNINDENT
.INDENT 0.0
.TP
.B UV_FS_O_WRONLY
Open the file for write\-only access.
.UNINDENT
.SS Thread pool work scheduling
.sp
libuv provides a threadpool which can be used to run user code and get notified
in the loop thread. This thread pool is internally used to run all file system
operations, as well as getaddrinfo and getnameinfo requests.
.sp
Its default size is 4, but it can be changed at startup time by setting the
\fBUV_THREADPOOL_SIZE\fP environment variable to any value (the absolute maximum
is 1024).
.sp
Changed in version 1.30.0: the maximum UV_THREADPOOL_SIZE allowed was increased from 128 to 1024.

.sp
The threadpool is global and shared across all event loops. When a particular
function makes use of the threadpool (i.e. when using \fI\%uv_queue_work()\fP)
libuv preallocates and initializes the maximum number of threads allowed by
\fBUV_THREADPOOL_SIZE\fP\&. This causes a relatively minor memory overhead
(~1MB for 128 threads) but increases the performance of threading at runtime.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
Note that even though a global thread pool which is shared across all events
loops is used, the functions are not thread safe.
.UNINDENT
.UNINDENT
.SS Data types
.INDENT 0.0
.TP
.B uv_work_t
Work request type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_work_cb)(uv_work_t*\fI\ req\fP)
Callback passed to \fI\%uv_queue_work()\fP which will be run on the thread
pool.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_after_work_cb)(uv_work_t*\fI\ req\fP, int\fI\ status\fP)
Callback passed to \fI\%uv_queue_work()\fP which will be called on the loop
thread after the work on the threadpool has been completed. If the work
was cancelled using \fBuv_cancel()\fP \fIstatus\fP will be \fBUV_ECANCELED\fP\&.
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B uv_loop_t* uv_work_t.loop
Loop that started this request and where completion will be reported.
Readonly.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_req_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_queue_work(uv_loop_t*\fI\ loop\fP, uv_work_t*\fI\ req\fP, uv_work_cb\fI\ work_cb\fP, uv_after_work_cb\fI\ after_work_cb\fP)
Initializes a work request which will run the given \fIwork_cb\fP in a thread
from the threadpool. Once \fIwork_cb\fP is completed, \fIafter_work_cb\fP will be
called on the loop thread.
.sp
This request can be cancelled with \fBuv_cancel()\fP\&.
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_req_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS DNS utility functions
.sp
libuv provides asynchronous variants of \fIgetaddrinfo\fP and \fIgetnameinfo\fP\&.
.SS Data types
.INDENT 0.0
.TP
.B uv_getaddrinfo_t
\fIgetaddrinfo\fP request type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_getaddrinfo_cb)(uv_getaddrinfo_t*\fI\ req\fP, int\fI\ status\fP, struct addrinfo*\fI\ res\fP)
Callback which will be called with the getaddrinfo request result once
complete. In case it was cancelled, \fIstatus\fP will have a value of
\fBUV_ECANCELED\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B uv_getnameinfo_t
\fIgetnameinfo\fP request type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_getnameinfo_cb)(uv_getnameinfo_t*\fI\ req\fP, int\fI\ status\fP, const char*\fI\ hostname\fP, const char*\fI\ service\fP)
Callback which will be called with the getnameinfo request result once
complete. In case it was cancelled, \fIstatus\fP will have a value of
\fBUV_ECANCELED\fP\&.
.UNINDENT
.SS Public members
.INDENT 0.0
.TP
.B uv_loop_t* uv_getaddrinfo_t.loop
Loop that started this getaddrinfo request and where completion will be
reported. Readonly.
.UNINDENT
.INDENT 0.0
.TP
.B struct addrinfo* uv_getaddrinfo_t.addrinfo
Pointer to a \fIstruct addrinfo\fP containing the result. Must be freed by the user
with \fI\%uv_freeaddrinfo()\fP\&.
.sp
Changed in version 1.3.0: the field is declared as public.

.UNINDENT
.INDENT 0.0
.TP
.B uv_loop_t* uv_getnameinfo_t.loop
Loop that started this getnameinfo request and where completion will be
reported. Readonly.
.UNINDENT
.INDENT 0.0
.TP
.B char[NI_MAXHOST] uv_getnameinfo_t.host
Char array containing the resulting host. It\(aqs null terminated.
.sp
Changed in version 1.3.0: the field is declared as public.

.UNINDENT
.INDENT 0.0
.TP
.B char[NI_MAXSERV] uv_getnameinfo_t.service
Char array containing the resulting service. It\(aqs null terminated.
.sp
Changed in version 1.3.0: the field is declared as public.

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_req_t\fP members also apply.
.UNINDENT
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B int uv_getaddrinfo(uv_loop_t*\fI\ loop\fP, uv_getaddrinfo_t*\fI\ req\fP, uv_getaddrinfo_cb\fI\ getaddrinfo_cb\fP, const char*\fI\ node\fP, const char*\fI\ service\fP, const struct addrinfo*\fI\ hints\fP)
Asynchronous \fI\%getaddrinfo(3)\fP\&.
.sp
Either node or service may be NULL but not both.
.sp
\fIhints\fP is a pointer to a struct addrinfo with additional address type
constraints, or NULL. Consult \fIman \-s 3 getaddrinfo\fP for more details.
.sp
Returns 0 on success or an error code < 0 on failure. If successful, the
callback will get called sometime in the future with the lookup result,
which is either:
.INDENT 7.0
.IP \(bu 2
status == 0, the res argument points to a valid \fIstruct addrinfo\fP, or
.IP \(bu 2
status < 0, the res argument is NULL. See the UV_EAI_* constants.
.UNINDENT
.sp
Call \fI\%uv_freeaddrinfo()\fP to free the addrinfo structure.
.sp
Changed in version 1.3.0: the callback parameter is now allowed to be NULL,
in which case the request will run \fBsynchronously\fP\&.

.UNINDENT
.INDENT 0.0
.TP
.B void uv_freeaddrinfo(struct addrinfo*\fI\ ai\fP)
Free the struct addrinfo. Passing NULL is allowed and is a no\-op.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_getnameinfo(uv_loop_t*\fI\ loop\fP, uv_getnameinfo_t*\fI\ req\fP, uv_getnameinfo_cb\fI\ getnameinfo_cb\fP, const struct sockaddr*\fI\ addr\fP, int\fI\ flags\fP)
Asynchronous \fI\%getnameinfo(3)\fP\&.
.sp
Returns 0 on success or an error code < 0 on failure. If successful, the
callback will get called sometime in the future with the lookup result.
Consult \fIman \-s 3 getnameinfo\fP for more details.
.sp
Changed in version 1.3.0: the callback parameter is now allowed to be NULL,
in which case the request will run \fBsynchronously\fP\&.

.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_req_t\fP API functions also apply.
.UNINDENT
.UNINDENT
.SS Shared library handling
.sp
libuv provides cross platform utilities for loading shared libraries and
retrieving symbols from them, using the following API.
.SS Data types
.INDENT 0.0
.TP
.B uv_lib_t
Shared library data type.
.UNINDENT
.SS Public members
.sp
N/A
.SS API
.INDENT 0.0
.TP
.B int uv_dlopen(const char*\fI\ filename\fP, uv_lib_t*\fI\ lib\fP)
Opens a shared library. The filename is in utf\-8. Returns 0 on success and
\-1 on error. Call \fI\%uv_dlerror()\fP to get the error message.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_dlclose(uv_lib_t*\fI\ lib\fP)
Close the shared library.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_dlsym(uv_lib_t*\fI\ lib\fP, const char*\fI\ name\fP, void**\fI\ ptr\fP)
Retrieves a data pointer from a dynamic library. It is legal for a symbol
to map to NULL. Returns 0 on success and \-1 if the symbol was not found.
.UNINDENT
.INDENT 0.0
.TP
.B const char* uv_dlerror(const uv_lib_t*\fI\ lib\fP)
Returns the last uv_dlopen() or uv_dlsym() error message.
.UNINDENT
.SS Threading and synchronization utilities
.sp
libuv provides cross\-platform implementations for multiple threading and
synchronization primitives. The API largely follows the pthreads API.
.SS Data types
.INDENT 0.0
.TP
.B uv_thread_t
Thread data type.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_thread_cb)(void*\fI\ arg\fP)
Callback that is invoked to initialize thread execution. \fIarg\fP is the same
value that was passed to \fI\%uv_thread_create()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B uv_key_t
Thread\-local key data type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_once_t
Once\-only initializer data type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_mutex_t
Mutex data type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_rwlock_t
Read\-write lock data type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_sem_t
Semaphore data type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_cond_t
Condition data type.
.UNINDENT
.INDENT 0.0
.TP
.B uv_barrier_t
Barrier data type.
.UNINDENT
.SS API
.SS Threads
.INDENT 0.0
.TP
.B uv_thread_options_t
Options for spawning a new thread (passed to \fI\%uv_thread_create_ex()\fP).
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_thread_options_s {
  enum {
    UV_THREAD_NO_FLAGS = 0x00,
    UV_THREAD_HAS_STACK_SIZE = 0x01
  } flags;
  size_t stack_size;
} uv_thread_options_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
More fields may be added to this struct at any time, so its exact
layout and size should not be relied upon.
.sp
New in version 1.26.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_thread_create(uv_thread_t*\fI\ tid\fP, uv_thread_cb\fI\ entry\fP, void*\fI\ arg\fP)
Changed in version 1.4.1: returns a UV_E* error code on failure

.UNINDENT
.INDENT 0.0
.TP
.B int uv_thread_create_ex(uv_thread_t*\fI\ tid\fP, const uv_thread_options_t*\fI\ params\fP, uv_thread_cb\fI\ entry\fP, void*\fI\ arg\fP)
Like \fI\%uv_thread_create()\fP, but additionally specifies options for creating a new thread.
.sp
If \fIUV_THREAD_HAS_STACK_SIZE\fP is set, \fIstack_size\fP specifies a stack size for the new thread.
\fI0\fP indicates that the default value should be used, i.e. behaves as if the flag was not set.
Other values will be rounded up to the nearest page boundary.
.sp
New in version 1.26.0.

.UNINDENT
.INDENT 0.0
.TP
.B uv_thread_t uv_thread_self(void)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_thread_join(uv_thread_t\fI\ *tid\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_thread_equal(const uv_thread_t*\fI\ t1\fP, const uv_thread_t*\fI\ t2\fP)
.UNINDENT
.SS Thread\-local storage
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The total thread\-local storage size may be limited. That is, it may not be possible to
create many TLS keys.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_key_create(uv_key_t*\fI\ key\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_key_delete(uv_key_t*\fI\ key\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void* uv_key_get(uv_key_t*\fI\ key\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_key_set(uv_key_t*\fI\ key\fP, void*\fI\ value\fP)
.UNINDENT
.SS Once\-only initialization
.sp
Runs a function once and only once. Concurrent calls to \fI\%uv_once()\fP with the
same guard will block all callers except one (it\(aqs unspecified which one).
The guard should be initialized statically with the UV_ONCE_INIT macro.
.INDENT 0.0
.TP
.B void uv_once(uv_once_t*\fI\ guard\fP, void (\fI*callback\fP)(void))
.UNINDENT
.SS Mutex locks
.sp
Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).
.INDENT 0.0
.TP
.B int uv_mutex_init(uv_mutex_t*\fI\ handle\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_mutex_init_recursive(uv_mutex_t*\fI\ handle\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_mutex_destroy(uv_mutex_t*\fI\ handle\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_mutex_lock(uv_mutex_t*\fI\ handle\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_mutex_trylock(uv_mutex_t*\fI\ handle\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_mutex_unlock(uv_mutex_t*\fI\ handle\fP)
.UNINDENT
.SS Read\-write locks
.sp
Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).
.INDENT 0.0
.TP
.B int uv_rwlock_init(uv_rwlock_t*\fI\ rwlock\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_rwlock_destroy(uv_rwlock_t*\fI\ rwlock\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_rwlock_rdlock(uv_rwlock_t*\fI\ rwlock\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_rwlock_tryrdlock(uv_rwlock_t*\fI\ rwlock\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_rwlock_rdunlock(uv_rwlock_t*\fI\ rwlock\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_rwlock_wrlock(uv_rwlock_t*\fI\ rwlock\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_rwlock_trywrlock(uv_rwlock_t*\fI\ rwlock\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_rwlock_wrunlock(uv_rwlock_t*\fI\ rwlock\fP)
.UNINDENT
.SS Semaphores
.sp
Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).
.INDENT 0.0
.TP
.B int uv_sem_init(uv_sem_t*\fI\ sem\fP, unsigned int\fI\ value\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_sem_destroy(uv_sem_t*\fI\ sem\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_sem_post(uv_sem_t*\fI\ sem\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_sem_wait(uv_sem_t*\fI\ sem\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_sem_trywait(uv_sem_t*\fI\ sem\fP)
.UNINDENT
.SS Conditions
.sp
Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP 1. 3
Callers should be prepared to deal with spurious wakeups on \fI\%uv_cond_wait()\fP
and \fI\%uv_cond_timedwait()\fP\&.
.IP 2. 3
The timeout parameter for \fI\%uv_cond_timedwait()\fP is relative to the time
at which function is called.
.IP 3. 3
On z/OS, the timeout parameter for \fI\%uv_cond_timedwait()\fP is converted to an
absolute system time at which the wait expires. If the current system clock time
passes the absolute time calculated before the condition is signaled, an ETIMEDOUT
error results. After the wait begins, the wait time is not affected by changes
to the system clock.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_cond_init(uv_cond_t*\fI\ cond\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_cond_destroy(uv_cond_t*\fI\ cond\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_cond_signal(uv_cond_t*\fI\ cond\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_cond_broadcast(uv_cond_t*\fI\ cond\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_cond_wait(uv_cond_t*\fI\ cond\fP, uv_mutex_t*\fI\ mutex\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_cond_timedwait(uv_cond_t*\fI\ cond\fP, uv_mutex_t*\fI\ mutex\fP, uint64_t\fI\ timeout\fP)
.UNINDENT
.SS Barriers
.sp
Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
\fI\%uv_barrier_wait()\fP returns a value > 0 to an arbitrarily chosen "serializer" thread
to facilitate cleanup, i.e.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
if (uv_barrier_wait(&barrier) > 0)
    uv_barrier_destroy(&barrier);
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_barrier_init(uv_barrier_t*\fI\ barrier\fP, unsigned int\fI\ count\fP)
.UNINDENT
.INDENT 0.0
.TP
.B void uv_barrier_destroy(uv_barrier_t*\fI\ barrier\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_barrier_wait(uv_barrier_t*\fI\ barrier\fP)
.UNINDENT
.SS Miscellaneous utilities
.sp
This section contains miscellaneous functions that don\(aqt really belong in any
other section.
.SS Data types
.INDENT 0.0
.TP
.B uv_buf_t
Buffer data type.
.INDENT 7.0
.TP
.B char* uv_buf_t.base
Pointer to the base of the buffer.
.UNINDENT
.INDENT 7.0
.TP
.B size_t uv_buf_t.len
Total bytes in the buffer.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Windows this field is ULONG.
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void* (*uv_malloc_func)(size_t\fI\ size\fP)
Replacement function for \fI\%malloc(3)\fP\&.
See \fI\%uv_replace_allocator()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B void* (*uv_realloc_func)(void*\fI\ ptr\fP, size_t\fI\ size\fP)
Replacement function for \fI\%realloc(3)\fP\&.
See \fI\%uv_replace_allocator()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B void* (*uv_calloc_func)(size_t\fI\ count\fP, size_t\fI\ size\fP)
Replacement function for \fI\%calloc(3)\fP\&.
See \fI\%uv_replace_allocator()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_free_func)(void*\fI\ ptr\fP)
Replacement function for \fI\%free(3)\fP\&.
See \fI\%uv_replace_allocator()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B void (*uv_random_cb)(uv_random_t*\fI\ req\fP, int\fI\ status\fP, void*\fI\ buf\fP, size_t\fI\ buflen\fP)
Callback passed to \fI\%uv_random()\fP\&. \fIstatus\fP is non\-zero in case of
error. The \fIbuf\fP pointer is the same pointer that was passed to
\fI\%uv_random()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B uv_file
Cross platform representation of a file handle.
.UNINDENT
.INDENT 0.0
.TP
.B uv_os_sock_t
Cross platform representation of a socket handle.
.UNINDENT
.INDENT 0.0
.TP
.B uv_os_fd_t
Abstract representation of a file descriptor. On Unix systems this is a
\fItypedef\fP of \fIint\fP and on Windows a \fIHANDLE\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B uv_pid_t
Cross platform representation of a \fIpid_t\fP\&.
.sp
New in version 1.16.0.

.UNINDENT
.INDENT 0.0
.TP
.B uv_timeval_t
Data type for storing times.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct {
    long tv_sec;
    long tv_usec;
} uv_timeval_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_timeval64_t
Alternative data type for storing times.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct {
    int64_t tv_sec;
    int32_t tv_usec;
} uv_timeval64_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_rusage_t
Data type for resource usage results.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct {
    uv_timeval_t ru_utime; /* user CPU time used */
    uv_timeval_t ru_stime; /* system CPU time used */
    uint64_t ru_maxrss; /* maximum resident set size */
    uint64_t ru_ixrss; /* integral shared memory size (X) */
    uint64_t ru_idrss; /* integral unshared data size (X) */
    uint64_t ru_isrss; /* integral unshared stack size (X) */
    uint64_t ru_minflt; /* page reclaims (soft page faults) (X) */
    uint64_t ru_majflt; /* page faults (hard page faults) */
    uint64_t ru_nswap; /* swaps (X) */
    uint64_t ru_inblock; /* block input operations */
    uint64_t ru_oublock; /* block output operations */
    uint64_t ru_msgsnd; /* IPC messages sent (X) */
    uint64_t ru_msgrcv; /* IPC messages received (X) */
    uint64_t ru_nsignals; /* signals received (X) */
    uint64_t ru_nvcsw; /* voluntary context switches (X) */
    uint64_t ru_nivcsw; /* involuntary context switches (X) */
} uv_rusage_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Members marked with \fI(X)\fP are unsupported on Windows.
See \fI\%getrusage(2)\fP for supported fields on Unix
.UNINDENT
.INDENT 0.0
.TP
.B uv_cpu_info_t
Data type for CPU information.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_cpu_info_s {
    char* model;
    int speed;
    struct uv_cpu_times_s {
        uint64_t user; /* milliseconds */
        uint64_t nice; /* milliseconds */
        uint64_t sys; /* milliseconds */
        uint64_t idle; /* milliseconds */
        uint64_t irq; /* milliseconds */
    } cpu_times;
} uv_cpu_info_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_interface_address_t
Data type for interface addresses.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_interface_address_s {
    char* name;
    char phys_addr[6];
    int is_internal;
    union {
        struct sockaddr_in address4;
        struct sockaddr_in6 address6;
    } address;
    union {
        struct sockaddr_in netmask4;
        struct sockaddr_in6 netmask6;
    } netmask;
} uv_interface_address_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_passwd_t
Data type for password file information.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_passwd_s {
    char* username;
    long uid;
    long gid;
    char* shell;
    char* homedir;
} uv_passwd_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_utsname_t
Data type for operating system name and version information.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_utsname_s {
    char sysname[256];
    char release[256];
    char version[256];
    char machine[256];
} uv_utsname_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_env_item_t
Data type for environment variable storage.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_env_item_s {
    char* name;
    char* value;
} uv_env_item_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_random_t
Random data request type.
.UNINDENT
.SS API
.INDENT 0.0
.TP
.B uv_handle_type uv_guess_handle(uv_file\fI\ file\fP)
Used to detect what type of stream should be used with a given file
descriptor. Usually this will be used during initialization to guess the
type of the stdio streams.
.sp
For \fI\%isatty(3)\fP equivalent functionality use this function and test
for \fBUV_TTY\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_replace_allocator(uv_malloc_func\fI\ malloc_func\fP, uv_realloc_func\fI\ realloc_func\fP, uv_calloc_func\fI\ calloc_func\fP, uv_free_func\fI\ free_func\fP)
New in version 1.6.0.

.sp
Override the use of the standard library\(aqs \fI\%malloc(3)\fP,
\fI\%calloc(3)\fP, \fI\%realloc(3)\fP, \fI\%free(3)\fP, memory allocation
functions.
.sp
This function must be called before any other libuv function is called or
after all resources have been freed and thus libuv doesn\(aqt reference
any allocated memory chunk.
.sp
On success, it returns 0, if any of the function pointers is NULL it
returns UV_EINVAL.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
There is no protection against changing the allocator multiple
times. If the user changes it they are responsible for making
sure the allocator is changed while no memory was allocated with
the previous allocator, or that they are compatible.
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
Allocator must be thread\-safe.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void uv_library_shutdown(void);
New in version 1.38.0.

.sp
Release any global state that libuv is holding onto. Libuv will normally
do so automatically when it is unloaded but it can be instructed to perform
cleanup manually.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
Only call \fBuv_library_shutdown()\fP once.
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
Don\(aqt call \fBuv_library_shutdown()\fP when there are
still event loops or I/O requests active.
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
Don\(aqt call libuv functions after calling
\fBuv_library_shutdown()\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_buf_t uv_buf_init(char*\fI\ base\fP, unsigned int\fI\ len\fP)
Constructor for \fI\%uv_buf_t\fP\&.
.sp
Due to platform differences the user cannot rely on the ordering of the
\fIbase\fP and \fIlen\fP members of the uv_buf_t struct. The user is responsible for
freeing \fIbase\fP after the uv_buf_t is done. Return struct passed by value.
.UNINDENT
.INDENT 0.0
.TP
.B char** uv_setup_args(int\fI\ argc\fP, char**\fI\ argv\fP)
Store the program arguments. Required for getting / setting the process title.
Libuv may take ownership of the memory that \fIargv\fP points to. This function
should be called exactly once, at program start\-up.
.sp
Example:
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
argv = uv_setup_args(argc, argv);  /* May return a copy of argv. */
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_get_process_title(char*\fI\ buffer\fP, size_t\fI\ size\fP)
Gets the title of the current process. You \fImust\fP call \fIuv_setup_args\fP
before calling this function. If \fIbuffer\fP is \fINULL\fP or \fIsize\fP is zero,
\fIUV_EINVAL\fP is returned. If \fIsize\fP cannot accommodate the process title and
terminating \fINULL\fP character, the function returns \fIUV_ENOBUFS\fP\&.
.sp
Changed in version 1.18.1: now thread\-safe on all supported platforms.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_set_process_title(const char*\fI\ title\fP)
Sets the current process title. You \fImust\fP call \fIuv_setup_args\fP before
calling this function. On platforms with a fixed size buffer for the process
title the contents of \fItitle\fP will be copied to the buffer and truncated if
larger than the available space. Other platforms will return \fIUV_ENOMEM\fP if
they cannot allocate enough space to duplicate the contents of \fItitle\fP\&.
.sp
Changed in version 1.18.1: now thread\-safe on all supported platforms.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_resident_set_memory(size_t*\fI\ rss\fP)
Gets the resident set size (RSS) for the current process.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_uptime(double*\fI\ uptime\fP)
Gets the current system uptime.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_getrusage(uv_rusage_t*\fI\ rusage\fP)
Gets the resource usage measures for the current process.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Windows not all fields are set, the unsupported fields are filled with zeroes.
See \fI\%uv_rusage_t\fP for more details.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B uv_pid_t uv_os_getpid(void)
Returns the current process ID.
.sp
New in version 1.18.0.

.UNINDENT
.INDENT 0.0
.TP
.B uv_pid_t uv_os_getppid(void)
Returns the parent process ID.
.sp
New in version 1.16.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_cpu_info(uv_cpu_info_t**\fI\ cpu_infos\fP, int*\fI\ count\fP)
Gets information about the CPUs on the system. The \fIcpu_infos\fP array will
have \fIcount\fP elements and needs to be freed with \fI\%uv_free_cpu_info()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_free_cpu_info(uv_cpu_info_t*\fI\ cpu_infos\fP, int\fI\ count\fP)
Frees the \fIcpu_infos\fP array previously allocated with \fI\%uv_cpu_info()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_interface_addresses(uv_interface_address_t**\fI\ addresses\fP, int*\fI\ count\fP)
Gets address information about the network interfaces on the system. An
array of \fIcount\fP elements is allocated and returned in \fIaddresses\fP\&. It must
be freed by the user, calling \fI\%uv_free_interface_addresses()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_free_interface_addresses(uv_interface_address_t*\fI\ addresses\fP, int\fI\ count\fP)
Free an array of \fI\%uv_interface_address_t\fP which was returned by
\fI\%uv_interface_addresses()\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B void uv_loadavg(double\fI\ avg[3]\fP)
Gets the load average. See: \fI\%https://en.wikipedia.org/wiki/Load_(computing)\fP
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Returns [0,0,0] on Windows (i.e., it\(aqs not implemented).
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B int uv_ip4_addr(const char*\fI\ ip\fP, int\fI\ port\fP, struct sockaddr_in*\fI\ addr\fP)
Convert a string containing an IPv4 addresses to a binary structure.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_ip6_addr(const char*\fI\ ip\fP, int\fI\ port\fP, struct sockaddr_in6*\fI\ addr\fP)
Convert a string containing an IPv6 addresses to a binary structure.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_ip4_name(const struct sockaddr_in*\fI\ src\fP, char*\fI\ dst\fP, size_t\fI\ size\fP)
Convert a binary structure containing an IPv4 address to a string.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_ip6_name(const struct sockaddr_in6*\fI\ src\fP, char*\fI\ dst\fP, size_t\fI\ size\fP)
Convert a binary structure containing an IPv6 address to a string.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_inet_ntop(int\fI\ af\fP, const void*\fI\ src\fP, char*\fI\ dst\fP, size_t\fI\ size\fP)
.UNINDENT
.INDENT 0.0
.TP
.B int uv_inet_pton(int\fI\ af\fP, const char*\fI\ src\fP, void*\fI\ dst\fP)
Cross\-platform IPv6\-capable implementation of \fI\%inet_ntop(3)\fP
and \fI\%inet_pton(3)\fP\&. On success they return 0. In case of error
the target \fIdst\fP pointer is unmodified.
.UNINDENT
.INDENT 0.0
.TP
.B UV_IF_NAMESIZE
Maximum IPv6 interface identifier name length.  Defined as
\fIIFNAMSIZ\fP on Unix and \fIIF_NAMESIZE\fP on Linux and Windows.
.sp
New in version 1.16.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_if_indextoname(unsigned int\fI\ ifindex\fP, char*\fI\ buffer\fP, size_t*\fI\ size\fP)
IPv6\-capable implementation of \fI\%if_indextoname(3)\fP\&. When called,
\fI*size\fP indicates the length of the \fIbuffer\fP, which is used to store the
result.
On success, zero is returned, \fIbuffer\fP contains the interface name, and
\fI*size\fP represents the string length of the \fIbuffer\fP, excluding the NUL
terminator byte from \fI*size\fP\&. On error, a negative result is
returned. If \fIbuffer\fP is not large enough to hold the result,
\fIUV_ENOBUFS\fP is returned, and \fI*size\fP represents the necessary size in
bytes, including the NUL terminator byte into the \fI*size\fP\&.
.sp
On Unix, the returned interface name can be used directly as an
interface identifier in scoped IPv6 addresses, e.g.
\fIfe80::abc:def1:2345%en0\fP\&.
.sp
On Windows, the returned interface cannot be used as an interface
identifier, as Windows uses numerical interface identifiers, e.g.
\fIfe80::abc:def1:2345%5\fP\&.
.sp
To get an interface identifier in a cross\-platform compatible way,
use \fIuv_if_indextoiid()\fP\&.
.sp
Example:
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
char ifname[UV_IF_NAMESIZE];
size_t size = sizeof(ifname);
uv_if_indextoname(sin6\->sin6_scope_id, ifname, &size);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
New in version 1.16.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_if_indextoiid(unsigned int\fI\ ifindex\fP, char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Retrieves a network interface identifier suitable for use in an IPv6 scoped
address. On Windows, returns the numeric \fIifindex\fP as a string. On all other
platforms, \fIuv_if_indextoname()\fP is called. The result is written to
\fIbuffer\fP, with \fI*size\fP indicating the length of \fIbuffer\fP\&. If \fIbuffer\fP is not
large enough to hold the result, then \fIUV_ENOBUFS\fP is returned, and \fI*size\fP
represents the size, including the NUL byte, required to hold the
result.
.sp
See \fIuv_if_indextoname\fP for further details.
.sp
New in version 1.16.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_exepath(char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Gets the executable path.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_cwd(char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Gets the current working directory, and stores it in \fIbuffer\fP\&. If the
current working directory is too large to fit in \fIbuffer\fP, this function
returns \fIUV_ENOBUFS\fP, and sets \fIsize\fP to the required length, including the
null terminator.
.sp
Changed in version 1.1.0: On Unix the path no longer ends in a slash.

.sp
Changed in version 1.9.0: the returned length includes the terminating null
byte on \fIUV_ENOBUFS\fP, and the buffer is null terminated
on success.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_chdir(const char*\fI\ dir\fP)
Changes the current working directory.
.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_homedir(char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Gets the current user\(aqs home directory. On Windows, \fIuv_os_homedir()\fP first
checks the \fIUSERPROFILE\fP environment variable using
\fIGetEnvironmentVariableW()\fP\&. If \fIUSERPROFILE\fP is not set,
\fIGetUserProfileDirectoryW()\fP is called. On all other operating systems,
\fIuv_os_homedir()\fP first checks the \fIHOME\fP environment variable using
\fI\%getenv(3)\fP\&. If \fIHOME\fP is not set, \fI\%getpwuid_r(3)\fP is called. The
user\(aqs home directory is stored in \fIbuffer\fP\&. When \fIuv_os_homedir()\fP is
called, \fIsize\fP indicates the maximum size of \fIbuffer\fP\&. On success \fIsize\fP is set
to the string length of \fIbuffer\fP\&. On \fIUV_ENOBUFS\fP failure \fIsize\fP is set to the
required length for \fIbuffer\fP, including the null byte.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
\fIuv_os_homedir()\fP is not thread safe.
.UNINDENT
.UNINDENT
.sp
New in version 1.6.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_tmpdir(char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Gets the temp directory. On Windows, \fIuv_os_tmpdir()\fP uses \fIGetTempPathW()\fP\&.
On all other operating systems, \fIuv_os_tmpdir()\fP uses the first environment
variable found in the ordered list \fITMPDIR\fP, \fITMP\fP, \fITEMP\fP, and \fITEMPDIR\fP\&.
If none of these are found, the path \fI"/tmp"\fP is used, or, on Android,
\fI"/data/local/tmp"\fP is used. The temp directory is stored in \fIbuffer\fP\&. When
\fIuv_os_tmpdir()\fP is called, \fIsize\fP indicates the maximum size of \fIbuffer\fP\&.
On success \fIsize\fP is set to the string length of \fIbuffer\fP (which does not
include the terminating null). On \fIUV_ENOBUFS\fP failure \fIsize\fP is set to the
required length for \fIbuffer\fP, including the null byte.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
\fIuv_os_tmpdir()\fP is not thread safe.
.UNINDENT
.UNINDENT
.sp
New in version 1.9.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_get_passwd(uv_passwd_t*\fI\ pwd\fP)
Gets a subset of the password file entry for the current effective uid (not
the real uid). The populated data includes the username, euid, gid, shell,
and home directory. On non\-Windows systems, all data comes from
\fI\%getpwuid_r(3)\fP\&. On Windows, uid and gid are set to \-1 and have no
meaning, and shell is \fINULL\fP\&. After successfully calling this function, the
memory allocated to \fIpwd\fP needs to be freed with
\fI\%uv_os_free_passwd()\fP\&.
.sp
New in version 1.9.0.

.UNINDENT
.INDENT 0.0
.TP
.B void uv_os_free_passwd(uv_passwd_t*\fI\ pwd\fP)
Frees the \fIpwd\fP memory previously allocated with \fI\%uv_os_get_passwd()\fP\&.
.sp
New in version 1.9.0.

.UNINDENT
.INDENT 0.0
.TP
.B uint64_t uv_get_free_memory(void)
Gets memory information (in bytes).
.UNINDENT
.INDENT 0.0
.TP
.B uint64_t uv_get_total_memory(void)
Gets memory information (in bytes).
.UNINDENT
.INDENT 0.0
.TP
.B uint64_t uv_get_constrained_memory(void)
Gets the amount of memory available to the process (in bytes) based on
limits imposed by the OS. If there is no such constraint, or the constraint
is unknown, \fI0\fP is returned. Note that it is not unusual for this value to
be less than or greater than \fI\%uv_get_total_memory()\fP\&.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
This function currently only returns a non\-zero value on Linux, based
on cgroups if it is present.
.UNINDENT
.UNINDENT
.sp
New in version 1.29.0.

.UNINDENT
.INDENT 0.0
.TP
.B uint64_t uv_hrtime(void)
Returns the current high\-resolution real time. This is expressed in
nanoseconds. It is relative to an arbitrary time in the past. It is not
related to the time of day and therefore not subject to clock drift. The
primary use is for measuring performance between intervals.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
Not every platform can support nanosecond resolution; however, this value will always
be in nanoseconds.
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B void uv_print_all_handles(uv_loop_t*\fI\ loop\fP, FILE*\fI\ stream\fP)
Prints all handles associated with the given \fIloop\fP to the given \fIstream\fP\&.
.sp
Example:
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
uv_print_all_handles(uv_default_loop(), stderr);
/*
[\-\-I] signal   0x1a25ea8
[\-AI] async    0x1a25cf0
[R\-\-] idle     0x1a7a8c8
*/
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The format is \fI[flags] handle\-type handle\-address\fP\&. For \fIflags\fP:
.INDENT 7.0
.IP \(bu 2
\fIR\fP is printed for a handle that is referenced
.IP \(bu 2
\fIA\fP is printed for a handle that is active
.IP \(bu 2
\fII\fP is printed for a handle that is internal
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
This function is meant for ad hoc debugging, there is no API/ABI
stability guarantees.
.UNINDENT
.UNINDENT
.sp
New in version 1.8.0.

.UNINDENT
.INDENT 0.0
.TP
.B void uv_print_active_handles(uv_loop_t*\fI\ loop\fP, FILE*\fI\ stream\fP)
This is the same as \fI\%uv_print_all_handles()\fP except only active handles
are printed.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
This function is meant for ad hoc debugging, there is no API/ABI
stability guarantees.
.UNINDENT
.UNINDENT
.sp
New in version 1.8.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_environ(uv_env_item_t**\fI\ envitems\fP, int*\fI\ count\fP)
Retrieves all environment variables. This function will allocate memory
which must be freed by calling \fBuv_os_free_environ()\fP\&.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
This function is not thread safe.
.UNINDENT
.UNINDENT
.sp
New in version 1.31.0.

.UNINDENT
.INDENT 0.0
.TP
.B void uv_os_free_environ(uv_env_item_t* envitems, int count);
Frees the memory allocated for the environment variables by
\fI\%uv_os_environ()\fP\&.
.sp
New in version 1.31.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_getenv(const char*\fI\ name\fP, char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Retrieves the environment variable specified by \fIname\fP, copies its value
into \fIbuffer\fP, and sets \fIsize\fP to the string length of the value. When
calling this function, \fIsize\fP must be set to the amount of storage available
in \fIbuffer\fP, including the null terminator. If the environment variable
exceeds the storage available in \fIbuffer\fP, \fIUV_ENOBUFS\fP is returned, and
\fIsize\fP is set to the amount of storage required to hold the value. If no
matching environment variable exists, \fIUV_ENOENT\fP is returned.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
This function is not thread safe.
.UNINDENT
.UNINDENT
.sp
New in version 1.12.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_setenv(const char*\fI\ name\fP, const char*\fI\ value\fP)
Creates or updates the environment variable specified by \fIname\fP with
\fIvalue\fP\&.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
This function is not thread safe.
.UNINDENT
.UNINDENT
.sp
New in version 1.12.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_unsetenv(const char*\fI\ name\fP)
Deletes the environment variable specified by \fIname\fP\&. If no such environment
variable exists, this function returns successfully.
.sp
\fBWARNING:\fP
.INDENT 7.0
.INDENT 3.5
This function is not thread safe.
.UNINDENT
.UNINDENT
.sp
New in version 1.12.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_gethostname(char*\fI\ buffer\fP, size_t*\fI\ size\fP)
Returns the hostname as a null\-terminated string in \fIbuffer\fP, and sets
\fIsize\fP to the string length of the hostname. When calling this function,
\fIsize\fP must be set to the amount of storage available in \fIbuffer\fP, including
the null terminator. If the hostname exceeds the storage available in
\fIbuffer\fP, \fIUV_ENOBUFS\fP is returned, and \fIsize\fP is set to the amount of
storage required to hold the value.
.sp
New in version 1.12.0.

.sp
Changed in version 1.26.0: \fIUV_MAXHOSTNAMESIZE\fP is available and represents
the maximum \fIbuffer\fP size required to store a
hostname and terminating \fInul\fP character.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_getpriority(uv_pid_t\fI\ pid\fP, int*\fI\ priority\fP)
Retrieves the scheduling priority of the process specified by \fIpid\fP\&. The
returned value of \fIpriority\fP is between \-20 (high priority) and 19 (low
priority).
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Windows, the returned priority will equal one of the \fIUV_PRIORITY\fP
constants.
.UNINDENT
.UNINDENT
.sp
New in version 1.23.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_setpriority(uv_pid_t\fI\ pid\fP, int\fI\ priority\fP)
Sets the scheduling priority of the process specified by \fIpid\fP\&. The
\fIpriority\fP value range is between \-20 (high priority) and 19 (low priority).
The constants \fIUV_PRIORITY_LOW\fP, \fIUV_PRIORITY_BELOW_NORMAL\fP,
\fIUV_PRIORITY_NORMAL\fP, \fIUV_PRIORITY_ABOVE_NORMAL\fP, \fIUV_PRIORITY_HIGH\fP, and
\fIUV_PRIORITY_HIGHEST\fP are also provided for convenience.
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Windows, this function utilizes \fISetPriorityClass()\fP\&. The \fIpriority\fP
argument is mapped to a Windows priority class. When retrieving the
process priority, the result will equal one of the \fIUV_PRIORITY\fP
constants, and not necessarily the exact value of \fIpriority\fP\&.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On Windows, setting \fIPRIORITY_HIGHEST\fP will only work for elevated user,
for others it will be silently reduced to \fIPRIORITY_HIGH\fP\&.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On IBM i PASE, the highest process priority is \-10. The constant
\fIUV_PRIORITY_HIGHEST\fP is \-10, \fIUV_PRIORITY_HIGH\fP is \-7,
\fIUV_PRIORITY_ABOVE_NORMAL\fP is \-4, \fIUV_PRIORITY_NORMAL\fP is 0,
\fIUV_PRIORITY_BELOW_NORMAL\fP is 15 and \fIUV_PRIORITY_LOW\fP is 39.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
On IBM i PASE, you are not allowed to change your priority unless you
have the *JOBCTL special authority (even to lower it).
.UNINDENT
.UNINDENT
.sp
New in version 1.23.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_os_uname(uv_utsname_t*\fI\ buffer\fP)
Retrieves system information in \fIbuffer\fP\&. The populated data includes the
operating system name, release, version, and machine. On non\-Windows
systems, \fIuv_os_uname()\fP is a thin wrapper around \fI\%uname(2)\fP\&. Returns
zero on success, and a non\-zero error value otherwise.
.sp
New in version 1.25.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_gettimeofday(uv_timeval64_t*\fI\ tv\fP)
Cross\-platform implementation of \fI\%gettimeofday(2)\fP\&. The timezone
argument to \fIgettimeofday()\fP is not supported, as it is considered obsolete.
.sp
New in version 1.28.0.

.UNINDENT
.INDENT 0.0
.TP
.B int uv_random(uv_loop_t*\fI\ loop\fP, uv_random_t*\fI\ req\fP, void*\fI\ buf\fP, size_t\fI\ buflen\fP, unsigned int\fI\ flags\fP, uv_random_cb\fI\ cb\fP)
Fill \fIbuf\fP with exactly \fIbuflen\fP cryptographically strong random bytes
acquired from the system CSPRNG. \fIflags\fP is reserved for future extension
and must currently be 0.
.sp
Short reads are not possible. When less than \fIbuflen\fP random bytes are
available, a non\-zero error value is returned or passed to the callback.
.sp
The synchronous version may block indefinitely when not enough entropy
is available. The asynchronous version may not ever finish when the system
is low on entropy.
.sp
Sources of entropy:
.INDENT 7.0
.IP \(bu 2
Windows: \fIRtlGenRandom <https://docs.microsoft.com/en\-us/windows/desktop/api/ntsecapi/nf\-ntsecapi\-rtlgenrandom>_\fP\&.
.IP \(bu 2
Linux, Android: \fI\%getrandom(2)\fP if available, or \fI\%urandom(4)\fP
after reading from \fI/dev/random\fP once, or the \fIKERN_RANDOM\fP
\fI\%sysctl(2)\fP\&.
.IP \(bu 2
FreeBSD: \fIgetrandom(2) <https://www.freebsd.org/cgi/man.cgi?query=getrandom&sektion=2>_\fP,
or \fI/dev/urandom\fP after reading from \fI/dev/random\fP once.
.IP \(bu 2
NetBSD: \fIKERN_ARND\fP \fIsysctl(3) <https://netbsd.gw.com/cgi\-bin/man\-cgi?sysctl+3+NetBSD\-current>_\fP
.IP \(bu 2
macOS, OpenBSD: \fIgetentropy(2) <https://man.openbsd.org/getentropy.2>_\fP
if available, or \fI/dev/urandom\fP after reading from \fI/dev/random\fP once.
.IP \(bu 2
AIX: \fI/dev/random\fP\&.
.IP \(bu 2
IBM i: \fI/dev/urandom\fP\&.
.IP \(bu 2
Other UNIX: \fI/dev/urandom\fP after reading from \fI/dev/random\fP once.
.UNINDENT
.INDENT 7.0
.TP
.B Returns
0 on success, or an error code < 0 on failure. The contents of
\fIbuf\fP is undefined after an error.
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 7.0
.INDENT 3.5
When using the synchronous version, both \fIloop\fP and \fIreq\fP parameters
are not used and can be set to \fINULL\fP\&.
.UNINDENT
.UNINDENT
.sp
New in version 1.33.0.

.UNINDENT
.INDENT 0.0
.TP
.B void uv_sleep(unsigned int\fI\ msec\fP)
Causes the calling thread to sleep for \fImsec\fP milliseconds.
.sp
New in version 1.34.0.

.UNINDENT
.SS User guide
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
The contents of this guide have been recently incorporated into the libuv documentation
and it hasn\(aqt gone through thorough review yet. If you spot a mistake please file an
issue, or better yet, open a pull request!
.UNINDENT
.UNINDENT
.SS Introduction
.sp
This \(aqbook\(aq is a small set of tutorials about using \fI\%libuv\fP as
a high performance evented I/O library which offers the same API on Windows and Unix.
.sp
It is meant to cover the main areas of libuv, but is not a comprehensive
reference discussing every function and data structure. The \fI\%official libuv
documentation\fP may be consulted for full details.
.sp
This book is still a work in progress, so sections may be incomplete, but
I hope you will enjoy it as it grows.
.SS Who this book is for
.sp
If you are reading this book, you are either:
.INDENT 0.0
.IP 1. 3
a systems programmer, creating low\-level programs such as daemons or network
services and clients. You have found that the event loop approach is well
suited for your application and decided to use libuv.
.IP 2. 3
a node.js module writer, who wants to wrap platform APIs
written in C or C++ with a set of (a)synchronous APIs that are exposed to
JavaScript. You will use libuv purely in the context of node.js. For
this you will require some other resources as the book does not cover parts
specific to v8/node.js.
.UNINDENT
.sp
This book assumes that you are comfortable with the C programming language.
.SS Background
.sp
The \fI\%node.js\fP project began in 2009 as a JavaScript environment decoupled
from the browser. Using Google\(aqs \fI\%V8\fP and Marc Lehmann\(aqs \fI\%libev\fP, node.js
combined a model of I/O \-\- evented \-\- with a language that was well suited to
the style of programming; due to the way it had been shaped by browsers. As
node.js grew in popularity, it was important to make it work on Windows, but
libev ran only on Unix. The Windows equivalent of kernel event notification
mechanisms like kqueue or (e)poll is IOCP. libuv was an abstraction around libev
or IOCP depending on the platform, providing users an API based on libev.
In the node\-v0.9.0 version of libuv \fI\%libev was removed\fP\&.
.sp
Since then libuv has continued to mature and become a high quality standalone
library for system programming. Users outside of node.js include Mozilla\(aqs
\fI\%Rust\fP programming language, and a \fI\%variety\fP of language bindings.
.sp
This book and the code is based on libuv version \fI\%v1.3.0\fP\&.
.SS Code
.sp
All the code from this book is included as part of the source of the book on
Github. \fI\%Clone\fP/\fI\%Download\fP the book, then build libuv:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
cd libuv
\&./autogen.sh
\&./configure
make
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
There is no need to \fBmake install\fP\&. To build the examples run \fBmake\fP in the
\fBcode/\fP directory.
.SS Basics of libuv
.sp
libuv enforces an \fBasynchronous\fP, \fBevent\-driven\fP style of programming.  Its
core job is to provide an event loop and callback based notifications of I/O
and other activities.  libuv offers core utilities like timers, non\-blocking
networking support, asynchronous file system access, child processes and more.
.SS Event loops
.sp
In event\-driven programming, an application expresses interest in certain events
and respond to them when they occur. The responsibility of gathering events
from the operating system or monitoring other sources of events is handled by
libuv, and the user can register callbacks to be invoked when an event occurs.
The event\-loop usually keeps running \fIforever\fP\&. In pseudocode:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
while there are still events to process:
    e = get the next event
    if there is a callback associated with e:
        call the callback
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Some examples of events are:
.INDENT 0.0
.IP \(bu 2
File is ready for writing
.IP \(bu 2
A socket has data ready to be read
.IP \(bu 2
A timer has timed out
.UNINDENT
.sp
This event loop is encapsulated by \fBuv_run()\fP \-\- the end\-all function when using
libuv.
.sp
The most common activity of systems programs is to deal with input and output,
rather than a lot of number\-crunching. The problem with using conventional
input/output functions (\fBread\fP, \fBfprintf\fP, etc.) is that they are
\fBblocking\fP\&. The actual write to a hard disk or reading from a network, takes
a disproportionately long time compared to the speed of the processor. The
functions don\(aqt return until the task is done, so that your program is doing
nothing. For programs which require high performance this is a major roadblock
as other activities and other I/O operations are kept waiting.
.sp
One of the standard solutions is to use threads. Each blocking I/O operation is
started in a separate thread (or in a thread pool). When the blocking function
gets invoked in the thread, the processor can schedule another thread to run,
which actually needs the CPU.
.sp
The approach followed by libuv uses another style, which is the \fBasynchronous,
non\-blocking\fP style. Most modern operating systems provide event notification
subsystems. For example, a normal \fBread\fP call on a socket would block until
the sender actually sent something. Instead, the application can request the
operating system to watch the socket and put an event notification in the
queue. The application can inspect the events at its convenience (perhaps doing
some number crunching before to use the processor to the maximum) and grab the
data. It is \fBasynchronous\fP because the application expressed interest at one
point, then used the data at another point (in time and space). It is
\fBnon\-blocking\fP because the application process was free to do other tasks.
This fits in well with libuv\(aqs event\-loop approach, since the operating system
events can be treated as just another libuv event. The non\-blocking ensures
that other events can continue to be handled as fast as they come in [1]\&.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
How the I/O is run in the background is not of our concern, but due to the
way our computer hardware works, with the thread as the basic unit of the
processor, libuv and OSes will usually run background/worker threads and/or
polling to perform tasks in a non\-blocking manner.
.UNINDENT
.UNINDENT
.sp
Bert Belder, one of the libuv core developers has a small video explaining the
architecture of libuv and its background. If you have no prior experience with
either libuv or libev, it is a quick, useful watch.
.sp
libuv\(aqs event loop is explained in more detail in the \fI\%documentation\fP\&.
.SS Hello World
.sp
With the basics out of the way, let\(aqs write our first libuv program. It does
nothing, except start a loop which will exit immediately.
.sp
helloworld/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <stdlib.h>
#include <uv.h>

int main() {
    uv_loop_t *loop = malloc(sizeof(uv_loop_t));
    uv_loop_init(loop);

    printf("Now quitting.\en");
    uv_run(loop, UV_RUN_DEFAULT);

    uv_loop_close(loop);
    free(loop);
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
This program quits immediately because it has no events to process. A libuv
event loop has to be told to watch out for events using the various API
functions.
.sp
Starting with libuv v1.0, users should allocate the memory for the loops before
initializing it with \fBuv_loop_init(uv_loop_t *)\fP\&. This allows you to plug in
custom memory management. Remember to de\-initialize the loop using
\fBuv_loop_close(uv_loop_t *)\fP and then delete the storage. The examples never
close loops since the program quits after the loop ends and the system will
reclaim memory. Production grade projects, especially long running systems
programs, should take care to release correctly.
.SS Default loop
.sp
A default loop is provided by libuv and can be accessed using
\fBuv_default_loop()\fP\&. You should use this loop if you only want a single
loop.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
node.js uses the default loop as its main loop. If you are writing bindings
you should be aware of this.
.UNINDENT
.UNINDENT
.SS Error handling
.sp
Initialization functions or synchronous functions which may fail return a negative number on error. Async functions that may fail will pass a status parameter to their callbacks. The error messages are defined as \fBUV_E*\fP \fI\%constants\fP\&.
.sp
You can use the \fBuv_strerror(int)\fP and \fBuv_err_name(int)\fP functions
to get a \fBconst char *\fP describing the error or the error name respectively.
.sp
I/O read callbacks (such as for files and sockets) are passed a parameter \fBnread\fP\&. If \fBnread\fP is less than 0, there was an error (UV_EOF is the end of file error, which you may want to handle differently).
.SS Handles and Requests
.sp
libuv works by the user expressing interest in particular events. This is
usually done by creating a \fBhandle\fP to an I/O device, timer or process.
Handles are opaque structs named as \fBuv_TYPE_t\fP where type signifies what the
handle is used for.
.sp
libuv watchers
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
/* Handle types. */
typedef struct uv_loop_s uv_loop_t;
typedef struct uv_handle_s uv_handle_t;
typedef struct uv_dir_s uv_dir_t;
typedef struct uv_stream_s uv_stream_t;
typedef struct uv_tcp_s uv_tcp_t;
typedef struct uv_udp_s uv_udp_t;
typedef struct uv_pipe_s uv_pipe_t;
typedef struct uv_tty_s uv_tty_t;
typedef struct uv_poll_s uv_poll_t;
typedef struct uv_timer_s uv_timer_t;
typedef struct uv_prepare_s uv_prepare_t;
typedef struct uv_check_s uv_check_t;
typedef struct uv_idle_s uv_idle_t;
typedef struct uv_async_s uv_async_t;
typedef struct uv_process_s uv_process_t;
typedef struct uv_fs_event_s uv_fs_event_t;
typedef struct uv_fs_poll_s uv_fs_poll_t;
typedef struct uv_signal_s uv_signal_t;

/* Request types. */
typedef struct uv_req_s uv_req_t;
typedef struct uv_getaddrinfo_s uv_getaddrinfo_t;
typedef struct uv_getnameinfo_s uv_getnameinfo_t;
typedef struct uv_shutdown_s uv_shutdown_t;
typedef struct uv_write_s uv_write_t;
typedef struct uv_connect_s uv_connect_t;
typedef struct uv_udp_send_s uv_udp_send_t;
typedef struct uv_fs_s uv_fs_t;
typedef struct uv_work_s uv_work_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Handles represent long\-lived objects. Async operations on such handles are
identified using \fBrequests\fP\&. A request is short\-lived (usually used across
only one callback) and usually indicates one I/O operation on a handle.
Requests are used to preserve context between the initiation and the callback
of individual actions. For example, an UDP socket is represented by
a \fBuv_udp_t\fP, while individual writes to the socket use a \fBuv_udp_send_t\fP
structure that is passed to the callback after the write is done.
.sp
Handles are setup by a corresponding:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_TYPE_init(uv_loop_t *, uv_TYPE_t *)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
function.
.sp
Callbacks are functions which are called by libuv whenever an event the watcher
is interested in has taken place. Application specific logic will usually be
implemented in the callback. For example, an IO watcher\(aqs callback will receive
the data read from a file, a timer callback will be triggered on timeout and so
on.
.SS Idling
.sp
Here is an example of using an idle handle. The callback is called once on
every turn of the event loop. A use case for idle handles is discussed in
utilities\&. Let us use an idle watcher to look at the watcher life cycle
and see how \fBuv_run()\fP will now block because a watcher is present. The idle
watcher is stopped when the count is reached and \fBuv_run()\fP exits since no
event watchers are active.
.sp
idle\-basic/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <uv.h>

int64_t counter = 0;

void wait_for_a_while(uv_idle_t* handle) {
    counter++;

    if (counter >= 10e6)
        uv_idle_stop(handle);
}

int main() {
    uv_idle_t idler;

    uv_idle_init(uv_default_loop(), &idler);
    uv_idle_start(&idler, wait_for_a_while);

    printf("Idling...\en");
    uv_run(uv_default_loop(), UV_RUN_DEFAULT);

    uv_loop_close(uv_default_loop());
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.SS Storing context
.sp
In callback based programming style you\(aqll often want to pass some \(aqcontext\(aq \-\-
application specific information \-\- between the call site and the callback. All
handles and requests have a \fBvoid* data\fP member which you can set to the
context and cast back in the callback. This is a common pattern used throughout
the C library ecosystem. In addition \fBuv_loop_t\fP also has a similar data
member.

.sp
.ce
----

.ce 0
.sp
.IP [1] 5
Depending on the capacity of the hardware of course.
.SS Filesystem
.sp
Simple filesystem read/write is achieved using the \fBuv_fs_*\fP functions and the
\fBuv_fs_t\fP struct.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The libuv filesystem operations are different from socket operations\&. Socket operations use the non\-blocking operations provided
by the operating system. Filesystem operations use blocking functions
internally, but invoke these functions in a \fI\%thread pool\fP and notify
watchers registered with the event loop when application interaction is
required.
.UNINDENT
.UNINDENT
.sp
All filesystem functions have two forms \- \fIsynchronous\fP and \fIasynchronous\fP\&.
.sp
The \fIsynchronous\fP forms automatically get called (and \fBblock\fP) if the
callback is null. The return value of functions is a libuv error code\&. This is usually only useful for synchronous calls.
The \fIasynchronous\fP form is called when a callback is passed and the return
value is 0.
.SS Reading/Writing files
.sp
A file descriptor is obtained using
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const char* path, int flags, int mode, uv_fs_cb cb)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBflags\fP and \fBmode\fP are standard
\fI\%Unix flags\fP\&.
libuv takes care of converting to the appropriate Windows flags.
.sp
File descriptors are closed using
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Filesystem operation callbacks have the signature:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void callback(uv_fs_t* req);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Let\(aqs see a simple implementation of \fBcat\fP\&. We start with registering
a callback for when the file is opened:
.sp
uvcat/main.c \- opening a file
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_open(uv_fs_t *req) {
    // The request passed to the callback is the same as the one the call setup
    // function was passed.
    assert(req == &open_req);
    if (req\->result >= 0) {
        iov = uv_buf_init(buffer, sizeof(buffer));
        uv_fs_read(uv_default_loop(), &read_req, req\->result,
                   &iov, 1, \-1, on_read);
    }
    else {
        fprintf(stderr, "error opening file: %s\en", uv_strerror((int)req\->result));
    }
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The \fBresult\fP field of a \fBuv_fs_t\fP is the file descriptor in case of the
\fBuv_fs_open\fP callback. If the file is successfully opened, we start reading it.
.sp
uvcat/main.c \- read callback
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_read(uv_fs_t *req) {
    if (req\->result < 0) {
        fprintf(stderr, "Read error: %s\en", uv_strerror(req\->result));
    }
    else if (req\->result == 0) {
        uv_fs_t close_req;
        // synchronous
        uv_fs_close(uv_default_loop(), &close_req, open_req.result, NULL);
    }
    else if (req\->result > 0) {
        iov.len = req\->result;
        uv_fs_write(uv_default_loop(), &write_req, 1, &iov, 1, \-1, on_write);
    }
}


.ft P
.fi
.UNINDENT
.UNINDENT
.sp
In the case of a read call, you should pass an \fIinitialized\fP buffer which will
be filled with data before the read callback is triggered. The \fBuv_fs_*\fP
operations map almost directly to certain POSIX functions, so EOF is indicated
in this case by \fBresult\fP being 0. In the case of streams or pipes, the
\fBUV_EOF\fP constant would have been passed as a status instead.
.sp
Here you see a common pattern when writing asynchronous programs. The
\fBuv_fs_close()\fP call is performed synchronously. \fIUsually tasks which are
one\-off, or are done as part of the startup or shutdown stage are performed
synchronously, since we are interested in fast I/O when the program is going
about its primary task and dealing with multiple I/O sources\fP\&. For solo tasks
the performance difference usually is negligible and may lead to simpler code.
.sp
Filesystem writing is similarly simple using \fBuv_fs_write()\fP\&.  \fIYour callback
will be triggered after the write is complete\fP\&.  In our case the callback
simply drives the next read. Thus read and write proceed in lockstep via
callbacks.
.sp
uvcat/main.c \- write callback
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

void on_write(uv_fs_t *req) {
    if (req\->result < 0) {
        fprintf(stderr, "Write error: %s\en", uv_strerror((int)req\->result));
    }
    else {
        uv_fs_read(uv_default_loop(), &read_req, open_req.result, &iov, 1, \-1, on_read);
    }
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
Due to the way filesystems and disk drives are configured for performance,
a write that \(aqsucceeds\(aq may not be committed to disk yet.
.UNINDENT
.UNINDENT
.sp
We set the dominos rolling in \fBmain()\fP:
.sp
uvcat/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int main(int argc, char **argv) {
    uv_fs_open(uv_default_loop(), &open_req, argv[1], O_RDONLY, 0, on_open);
    uv_run(uv_default_loop(), UV_RUN_DEFAULT);

    uv_fs_req_cleanup(&open_req);
    uv_fs_req_cleanup(&read_req);
    uv_fs_req_cleanup(&write_req);
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
The \fBuv_fs_req_cleanup()\fP function must always be called on filesystem
requests to free internal memory allocations in libuv.
.UNINDENT
.UNINDENT
.SS Filesystem operations
.sp
All the standard filesystem operations like \fBunlink\fP, \fBrmdir\fP, \fBstat\fP are
supported asynchronously and have intuitive argument order. They follow the
same patterns as the read/write/open calls, returning the result in the
\fBuv_fs_t.result\fP field. The full list:
.sp
Filesystem operations
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb);
int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const char* path, int flags, int mode, uv_fs_cb cb);
int uv_fs_read(uv_loop_t* loop, uv_fs_t* req, uv_file file, const uv_buf_t bufs[], unsigned int nbufs, int64_t offset, uv_fs_cb cb);
int uv_fs_unlink(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb);
int uv_fs_write(uv_loop_t* loop, uv_fs_t* req, uv_file file, const uv_buf_t bufs[], unsigned int nbufs, int64_t offset, uv_fs_cb cb);
int uv_fs_copyfile(uv_loop_t* loop, uv_fs_t* req, const char* path, const char* new_path, int flags, uv_fs_cb cb);
int uv_fs_mkdir(uv_loop_t* loop, uv_fs_t* req, const char* path, int mode, uv_fs_cb cb);
int uv_fs_mkdtemp(uv_loop_t* loop, uv_fs_t* req, const char* tpl, uv_fs_cb cb);
int uv_fs_rmdir(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb);
int uv_fs_scandir(uv_loop_t* loop, uv_fs_t* req, const char* path, int flags, uv_fs_cb cb);
int uv_fs_scandir_next(uv_fs_t* req, uv_dirent_t* ent);
int uv_fs_opendir(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb);
int uv_fs_readdir(uv_loop_t* loop, uv_fs_t* req, uv_dir_t* dir, uv_fs_cb cb);
int uv_fs_closedir(uv_loop_t* loop, uv_fs_t* req, uv_dir_t* dir, uv_fs_cb cb);
int uv_fs_stat(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb);
int uv_fs_fstat(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb);
int uv_fs_rename(uv_loop_t* loop, uv_fs_t* req, const char* path, const char* new_path, uv_fs_cb cb);
int uv_fs_fsync(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb);
int uv_fs_fdatasync(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb);
int uv_fs_ftruncate(uv_loop_t* loop, uv_fs_t* req, uv_file file, int64_t offset, uv_fs_cb cb);
int uv_fs_sendfile(uv_loop_t* loop, uv_fs_t* req, uv_file out_fd, uv_file in_fd, int64_t in_offset, size_t length, uv_fs_cb cb);
int uv_fs_access(uv_loop_t* loop, uv_fs_t* req, const char* path, int mode, uv_fs_cb cb);
int uv_fs_chmod(uv_loop_t* loop, uv_fs_t* req, const char* path, int mode, uv_fs_cb cb);
int uv_fs_utime(uv_loop_t* loop, uv_fs_t* req, const char* path, double atime, double mtime, uv_fs_cb cb);
int uv_fs_futime(uv_loop_t* loop, uv_fs_t* req, uv_file file, double atime, double mtime, uv_fs_cb cb);
int uv_fs_lstat(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb);
int uv_fs_link(uv_loop_t* loop, uv_fs_t* req, const char* path, const char* new_path, uv_fs_cb cb);
int uv_fs_symlink(uv_loop_t* loop, uv_fs_t* req, const char* path, const char* new_path, int flags, uv_fs_cb cb);
int uv_fs_readlink(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb);
int uv_fs_realpath(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_fs_cb cb);
int uv_fs_fchmod(uv_loop_t* loop, uv_fs_t* req, uv_file file, int mode, uv_fs_cb cb);
int uv_fs_chown(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb);
int uv_fs_fchown(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb);
int uv_fs_lchown(uv_loop_t* loop, uv_fs_t* req, const char* path, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb);
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Buffers and Streams
.sp
The basic I/O handle in libuv is the stream (\fBuv_stream_t\fP). TCP sockets, UDP
sockets, and pipes for file I/O and IPC are all treated as stream subclasses.
.sp
Streams are initialized using custom functions for each subclass, then operated
upon using
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int uv_read_start(uv_stream_t*, uv_alloc_cb alloc_cb, uv_read_cb read_cb);
int uv_read_stop(uv_stream_t*);
int uv_write(uv_write_t* req, uv_stream_t* handle,
             const uv_buf_t bufs[], unsigned int nbufs, uv_write_cb cb);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The stream based functions are simpler to use than the filesystem ones and
libuv will automatically keep reading from a stream when \fBuv_read_start()\fP is
called once, until \fBuv_read_stop()\fP is called.
.sp
The discrete unit of data is the buffer \-\- \fBuv_buf_t\fP\&. This is simply
a collection of a pointer to bytes (\fBuv_buf_t.base\fP) and the length
(\fBuv_buf_t.len\fP). The \fBuv_buf_t\fP is lightweight and passed around by value.
What does require management is the actual bytes, which have to be allocated
and freed by the application.
.sp
\fBERROR:\fP
.INDENT 0.0
.INDENT 3.5
THIS PROGRAM DOES NOT ALWAYS WORK, NEED SOMETHING BETTER**
.UNINDENT
.UNINDENT
.sp
To demonstrate streams we will need to use \fBuv_pipe_t\fP\&. This allows streaming
local files [2]\&. Here is a simple tee utility using libuv.  Doing all operations
asynchronously shows the power of evented I/O. The two writes won\(aqt block each
other, but we have to be careful to copy over the buffer data to ensure we don\(aqt
free a buffer until it has been written.
.sp
The program is to be executed as:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
\&./uvtee <output_file>
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
We start off opening pipes on the files we require. libuv pipes to a file are
opened as bidirectional by default.
.sp
uvtee/main.c \- read on pipes
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

int main(int argc, char **argv) {
    loop = uv_default_loop();

    uv_pipe_init(loop, &stdin_pipe, 0);
    uv_pipe_open(&stdin_pipe, 0);

    uv_pipe_init(loop, &stdout_pipe, 0);
    uv_pipe_open(&stdout_pipe, 1);
    
    uv_fs_t file_req;
    int fd = uv_fs_open(loop, &file_req, argv[1], O_CREAT | O_RDWR, 0644, NULL);
    uv_pipe_init(loop, &file_pipe, 0);
    uv_pipe_open(&file_pipe, fd);

    uv_read_start((uv_stream_t*)&stdin_pipe, alloc_buffer, read_stdin);

    uv_run(loop, UV_RUN_DEFAULT);
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The third argument of \fBuv_pipe_init()\fP should be set to 1 for IPC using named
pipes. This is covered in processes\&. The \fBuv_pipe_open()\fP call
associates the pipe with the file descriptor, in this case \fB0\fP (standard
input).
.sp
We start monitoring \fBstdin\fP\&. The \fBalloc_buffer\fP callback is invoked as new
buffers are required to hold incoming data. \fBread_stdin\fP will be called with
these buffers.
.sp
uvtee/main.c \- reading buffers
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void alloc_buffer(uv_handle_t *handle, size_t suggested_size, uv_buf_t *buf) {
    *buf = uv_buf_init((char*) malloc(suggested_size), suggested_size);
}

void read_stdin(uv_stream_t *stream, ssize_t nread, const uv_buf_t *buf) {
    if (nread < 0){
        if (nread == UV_EOF){
            // end of file
            uv_close((uv_handle_t *)&stdin_pipe, NULL);
            uv_close((uv_handle_t *)&stdout_pipe, NULL);
            uv_close((uv_handle_t *)&file_pipe, NULL);
        }
    } else if (nread > 0) {
        write_data((uv_stream_t *)&stdout_pipe, nread, *buf, on_stdout_write);
        write_data((uv_stream_t *)&file_pipe, nread, *buf, on_file_write);
    }

    // OK to free buffer as write_data copies it.
    if (buf\->base)
        free(buf\->base);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The standard \fBmalloc\fP is sufficient here, but you can use any memory allocation
scheme. For example, node.js uses its own slab allocator which associates
buffers with V8 objects.
.sp
The read callback \fBnread\fP parameter is less than 0 on any error. This error
might be EOF, in which case we close all the streams, using the generic close
function \fBuv_close()\fP which deals with the handle based on its internal type.
Otherwise \fBnread\fP is a non\-negative number and we can attempt to write that
many bytes to the output streams. Finally remember that buffer allocation and
deallocation is application responsibility, so we free the data.
.sp
The allocation callback may return a buffer with length zero if it fails to
allocate memory. In this case, the read callback is invoked with error
UV_ENOBUFS. libuv will continue to attempt to read the stream though, so you
must explicitly call \fBuv_close()\fP if you want to stop when allocation fails.
.sp
The read callback may be called with \fBnread = 0\fP, indicating that at this
point there is nothing to be read. Most applications will just ignore this.
.sp
uvtee/main.c \- Write to pipe
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct {
    uv_write_t req;
    uv_buf_t buf;
} write_req_t;

void free_write_req(uv_write_t *req) {
    write_req_t *wr = (write_req_t*) req;
    free(wr\->buf.base);
    free(wr);
}

void on_stdout_write(uv_write_t *req, int status) {
    free_write_req(req);
}

void on_file_write(uv_write_t *req, int status) {
    free_write_req(req);
}

void write_data(uv_stream_t *dest, size_t size, uv_buf_t buf, uv_write_cb cb) {
    write_req_t *req = (write_req_t*) malloc(sizeof(write_req_t));
    req\->buf = uv_buf_init((char*) malloc(size), size);
    memcpy(req\->buf.base, buf.base, size);
    uv_write((uv_write_t*) req, (uv_stream_t*)dest, &req\->buf, 1, cb);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBwrite_data()\fP makes a copy of the buffer obtained from read. This buffer
does not get passed through to the write callback trigged on write completion. To
get around this we wrap a write request and a buffer in \fBwrite_req_t\fP and
unwrap it in the callbacks. We make a copy so we can free the two buffers from
the two calls to \fBwrite_data\fP independently of each other. While acceptable
for a demo program like this, you\(aqll probably want smarter memory management,
like reference counted buffers or a pool of buffers in any major application.
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
If your program is meant to be used with other programs it may knowingly or
unknowingly be writing to a pipe. This makes it susceptible to \fI\%aborting on
receiving a SIGPIPE\fP\&. It is a good idea to insert:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
signal(SIGPIPE, SIG_IGN)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
in the initialization stages of your application.
.UNINDENT
.UNINDENT
.SS File change events
.sp
All modern operating systems provide APIs to put watches on individual files or
directories and be informed when the files are modified. libuv wraps common
file change notification libraries [1]\&. This is one of the more
inconsistent parts of libuv. File change notification systems are themselves
extremely varied across platforms so getting everything working everywhere is
difficult. To demonstrate, I\(aqm going to build a simple utility which runs
a command whenever any of the watched files change:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
\&./onchange <command> <file1> [file2] ...
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The file change notification is started using \fBuv_fs_event_init()\fP:
.sp
onchange/main.c \- The setup
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int main(int argc, char **argv) {
    if (argc <= 2) {
        fprintf(stderr, "Usage: %s <command> <file1> [file2 ...]\en", argv[0]);
        return 1;
    }

    loop = uv_default_loop();
    command = argv[1];

    while (argc\-\- > 2) {
        fprintf(stderr, "Adding watch on %s\en", argv[argc]);
        uv_fs_event_t *fs_event_req = malloc(sizeof(uv_fs_event_t));
        uv_fs_event_init(loop, fs_event_req);
        // The recursive flag watches subdirectories too.
        uv_fs_event_start(fs_event_req, run_command, argv[argc], UV_FS_EVENT_RECURSIVE);
    }

    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The third argument is the actual file or directory to monitor. The last
argument, \fBflags\fP, can be:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
/*
* Flags to be passed to uv_fs_event_start().
*/
enum uv_fs_event_flags {
    UV_FS_EVENT_WATCH_ENTRY = 1,
    UV_FS_EVENT_STAT = 2,
    UV_FS_EVENT_RECURSIVE = 4
};
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBUV_FS_EVENT_WATCH_ENTRY\fP and \fBUV_FS_EVENT_STAT\fP don\(aqt do anything (yet).
\fBUV_FS_EVENT_RECURSIVE\fP will start watching subdirectories as well on
supported platforms.
.sp
The callback will receive the following arguments:
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP 1. 3
\fBuv_fs_event_t *handle\fP \- The handle. The \fBpath\fP field of the handle
is the file on which the watch was set.
.IP 2. 3
\fBconst char *filename\fP \- If a directory is being monitored, this is the
file which was changed. Only non\-\fBnull\fP on Linux and Windows. May be \fBnull\fP
even on those platforms.
.IP 3. 3
.INDENT 3.0
.TP
.B \fBint flags\fP \- one of \fBUV_RENAME\fP or \fBUV_CHANGE\fP, or a bitwise OR of
both.
.UNINDENT
.IP 4. 3
\fBint status\fP \- Currently 0.
.UNINDENT
.UNINDENT
.UNINDENT
.sp
In our example we simply print the arguments and run the command using
\fBsystem()\fP\&.
.sp
onchange/main.c \- file change notification callback
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void run_command(uv_fs_event_t *handle, const char *filename, int events, int status) {
    char path[1024];
    size_t size = 1023;
    // Does not handle error if path is longer than 1023.
    uv_fs_event_getpath(handle, path, &size);
    path[size] = \(aq\e0\(aq;

    fprintf(stderr, "Change detected in %s: ", path);
    if (events & UV_RENAME)
        fprintf(stderr, "renamed");
    if (events & UV_CHANGE)
        fprintf(stderr, "changed");

    fprintf(stderr, " %s\en", filename ? filename : "");
    system(command);
}

.ft P
.fi
.UNINDENT
.UNINDENT

.sp
.ce
----

.ce 0
.sp
.IP [1] 5
inotify on Linux, FSEvents on Darwin, kqueue on BSDs,
ReadDirectoryChangesW on Windows, event ports on Solaris, unsupported on Cygwin
.IP [2] 5
see pipes
.SS Networking
.sp
Networking in libuv is not much different from directly using the BSD socket
interface, some things are easier, all are non\-blocking, but the concepts stay
the same. In addition libuv offers utility functions to abstract the annoying,
repetitive and low\-level tasks like setting up sockets using the BSD socket
structures, DNS lookup, and tweaking various socket parameters.
.sp
The \fBuv_tcp_t\fP and \fBuv_udp_t\fP structures are used for network I/O.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The code samples in this chapter exist to show certain libuv APIs. They are
not examples of good quality code. They leak memory and don\(aqt always close
connections properly.
.UNINDENT
.UNINDENT
.SS TCP
.sp
TCP is a connection oriented, stream protocol and is therefore based on the
libuv streams infrastructure.
.SS Server
.sp
Server sockets proceed by:
.INDENT 0.0
.IP 1. 3
\fBuv_tcp_init\fP the TCP handle.
.IP 2. 3
\fBuv_tcp_bind\fP it.
.IP 3. 3
Call \fBuv_listen\fP on the handle to have a callback invoked whenever a new
connection is established by a client.
.IP 4. 3
Use \fBuv_accept\fP to accept the connection.
.IP 5. 3
Use stream operations to communicate with the
client.
.UNINDENT
.sp
Here is a simple echo server
.sp
tcp\-echo\-server/main.c \- The listen socket
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
        uv_close((uv_handle_t*) client, on_close);
    }
}

int main() {
    loop = uv_default_loop();

    uv_tcp_t server;
    uv_tcp_init(loop, &server);

    uv_ip4_addr("0.0.0.0", DEFAULT_PORT, &addr);

    uv_tcp_bind(&server, (const struct sockaddr*)&addr, 0);
    int r = uv_listen((uv_stream_t*) &server, DEFAULT_BACKLOG, on_new_connection);
    if (r) {
        fprintf(stderr, "Listen error %s\en", uv_strerror(r));
        return 1;
    }
    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
You can see the utility function \fBuv_ip4_addr\fP being used to convert from
a human readable IP address, port pair to the sockaddr_in structure required by
the BSD socket APIs. The reverse can be obtained using \fBuv_ip4_name\fP\&.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
There are \fBuv_ip6_*\fP analogues for the ip4 functions.
.UNINDENT
.UNINDENT
.sp
Most of the setup functions are synchronous since they are CPU\-bound.
\fBuv_listen\fP is where we return to libuv\(aqs callback style. The second
arguments is the backlog queue \-\- the maximum length of queued connections.
.sp
When a connection is initiated by clients, the callback is required to set up
a handle for the client socket and associate the handle using \fBuv_accept\fP\&.
In this case we also establish interest in reading from this stream.
.sp
tcp\-echo\-server/main.c \- Accepting the client
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

    free(buf\->base);
}

void on_new_connection(uv_stream_t *server, int status) {
    if (status < 0) {
        fprintf(stderr, "New connection error %s\en", uv_strerror(status));
        // error!
        return;
    }

    uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
    uv_tcp_init(loop, client);
    if (uv_accept(server, (uv_stream_t*) client) == 0) {
        uv_read_start((uv_stream_t*) client, alloc_buffer, echo_read);
    }

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The remaining set of functions is very similar to the streams example and can
be found in the code. Just remember to call \fBuv_close\fP when the socket isn\(aqt
required. This can be done even in the \fBuv_listen\fP callback if you are not
interested in accepting the connection.
.SS Client
.sp
Where you do bind/listen/accept on the server, on the client side it\(aqs simply
a matter of calling \fBuv_tcp_connect\fP\&. The same \fBuv_connect_cb\fP style
callback of \fBuv_listen\fP is used by \fBuv_tcp_connect\fP\&. Try:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_tcp_t* socket = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
uv_tcp_init(loop, socket);

uv_connect_t* connect = (uv_connect_t*)malloc(sizeof(uv_connect_t));

struct sockaddr_in dest;
uv_ip4_addr("127.0.0.1", 80, &dest);

uv_tcp_connect(connect, socket, (const struct sockaddr*)&dest, on_connect);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
where \fBon_connect\fP will be called after the connection is established. The
callback receives the \fBuv_connect_t\fP struct, which has a member \fB\&.handle\fP
pointing to the socket.
.SS UDP
.sp
The \fI\%User Datagram Protocol\fP offers connectionless, unreliable network
communication. Hence libuv doesn\(aqt offer a stream. Instead libuv provides
non\-blocking UDP support via the \fIuv_udp_t\fP handle (for receiving) and
\fIuv_udp_send_t\fP request (for sending) and related functions. That said, the
actual API for reading/writing is very similar to normal stream reads. To look
at how UDP can be used, the example shows the first stage of obtaining an IP
address from a \fI\%DHCP\fP server \-\- DHCP Discover.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
You will have to run \fIudp\-dhcp\fP as \fBroot\fP since it uses well known port
numbers below 1024.
.UNINDENT
.UNINDENT
.sp
udp\-dhcp/main.c \- Setup and send UDP packets
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

uv_loop_t *loop;
uv_udp_t send_socket;
uv_udp_t recv_socket;

int main() {
    loop = uv_default_loop();

    uv_udp_init(loop, &recv_socket);
    struct sockaddr_in recv_addr;
    uv_ip4_addr("0.0.0.0", 68, &recv_addr);
    uv_udp_bind(&recv_socket, (const struct sockaddr *)&recv_addr, UV_UDP_REUSEADDR);
    uv_udp_recv_start(&recv_socket, alloc_buffer, on_read);

    uv_udp_init(loop, &send_socket);
    struct sockaddr_in broadcast_addr;
    uv_ip4_addr("0.0.0.0", 0, &broadcast_addr);
    uv_udp_bind(&send_socket, (const struct sockaddr *)&broadcast_addr, 0);
    uv_udp_set_broadcast(&send_socket, 1);

    uv_udp_send_t send_req;
    uv_buf_t discover_msg = make_discover_msg();

    struct sockaddr_in send_addr;
    uv_ip4_addr("255.255.255.255", 67, &send_addr);
    uv_udp_send(&send_req, &send_socket, &discover_msg, 1, (const struct sockaddr *)&send_addr, on_send);

    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The IP address \fB0.0.0.0\fP is used to bind to all interfaces. The IP
address \fB255.255.255.255\fP is a broadcast address meaning that packets
will be sent to all interfaces on the subnet.  port \fB0\fP means that the OS
randomly assigns a port.
.UNINDENT
.UNINDENT
.sp
First we setup the receiving socket to bind on all interfaces on port 68 (DHCP
client) and start a read on it. This will read back responses from any DHCP
server that replies. We use the UV_UDP_REUSEADDR flag to play nice with any
other system DHCP clients that are running on this computer on the same port.
Then we setup a similar send socket and use \fBuv_udp_send\fP to send
a \fIbroadcast message\fP on port 67 (DHCP server).
.sp
It is \fBnecessary\fP to set the broadcast flag, otherwise you will get an
\fBEACCES\fP error [1]\&. The exact message being sent is not relevant to this
book and you can study the code if you are interested. As usual the read and
write callbacks will receive a status code of < 0 if something went wrong.
.sp
Since UDP sockets are not connected to a particular peer, the read callback
receives an extra parameter about the sender of the packet.
.sp
\fBnread\fP may be zero if there is no more data to be read. If \fBaddr\fP is NULL,
it indicates there is nothing to read (the callback shouldn\(aqt do anything), if
not NULL, it indicates that an empty datagram was received from the host at
\fBaddr\fP\&. The \fBflags\fP parameter may be \fBUV_UDP_PARTIAL\fP if the buffer
provided by your allocator was not large enough to hold the data. \fIIn this case
the OS will discard the data that could not fit\fP (That\(aqs UDP for you!).
.sp
udp\-dhcp/main.c \- Reading packets
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_read(uv_udp_t *req, ssize_t nread, const uv_buf_t *buf, const struct sockaddr *addr, unsigned flags) {
    if (nread < 0) {
        fprintf(stderr, "Read error %s\en", uv_err_name(nread));
        uv_close((uv_handle_t*) req, NULL);
        free(buf\->base);
        return;
    }

    char sender[17] = { 0 };
    uv_ip4_name((const struct sockaddr_in*) addr, sender, 16);
    fprintf(stderr, "Recv from %s\en", sender);

    // ... DHCP specific code
    unsigned int *as_integer = (unsigned int*)buf\->base;
    unsigned int ipbin = ntohl(as_integer[4]);
    unsigned char ip[4] = {0};
    int i;
    for (i = 0; i < 4; i++)
        ip[i] = (ipbin >> i*8) & 0xff;
    fprintf(stderr, "Offered IP %d.%d.%d.%d\en", ip[3], ip[2], ip[1], ip[0]);

    free(buf\->base);
    uv_udp_recv_stop(req);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.SS UDP Options
.SS Time\-to\-live
.sp
The TTL of packets sent on the socket can be changed using \fBuv_udp_set_ttl\fP\&.
.SS IPv6 stack only
.sp
IPv6 sockets can be used for both IPv4 and IPv6 communication. If you want to
restrict the socket to IPv6 only, pass the \fBUV_UDP_IPV6ONLY\fP flag to
\fBuv_udp_bind\fP [2]\&.
.SS Multicast
.sp
A socket can (un)subscribe to a multicast group using:
.sp
where \fBmembership\fP is \fBUV_JOIN_GROUP\fP or \fBUV_LEAVE_GROUP\fP\&.
.sp
The concepts of multicasting are nicely explained in \fI\%this guide\fP\&.
.sp
Local loopback of multicast packets is enabled by default [3], use
\fBuv_udp_set_multicast_loop\fP to switch it off.
.sp
The packet time\-to\-live for multicast packets can be changed using
\fBuv_udp_set_multicast_ttl\fP\&.
.SS Querying DNS
.sp
libuv provides asynchronous DNS resolution. For this it provides its own
\fBgetaddrinfo\fP replacement [4]\&. In the callback you can
perform normal socket operations on the retrieved addresses. Let\(aqs connect to
Freenode to see an example of DNS resolution.
.sp
dns/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

int main() {
    loop = uv_default_loop();

    struct addrinfo hints;
    hints.ai_family = PF_INET;
    hints.ai_socktype = SOCK_STREAM;
    hints.ai_protocol = IPPROTO_TCP;
    hints.ai_flags = 0;

    uv_getaddrinfo_t resolver;
    fprintf(stderr, "irc.freenode.net is... ");
    int r = uv_getaddrinfo(loop, &resolver, on_resolved, "irc.freenode.net", "6667", &hints);

    if (r) {
        fprintf(stderr, "getaddrinfo call error %s\en", uv_err_name(r));
        return 1;
    }
    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
If \fBuv_getaddrinfo\fP returns non\-zero, something went wrong in the setup and
your callback won\(aqt be invoked at all. All arguments can be freed immediately
after \fBuv_getaddrinfo\fP returns. The \fIhostname\fP, \fIservname\fP and \fIhints\fP
structures are documented in \fI\%the getaddrinfo man page\fP\&. The
callback can be \fBNULL\fP in which case the function will run synchronously.
.sp
In the resolver callback, you can pick any IP from the linked list of \fBstruct
addrinfo(s)\fP\&. This also demonstrates \fBuv_tcp_connect\fP\&. It is necessary to
call \fBuv_freeaddrinfo\fP in the callback.
.sp
dns/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

void on_resolved(uv_getaddrinfo_t *resolver, int status, struct addrinfo *res) {
    if (status < 0) {
        fprintf(stderr, "getaddrinfo callback error %s\en", uv_err_name(status));
        return;
    }

    char addr[17] = {\(aq\e0\(aq};
    uv_ip4_name((struct sockaddr_in*) res\->ai_addr, addr, 16);
    fprintf(stderr, "%s\en", addr);

    uv_connect_t *connect_req = (uv_connect_t*) malloc(sizeof(uv_connect_t));
    uv_tcp_t *socket = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
    uv_tcp_init(loop, socket);

    uv_tcp_connect(connect_req, socket, (const struct sockaddr*) res\->ai_addr, on_connect);

    uv_freeaddrinfo(res);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
libuv also provides the inverse \fI\%uv_getnameinfo\fP\&.
.SS Network interfaces
.sp
Information about the system\(aqs network interfaces can be obtained through libuv
using \fBuv_interface_addresses\fP\&. This simple program just prints out all the
interface details so you get an idea of the fields that are available. This is
useful to allow your service to bind to IP addresses when it starts.
.sp
interfaces/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <uv.h>

int main() {
    char buf[512];
    uv_interface_address_t *info;
    int count, i;

    uv_interface_addresses(&info, &count);
    i = count;

    printf("Number of interfaces: %d\en", count);
    while (i\-\-) {
        uv_interface_address_t interface = info[i];

        printf("Name: %s\en", interface.name);
        printf("Internal? %s\en", interface.is_internal ? "Yes" : "No");
        
        if (interface.address.address4.sin_family == AF_INET) {
            uv_ip4_name(&interface.address.address4, buf, sizeof(buf));
            printf("IPv4 address: %s\en", buf);
        }
        else if (interface.address.address4.sin_family == AF_INET6) {
            uv_ip6_name(&interface.address.address6, buf, sizeof(buf));
            printf("IPv6 address: %s\en", buf);
        }

        printf("\en");
    }

    uv_free_interface_addresses(info, count);
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBis_internal\fP is true for loopback interfaces. Note that if a physical
interface has multiple IPv4/IPv6 addresses, the name will be reported multiple
times, with each address being reported once.

.sp
.ce
----

.ce 0
.sp
.IP [1] 5
\fI\%https://beej.us/guide/bgnet/html/#broadcast\-packetshello\-world\fP
.IP [2] 5
on Windows only supported on Windows Vista and later.
.IP [3] 5
\fI\%https://www.tldp.org/HOWTO/Multicast\-HOWTO\-6.html#ss6.1\fP
.IP [4] 5
libuv use the system \fBgetaddrinfo\fP in the libuv threadpool. libuv
v0.8.0 and earlier also included \fI\%c\-ares\fP as an alternative, but this has been
removed in v0.9.0.
.SS Threads
.sp
Wait a minute? Why are we on threads? Aren\(aqt event loops supposed to be \fBthe
way\fP to do \fIweb\-scale programming\fP? Well... no. Threads are still the medium in
which processors do their jobs. Threads are therefore mighty useful sometimes, even
though you might have to wade through various synchronization primitives.
.sp
Threads are used internally to fake the asynchronous nature of all of the system
calls. libuv also uses threads to allow you, the application, to perform a task
asynchronously that is actually blocking, by spawning a thread and collecting
the result when it is done.
.sp
Today there are two predominant thread libraries: the Windows threads
implementation and POSIX\(aqs \fI\%pthreads(7)\fP\&. libuv\(aqs thread API is analogous to
the pthreads API and often has similar semantics.
.sp
A notable aspect of libuv\(aqs thread facilities is that it is a self contained
section within libuv. Whereas other features intimately depend on the event
loop and callback principles, threads are complete agnostic, they block as
required, signal errors directly via return values, and, as shown in the
\fI\%first example\fP, don\(aqt even require a running
event loop.
.sp
libuv\(aqs thread API is also very limited since the semantics and syntax of
threads are different on all platforms, with different levels of completeness.
.sp
This chapter makes the following assumption: \fBThere is only one event loop,
running in one thread (the main thread)\fP\&. No other thread interacts
with the event loop (except using \fBuv_async_send\fP).
.SS Core thread operations
.sp
There isn\(aqt much here, you just start a thread using \fBuv_thread_create()\fP and
wait for it to close using \fBuv_thread_join()\fP\&.
.sp
thread\-create/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int main() {
    int tracklen = 10;
    uv_thread_t hare_id;
    uv_thread_t tortoise_id;
    uv_thread_create(&hare_id, hare, &tracklen);
    uv_thread_create(&tortoise_id, tortoise, &tracklen);

    uv_thread_join(&hare_id);
    uv_thread_join(&tortoise_id);
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBTIP:\fP
.INDENT 0.0
.INDENT 3.5
\fBuv_thread_t\fP is just an alias for \fBpthread_t\fP on Unix, but this is an
implementation detail, avoid depending on it to always be true.
.UNINDENT
.UNINDENT
.sp
The second parameter is the function which will serve as the entry point for
the thread, the last parameter is a \fBvoid *\fP argument which can be used to pass
custom parameters to the thread. The function \fBhare\fP will now run in a separate
thread, scheduled pre\-emptively by the operating system:
.sp
thread\-create/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void hare(void *arg) {
    int tracklen = *((int *) arg);
    while (tracklen) {
        tracklen\-\-;
        sleep(1);
        fprintf(stderr, "Hare ran another step\en");
    }
    fprintf(stderr, "Hare done running!\en");
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Unlike \fBpthread_join()\fP which allows the target thread to pass back a value to
the calling thread using a second parameter, \fBuv_thread_join()\fP does not. To
send values use \fI\%Inter\-thread communication\fP\&.
.SS Synchronization Primitives
.sp
This section is purposely spartan. This book is not about threads, so I only
catalogue any surprises in the libuv APIs here. For the rest you can look at
the \fI\%pthreads(7)\fP man pages.
.SS Mutexes
.sp
The mutex functions are a \fBdirect\fP map to the pthread equivalents.
.sp
libuv mutex functions
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int uv_mutex_init(uv_mutex_t* handle);
int uv_mutex_init_recursive(uv_mutex_t* handle);
void uv_mutex_destroy(uv_mutex_t* handle);
void uv_mutex_lock(uv_mutex_t* handle);
int uv_mutex_trylock(uv_mutex_t* handle);
void uv_mutex_unlock(uv_mutex_t* handle);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The \fBuv_mutex_init()\fP, \fBuv_mutex_init_recursive()\fP and \fBuv_mutex_trylock()\fP
functions will return 0 on success, and an error code otherwise.
.sp
If \fIlibuv\fP has been compiled with debugging enabled, \fBuv_mutex_destroy()\fP,
\fBuv_mutex_lock()\fP and \fBuv_mutex_unlock()\fP will \fBabort()\fP on error.
Similarly \fBuv_mutex_trylock()\fP will abort if the error is anything \fIother
than\fP \fBEAGAIN\fP or \fBEBUSY\fP\&.
.sp
Recursive mutexes are supported, but you should not rely on them. Also, they
should not be used with \fBuv_cond_t\fP variables.
.sp
The default BSD mutex implementation will raise an error if a thread which has
locked a mutex attempts to lock it again. For example, a construct like:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_mutex_init(a_mutex);
uv_mutex_lock(a_mutex);
uv_thread_create(thread_id, entry, (void *)a_mutex);
uv_mutex_lock(a_mutex);
// more things here
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
can be used to wait until another thread initializes some stuff and then
unlocks \fBa_mutex\fP but will lead to your program crashing if in debug mode, or
return an error in the second call to \fBuv_mutex_lock()\fP\&.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
Mutexes on Windows are always recursive.
.UNINDENT
.UNINDENT
.SS Locks
.sp
Read\-write locks are a more granular access mechanism. Two readers can access
shared memory at the same time. A writer may not acquire the lock when it is
held by a reader. A reader or writer may not acquire a lock when a writer is
holding it. Read\-write locks are frequently used in databases. Here is a toy
example.
.sp
locks/main.c \- simple rwlocks
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <uv.h>

uv_barrier_t blocker;
uv_rwlock_t numlock;
int shared_num;

void reader(void *n)
{
    int num = *(int *)n;
    int i;
    for (i = 0; i < 20; i++) {
        uv_rwlock_rdlock(&numlock);
        printf("Reader %d: acquired lock\en", num);
        printf("Reader %d: shared num = %d\en", num, shared_num);
        uv_rwlock_rdunlock(&numlock);
        printf("Reader %d: released lock\en", num);
    }
    uv_barrier_wait(&blocker);
}

void writer(void *n)
{
    int num = *(int *)n;
    int i;
    for (i = 0; i < 20; i++) {
        uv_rwlock_wrlock(&numlock);
        printf("Writer %d: acquired lock\en", num);
        shared_num++;
        printf("Writer %d: incremented shared num = %d\en", num, shared_num);
        uv_rwlock_wrunlock(&numlock);
        printf("Writer %d: released lock\en", num);
    }
    uv_barrier_wait(&blocker);
}

int main()
{
    uv_barrier_init(&blocker, 4);

    shared_num = 0;
    uv_rwlock_init(&numlock);

    uv_thread_t threads[3];

    int thread_nums[] = {1, 2, 1};
    uv_thread_create(&threads[0], reader, &thread_nums[0]);
    uv_thread_create(&threads[1], reader, &thread_nums[1]);

    uv_thread_create(&threads[2], writer, &thread_nums[2]);

    uv_barrier_wait(&blocker);
    uv_barrier_destroy(&blocker);

    uv_rwlock_destroy(&numlock);
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Run this and observe how the readers will sometimes overlap. In case of
multiple writers, schedulers will usually give them higher priority, so if you
add two writers, you\(aqll see that both writers tend to finish first before the
readers get a chance again.
.sp
We also use barriers in the above example so that the main thread can wait for
all readers and writers to indicate they have ended.
.SS Others
.sp
libuv also supports \fI\%semaphores\fP, \fI\%condition variables\fP and \fI\%barriers\fP with APIs
very similar to their pthread counterparts.
.sp
In addition, libuv provides a convenience function \fBuv_once()\fP\&. Multiple
threads can attempt to call \fBuv_once()\fP with a given guard and a function
pointer, \fBonly the first one will win, the function will be called once and
only once\fP:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
/* Initialize guard */
static uv_once_t once_only = UV_ONCE_INIT;

int i = 0;

void increment() {
    i++;
}

void thread1() {
    /* ... work */
    uv_once(once_only, increment);
}

void thread2() {
    /* ... work */
    uv_once(once_only, increment);
}

int main() {
    /* ... spawn threads */
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
After all threads are done, \fBi == 1\fP\&.
.sp
libuv v0.11.11 onwards also added a \fBuv_key_t\fP struct and \fI\%api\fP for
thread\-local storage.
.SS libuv work queue
.sp
\fBuv_queue_work()\fP is a convenience function that allows an application to run
a task in a separate thread, and have a callback that is triggered when the
task is done. A seemingly simple function, what makes \fBuv_queue_work()\fP
tempting is that it allows potentially any third\-party libraries to be used
with the event\-loop paradigm. When you use event loops, it is \fIimperative to
make sure that no function which runs periodically in the loop thread blocks
when performing I/O or is a serious CPU hog\fP, because this means that the loop
slows down and events are not being handled at full capacity.
.sp
However, a lot of existing code out there features blocking functions (for example
a routine which performs I/O under the hood) to be used with threads if you
want responsiveness (the classic \(aqone thread per client\(aq server model), and
getting them to play with an event loop library generally involves rolling your
own system of running the task in a separate thread.  libuv just provides
a convenient abstraction for this.
.sp
Here is a simple example inspired by \fI\%node.js is cancer\fP\&. We are going to
calculate fibonacci numbers, sleeping a bit along the way, but run it in
a separate thread so that the blocking and CPU bound task does not prevent the
event loop from performing other activities.
.sp
queue\-work/main.c \- lazy fibonacci
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void fib(uv_work_t *req) {
    int n = *(int *) req\->data;
    if (random() % 2)
        sleep(1);
    else
        sleep(3);
    long fib = fib_(n);
    fprintf(stderr, "%dth fibonacci is %lu\en", n, fib);
}

void after_fib(uv_work_t *req, int status) {
    fprintf(stderr, "Done calculating %dth fibonacci\en", *(int *) req\->data);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The actual task function is simple, nothing to show that it is going to be
run in a separate thread. The \fBuv_work_t\fP structure is the clue. You can pass
arbitrary data through it using the \fBvoid* data\fP field and use it to
communicate to and from the thread. But be sure you are using proper locks if
you are changing things while both threads may be running.
.sp
The trigger is \fBuv_queue_work\fP:
.sp
queue\-work/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int main() {
    loop = uv_default_loop();

    int data[FIB_UNTIL];
    uv_work_t req[FIB_UNTIL];
    int i;
    for (i = 0; i < FIB_UNTIL; i++) {
        data[i] = i;
        req[i].data = (void *) &data[i];
        uv_queue_work(loop, &req[i], fib, after_fib);
    }

    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The thread function will be launched in a separate thread, passed the
\fBuv_work_t\fP structure and once the function returns, the \fIafter\fP function
will be called on the thread the event loop is running in. It will be passed
the same structure.
.sp
For writing wrappers to blocking libraries, a common pattern
is to use a baton to exchange data.
.sp
Since libuv version \fI0.9.4\fP an additional function, \fBuv_cancel()\fP, is
available. This allows you to cancel tasks on the libuv work queue. Only tasks
that \fIare yet to be started\fP can be cancelled. If a task has \fIalready started
executing, or it has finished executing\fP, \fBuv_cancel()\fP \fBwill fail\fP\&.
.sp
\fBuv_cancel()\fP is useful to cleanup pending tasks if the user requests
termination. For example, a music player may queue up multiple directories to
be scanned for audio files. If the user terminates the program, it should quit
quickly and not wait until all pending requests are run.
.sp
Let\(aqs modify the fibonacci example to demonstrate \fBuv_cancel()\fP\&. We first set
up a signal handler for termination.
.sp
queue\-cancel/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int main() {
    loop = uv_default_loop();

    int data[FIB_UNTIL];
    int i;
    for (i = 0; i < FIB_UNTIL; i++) {
        data[i] = i;
        fib_reqs[i].data = (void *) &data[i];
        uv_queue_work(loop, &fib_reqs[i], fib, after_fib);
    }

    uv_signal_t sig;
    uv_signal_init(loop, &sig);
    uv_signal_start(&sig, signal_handler, SIGINT);

    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
When the user triggers the signal by pressing \fBCtrl+C\fP we send
\fBuv_cancel()\fP to all the workers. \fBuv_cancel()\fP will return \fB0\fP for those that are already executing or finished.
.sp
queue\-cancel/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void signal_handler(uv_signal_t *req, int signum)
{
    printf("Signal received!\en");
    int i;
    for (i = 0; i < FIB_UNTIL; i++) {
        uv_cancel((uv_req_t*) &fib_reqs[i]);
    }
    uv_signal_stop(req);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
For tasks that do get cancelled successfully, the \fIafter\fP function is called
with \fBstatus\fP set to \fBUV_ECANCELED\fP\&.
.sp
queue\-cancel/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void after_fib(uv_work_t *req, int status) {
    if (status == UV_ECANCELED)
        fprintf(stderr, "Calculation of %d cancelled.\en", *(int *) req\->data);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBuv_cancel()\fP can also be used with \fBuv_fs_t\fP and \fBuv_getaddrinfo_t\fP
requests. For the filesystem family of functions, \fBuv_fs_t.errorno\fP will be
set to \fBUV_ECANCELED\fP\&.
.sp
\fBTIP:\fP
.INDENT 0.0
.INDENT 3.5
A well designed program would have a way to terminate long running workers
that have already started executing. Such a worker could periodically check
for a variable that only the main process sets to signal termination.
.UNINDENT
.UNINDENT
.SS Inter\-thread communication
.sp
Sometimes you want various threads to actually send each other messages \fIwhile\fP
they are running. For example you might be running some long duration task in
a separate thread (perhaps using \fBuv_queue_work\fP) but want to notify progress
to the main thread. This is a simple example of having a download manager
informing the user of the status of running downloads.
.sp
progress/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_loop_t *loop;
uv_async_t async;

int main() {
    loop = uv_default_loop();

    uv_work_t req;
    int size = 10240;
    req.data = (void*) &size;

    uv_async_init(loop, &async, print_progress);
    uv_queue_work(loop, &req, fake_download, after);

    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The async thread communication works \fIon loops\fP so although any thread can be
the message sender, only threads with libuv loops can be receivers (or rather
the loop is the receiver). libuv will invoke the callback (\fBprint_progress\fP)
with the async watcher whenever it receives a message.
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
It is important to realize that since the message send is \fIasync\fP, the callback
may be invoked immediately after \fBuv_async_send\fP is called in another
thread, or it may be invoked after some time. libuv may also combine
multiple calls to \fBuv_async_send\fP and invoke your callback only once. The
only guarantee that libuv makes is \-\- The callback function is called \fIat
least once\fP after the call to \fBuv_async_send\fP\&. If you have no pending
calls to \fBuv_async_send\fP, the callback won\(aqt be called. If you make two
or more calls, and libuv hasn\(aqt had a chance to run the callback yet, it
\fImay\fP invoke your callback \fIonly once\fP for the multiple invocations of
\fBuv_async_send\fP\&. Your callback will never be called twice for just one
event.
.UNINDENT
.UNINDENT
.sp
progress/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
double percentage;

void fake_download(uv_work_t *req) {
    int size = *((int*) req\->data);
    int downloaded = 0;
    while (downloaded < size) {
        percentage = downloaded*100.0/size;
        async.data = (void*) &percentage;
        uv_async_send(&async);

        sleep(1);
        downloaded += (200+random())%1000; // can only download max 1000bytes/sec,
                                           // but at least a 200;
    }
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
In the download function, we modify the progress indicator and queue the message
for delivery with \fBuv_async_send\fP\&. Remember: \fBuv_async_send\fP is also
non\-blocking and will return immediately.
.sp
progress/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void print_progress(uv_async_t *handle) {
    double percentage = *((double*) handle\->data);
    fprintf(stderr, "Downloaded %.2f%%\en", percentage);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The callback is a standard libuv pattern, extracting the data from the watcher.
.sp
Finally it is important to remember to clean up the watcher.
.sp
progress/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void after(uv_work_t *req, int status) {
    fprintf(stderr, "Download complete\en");
    uv_close((uv_handle_t*) &async, NULL);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
After this example, which showed the abuse of the \fBdata\fP field, \fI\%bnoordhuis\fP
pointed out that using the \fBdata\fP field is not thread safe, and
\fBuv_async_send()\fP is actually only meant to wake up the event loop. Use
a mutex or rwlock to ensure accesses are performed in the right order.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
mutexes and rwlocks \fBDO NOT\fP work inside a signal handler, whereas
\fBuv_async_send\fP does.
.UNINDENT
.UNINDENT
.sp
One use case where \fBuv_async_send\fP is required is when interoperating with
libraries that require thread affinity for their functionality. For example in
node.js, a v8 engine instance, contexts and its objects are bound to the thread
that the v8 instance was started in. Interacting with v8 data structures from
another thread can lead to undefined results. Now consider some node.js module
which binds a third party library. It may go something like this:
.INDENT 0.0
.IP 1. 3
In node, the third party library is set up with a JavaScript callback to be
invoked for more information:
.INDENT 3.0
.INDENT 3.5
.sp
.nf
.ft C
var lib = require(\(aqlib\(aq);
lib.on_progress(function() {
    console.log("Progress");
});

lib.do();

// do other stuff
.ft P
.fi
.UNINDENT
.UNINDENT
.IP 2. 3
\fBlib.do\fP is supposed to be non\-blocking but the third party lib is
blocking, so the binding uses \fBuv_queue_work\fP\&.
.IP 3. 3
The actual work being done in a separate thread wants to invoke the progress
callback, but cannot directly call into v8 to interact with JavaScript. So
it uses \fBuv_async_send\fP\&.
.IP 4. 3
The async callback, invoked in the main loop thread, which is the v8 thread,
then interacts with v8 to invoke the JavaScript callback.
.UNINDENT

.sp
.ce
----

.ce 0
.sp
.SS Processes
.sp
libuv offers considerable child process management, abstracting the platform
differences and allowing communication with the child process using streams or
named pipes.
.sp
A common idiom in Unix is for every process to do one thing and do it well. In
such a case, a process often uses multiple child processes to achieve tasks
(similar to using pipes in shells). A multi\-process model with messages
may also be easier to reason about compared to one with threads and shared
memory.
.sp
A common refrain against event\-based programs is that they cannot take
advantage of multiple cores in modern computers. In a multi\-threaded program
the kernel can perform scheduling and assign different threads to different
cores, improving performance. But an event loop has only one thread.  The
workaround can be to launch multiple processes instead, with each process
running an event loop, and each process getting assigned to a separate CPU
core.
.SS Spawning child processes
.sp
The simplest case is when you simply want to launch a process and know when it
exits. This is achieved using \fBuv_spawn\fP\&.
.sp
spawn/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_loop_t *loop;
uv_process_t child_req;
uv_process_options_t options;
int main() {
    loop = uv_default_loop();

    char* args[3];
    args[0] = "mkdir";
    args[1] = "test\-dir";
    args[2] = NULL;

    options.exit_cb = on_exit;
    options.file = "mkdir";
    options.args = args;

    int r;
    if ((r = uv_spawn(loop, &child_req, &options))) {
        fprintf(stderr, "%s\en", uv_strerror(r));
        return 1;
    } else {
        fprintf(stderr, "Launched process with ID %d\en", child_req.pid);
    }

    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
\fBoptions\fP is implicitly initialized with zeros since it is a global
variable.  If you change \fBoptions\fP to a local variable, remember to
initialize it to null out all unused fields:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_process_options_t options = {0};
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.sp
The \fBuv_process_t\fP struct only acts as the handle, all options are set via
\fBuv_process_options_t\fP\&. To simply launch a process, you need to set only the
\fBfile\fP and \fBargs\fP fields. \fBfile\fP is the program to execute. Since
\fBuv_spawn\fP uses \fI\%execvp(3)\fP internally, there is no need to supply the full
path. Finally as per underlying conventions, \fBthe arguments array has to be
one larger than the number of arguments, with the last element being NULL\fP\&.
.sp
After the call to \fBuv_spawn\fP, \fBuv_process_t.pid\fP will contain the process
ID of the child process.
.sp
The exit callback will be invoked with the \fIexit status\fP and the type of \fIsignal\fP
which caused the exit.
.sp
spawn/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

void on_exit(uv_process_t *req, int64_t exit_status, int term_signal) {
    fprintf(stderr, "Process exited with status %" PRId64 ", signal %d\en", exit_status, term_signal);
    uv_close((uv_handle_t*) req, NULL);

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
It is \fBrequired\fP to close the process watcher after the process exits.
.SS Changing process parameters
.sp
Before the child process is launched you can control the execution environment
using fields in \fBuv_process_options_t\fP\&.
.SS Change execution directory
.sp
Set \fBuv_process_options_t.cwd\fP to the corresponding directory.
.SS Set environment variables
.sp
\fBuv_process_options_t.env\fP is a null\-terminated array of strings, each of the
form \fBVAR=VALUE\fP used to set up the environment variables for the process. Set
this to \fBNULL\fP to inherit the environment from the parent (this) process.
.SS Option flags
.sp
Setting \fBuv_process_options_t.flags\fP to a bitwise OR of the following flags,
modifies the child process behaviour:
.INDENT 0.0
.IP \(bu 2
\fBUV_PROCESS_SETUID\fP \- sets the child\(aqs execution user ID to \fBuv_process_options_t.uid\fP\&.
.IP \(bu 2
\fBUV_PROCESS_SETGID\fP \- sets the child\(aqs execution group ID to \fBuv_process_options_t.gid\fP\&.
.UNINDENT
.sp
Changing the UID/GID is only supported on Unix, \fBuv_spawn\fP will fail on
Windows with \fBUV_ENOTSUP\fP\&.
.INDENT 0.0
.IP \(bu 2
\fBUV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS\fP \- No quoting or escaping of
\fBuv_process_options_t.args\fP is done on Windows. Ignored on Unix.
.IP \(bu 2
\fBUV_PROCESS_DETACHED\fP \- Starts the child process in a new session, which
will keep running after the parent process exits. See example below.
.UNINDENT
.SS Detaching processes
.sp
Passing the flag \fBUV_PROCESS_DETACHED\fP can be used to launch daemons, or
child processes which are independent of the parent so that the parent exiting
does not affect it.
.sp
detach/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int main() {
    loop = uv_default_loop();

    char* args[3];
    args[0] = "sleep";
    args[1] = "100";
    args[2] = NULL;

    options.exit_cb = NULL;
    options.file = "sleep";
    options.args = args;
    options.flags = UV_PROCESS_DETACHED;

    int r;
    if ((r = uv_spawn(loop, &child_req, &options))) {
        fprintf(stderr, "%s\en", uv_strerror(r));
        return 1;
    }
    fprintf(stderr, "Launched sleep with PID %d\en", child_req.pid);
    uv_unref((uv_handle_t*) &child_req);

    return uv_run(loop, UV_RUN_DEFAULT);

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Just remember that the handle is still monitoring the child, so your program
won\(aqt exit. Use \fBuv_unref()\fP if you want to be more \fIfire\-and\-forget\fP\&.
.SS Sending signals to processes
.sp
libuv wraps the standard \fBkill(2)\fP system call on Unix and implements one
with similar semantics on Windows, with \fIone caveat\fP: all of \fBSIGTERM\fP,
\fBSIGINT\fP and \fBSIGKILL\fP, lead to termination of the process. The signature
of \fBuv_kill\fP is:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_err_t uv_kill(int pid, int signum);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
For processes started using libuv, you may use \fBuv_process_kill\fP instead,
which accepts the \fBuv_process_t\fP watcher as the first argument, rather than
the pid. In this case, \fBremember to call\fP \fBuv_close\fP on the watcher.
.SS Signals
.sp
libuv provides wrappers around Unix signals with \fI\%some Windows support\fP as well.
.sp
Use \fBuv_signal_init()\fP to initialize
a handle and associate it with a loop. To listen for particular signals on
that handler, use \fBuv_signal_start()\fP with the handler function. Each handler
can only be associated with one signal number, with subsequent calls to
\fBuv_signal_start()\fP overwriting earlier associations. Use \fBuv_signal_stop()\fP to
stop watching. Here is a small example demonstrating the various possibilities:
.sp
signal/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <uv.h>

uv_loop_t* create_loop()
{
    uv_loop_t *loop = malloc(sizeof(uv_loop_t));
    if (loop) {
      uv_loop_init(loop);
    }
    return loop;
}

void signal_handler(uv_signal_t *handle, int signum)
{
    printf("Signal received: %d\en", signum);
    uv_signal_stop(handle);
}

// two signal handlers in one loop
void thread1_worker(void *userp)
{
    uv_loop_t *loop1 = create_loop();

    uv_signal_t sig1a, sig1b;
    uv_signal_init(loop1, &sig1a);
    uv_signal_start(&sig1a, signal_handler, SIGUSR1);

    uv_signal_init(loop1, &sig1b);
    uv_signal_start(&sig1b, signal_handler, SIGUSR1);

    uv_run(loop1, UV_RUN_DEFAULT);
}

// two signal handlers, each in its own loop
void thread2_worker(void *userp)
{
    uv_loop_t *loop2 = create_loop();
    uv_loop_t *loop3 = create_loop();

    uv_signal_t sig2;
    uv_signal_init(loop2, &sig2);
    uv_signal_start(&sig2, signal_handler, SIGUSR1);

    uv_signal_t sig3;
    uv_signal_init(loop3, &sig3);
    uv_signal_start(&sig3, signal_handler, SIGUSR1);

    while (uv_run(loop2, UV_RUN_NOWAIT) || uv_run(loop3, UV_RUN_NOWAIT)) {
    }
}

int main()
{
    printf("PID %d\en", getpid());

    uv_thread_t thread1, thread2;

    uv_thread_create(&thread1, thread1_worker, 0);
    uv_thread_create(&thread2, thread2_worker, 0);

    uv_thread_join(&thread1);
    uv_thread_join(&thread2);
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
\fBuv_run(loop, UV_RUN_NOWAIT)\fP is similar to \fBuv_run(loop, UV_RUN_ONCE)\fP
in that it will process only one event. UV_RUN_ONCE blocks if there are no
pending events, while UV_RUN_NOWAIT will return immediately. We use NOWAIT
so that one of the loops isn\(aqt starved because the other one has no pending
activity.
.UNINDENT
.UNINDENT
.sp
Send \fBSIGUSR1\fP to the process, and you\(aqll find the handler being invoked
4 times, one for each \fBuv_signal_t\fP\&. The handler just stops each handle,
so that the program exits. This sort of dispatch to all handlers is very
useful. A server using multiple event loops could ensure that all data was
safely saved before termination, simply by every loop adding a watcher for
\fBSIGINT\fP\&.
.SS Child Process I/O
.sp
A normal, newly spawned process has its own set of file descriptors, with 0,
1 and 2 being \fBstdin\fP, \fBstdout\fP and \fBstderr\fP respectively. Sometimes you
may want to share file descriptors with the child. For example, perhaps your
applications launches a sub\-command and you want any errors to go in the log
file, but ignore \fBstdout\fP\&. For this you\(aqd like to have \fBstderr\fP of the
child be the same as the stderr of the parent. In this case, libuv supports
\fIinheriting\fP file descriptors. In this sample, we invoke the test program,
which is:
.sp
proc\-streams/test.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>

int main()
{
    fprintf(stderr, "This is stderr\en");
    printf("This is stdout\en");
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The actual program \fBproc\-streams\fP runs this while sharing only \fBstderr\fP\&.
The file descriptors of the child process are set using the \fBstdio\fP field in
\fBuv_process_options_t\fP\&. First set the \fBstdio_count\fP field to the number of
file descriptors being set. \fBuv_process_options_t.stdio\fP is an array of
\fBuv_stdio_container_t\fP, which is:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct uv_stdio_container_s {
    uv_stdio_flags flags;

    union {
        uv_stream_t* stream;
        int fd;
    } data;
} uv_stdio_container_t;
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
where flags can have several values. Use \fBUV_IGNORE\fP if it isn\(aqt going to be
used. If the first three \fBstdio\fP fields are marked as \fBUV_IGNORE\fP they\(aqll
redirect to \fB/dev/null\fP\&.
.sp
Since we want to pass on an existing descriptor, we\(aqll use \fBUV_INHERIT_FD\fP\&.
Then we set the \fBfd\fP to \fBstderr\fP\&.
.sp
proc\-streams/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

int main() {
    loop = uv_default_loop();

    /* ... */

    options.stdio_count = 3;
    uv_stdio_container_t child_stdio[3];
    child_stdio[0].flags = UV_IGNORE;
    child_stdio[1].flags = UV_IGNORE;
    child_stdio[2].flags = UV_INHERIT_FD;
    child_stdio[2].data.fd = 2;
    options.stdio = child_stdio;

    options.exit_cb = on_exit;
    options.file = args[0];
    options.args = args;

    int r;
    if ((r = uv_spawn(loop, &child_req, &options))) {
        fprintf(stderr, "%s\en", uv_strerror(r));
        return 1;
    }

    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
If you run \fBproc\-stream\fP you\(aqll see that only the line "This is stderr" will
be displayed. Try marking \fBstdout\fP as being inherited and see the output.
.sp
It is dead simple to apply this redirection to streams.  By setting \fBflags\fP
to \fBUV_INHERIT_STREAM\fP and setting \fBdata.stream\fP to the stream in the
parent process, the child process can treat that stream as standard I/O. This
can be used to implement something like \fI\%CGI\fP\&.
.sp
A sample CGI script/executable is:
.sp
cgi/tick.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <unistd.h>

int main() {
    int i;
    for (i = 0; i < 10; i++) {
        printf("tick\en");
        fflush(stdout);
        sleep(1);
    }
    printf("BOOM!\en");
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The CGI server combines the concepts from this chapter and networking so
that every client is sent ten ticks after which that connection is closed.
.sp
cgi/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

void on_new_connection(uv_stream_t *server, int status) {
    if (status == \-1) {
        // error!
        return;
    }

    uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
    uv_tcp_init(loop, client);
    if (uv_accept(server, (uv_stream_t*) client) == 0) {
        invoke_cgi_script(client);
    }
    else {
        uv_close((uv_handle_t*) client, NULL);
    }

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here we simply accept the TCP connection and pass on the socket (\fIstream\fP) to
\fBinvoke_cgi_script\fP\&.
.sp
cgi/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

    args[1] = NULL;

    /* ... finding the executable path and setting up arguments ... */

    options.stdio_count = 3;
    uv_stdio_container_t child_stdio[3];
    child_stdio[0].flags = UV_IGNORE;
    child_stdio[1].flags = UV_INHERIT_STREAM;
    child_stdio[1].data.stream = (uv_stream_t*) client;
    child_stdio[2].flags = UV_IGNORE;
    options.stdio = child_stdio;

    options.exit_cb = cleanup_handles;
    options.file = args[0];
    options.args = args;

    // Set this so we can close the socket after the child process exits.
    child_req.data = (void*) client;
    int r;
    if ((r = uv_spawn(loop, &child_req, &options))) {
        fprintf(stderr, "%s\en", uv_strerror(r));

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The \fBstdout\fP of the CGI script is set to the socket so that whatever our tick
script prints, gets sent to the client. By using processes, we can offload the
read/write buffering to the operating system, so in terms of convenience this
is great. Just be warned that creating processes is a costly task.
.SS Parent\-child IPC
.sp
A parent and child can have one or two way communication over a pipe created by
settings \fBuv_stdio_container_t.flags\fP to a bit\-wise combination of
\fBUV_CREATE_PIPE\fP and \fBUV_READABLE_PIPE\fP or \fBUV_WRITABLE_PIPE\fP\&. The
read/write flag is from the perspective of the child process.  In this case,
the \fBuv_stream_t* stream\fP field must be set to point to an initialized,
unopened \fBuv_pipe_t\fP instance.
.SS New stdio Pipes
.sp
The \fBuv_pipe_t\fP structure represents more than just \fI\%pipe(7)\fP (or \fB|\fP),
but supports any streaming file\-like objects. On Windows, the only object of
that description is the \fI\%Named Pipe\fP\&.  On Unix, this could be any of \fI\%Unix
Domain Socket\fP, or derived from \fI\%mkfifo(1)\fP, or it could actually be a
\fI\%pipe(7)\fP\&.  When \fBuv_spawn\fP initializes a \fBuv_pipe_t\fP due to the
\fIUV_CREATE_PIPE\fP flag, it opts for creating a \fI\%socketpair(2)\fP\&.
.sp
This is intended for the purpose of allowing multiple libuv processes to
communicate with IPC. This is discussed below.
.SS Arbitrary process IPC
.sp
Since domain sockets [1] can have a well known name and a location in the
file\-system they can be used for IPC between unrelated processes. The \fI\%D\-BUS\fP
system used by open source desktop environments uses domain sockets for event
notification. Various applications can then react when a contact comes online
or new hardware is detected. The MySQL server also runs a domain socket on
which clients can interact with it.
.sp
When using domain sockets, a client\-server pattern is usually followed with the
creator/owner of the socket acting as the server. After the initial setup,
messaging is no different from TCP, so we\(aqll re\-use the echo server example.
.sp
pipe\-echo\-server/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void remove_sock(int sig) {
    uv_fs_t req;
    uv_fs_unlink(loop, &req, PIPENAME, NULL);
    exit(0);
}

int main() {
    loop = uv_default_loop();

    uv_pipe_t server;
    uv_pipe_init(loop, &server, 0);

    signal(SIGINT, remove_sock);

    int r;
    if ((r = uv_pipe_bind(&server, PIPENAME))) {
        fprintf(stderr, "Bind error %s\en", uv_err_name(r));
        return 1;
    }
    if ((r = uv_listen((uv_stream_t*) &server, 128, on_new_connection))) {
        fprintf(stderr, "Listen error %s\en", uv_err_name(r));
        return 2;
    }
    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
We name the socket \fBecho.sock\fP which means it will be created in the local
directory. This socket now behaves no different from TCP sockets as far as
the stream API is concerned. You can test this server using \fI\%socat\fP:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ socat \- /path/to/socket
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
A client which wants to connect to a domain socket will use:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void uv_pipe_connect(uv_connect_t *req, uv_pipe_t *handle, const char *name, uv_connect_cb cb);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
where \fBname\fP will be \fBecho.sock\fP or similar. On Unix systems, \fBname\fP must
point to a valid file (e.g. \fB/tmp/echo.sock\fP). On Windows, \fBname\fP follows a
\fB\e\e?\epipe\eecho.sock\fP format.
.SS Sending file descriptors over pipes
.sp
The cool thing about domain sockets is that file descriptors can be exchanged
between processes by sending them over a domain socket. This allows processes
to hand off their I/O to other processes. Applications include load\-balancing
servers, worker processes and other ways to make optimum use of CPU. libuv only
supports sending \fBTCP sockets or other pipes\fP over pipes for now.
.sp
To demonstrate, we will look at a echo server implementation that hands of
clients to worker processes in a round\-robin fashion. This program is a bit
involved, and while only snippets are included in the book, it is recommended
to read the full code to really understand it.
.sp
The worker process is quite simple, since the file\-descriptor is handed over to
it by the master.
.sp
multi\-echo\-server/worker.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

uv_loop_t *loop;
uv_pipe_t queue;
int main() {
    loop = uv_default_loop();

    uv_pipe_init(loop, &queue, 1 /* ipc */);
    uv_pipe_open(&queue, 0);
    uv_read_start((uv_stream_t*)&queue, alloc_buffer, on_new_connection);
    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBqueue\fP is the pipe connected to the master process on the other end, along
which new file descriptors get sent. It is important to set the \fBipc\fP
argument of \fBuv_pipe_init\fP to 1 to indicate this pipe will be used for
inter\-process communication! Since the master will write the file handle to the
standard input of the worker, we connect the pipe to \fBstdin\fP using
\fBuv_pipe_open\fP\&.
.sp
multi\-echo\-server/worker.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_new_connection(uv_stream_t *q, ssize_t nread, const uv_buf_t *buf) {
    if (nread < 0) {
        if (nread != UV_EOF)
            fprintf(stderr, "Read error %s\en", uv_err_name(nread));
        uv_close((uv_handle_t*) q, NULL);
        return;
    }

    uv_pipe_t *pipe = (uv_pipe_t*) q;
    if (!uv_pipe_pending_count(pipe)) {
        fprintf(stderr, "No pending count\en");
        return;
    }

    uv_handle_type pending = uv_pipe_pending_type(pipe);
    assert(pending == UV_TCP);

    uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
    uv_tcp_init(loop, client);
    if (uv_accept(q, (uv_stream_t*) client) == 0) {
        uv_os_fd_t fd;
        uv_fileno((const uv_handle_t*) client, &fd);
        fprintf(stderr, "Worker %d: Accepted fd %d\en", getpid(), fd);
        uv_read_start((uv_stream_t*) client, alloc_buffer, echo_read);
    }
    else {
        uv_close((uv_handle_t*) client, NULL);
    }
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
First we call \fBuv_pipe_pending_count()\fP to ensure that a handle is available
to read out. If your program could deal with different types of handles,
\fBuv_pipe_pending_type()\fP can be used to determine the type.
Although \fBaccept\fP seems odd in this code, it actually makes sense. What
\fBaccept\fP traditionally does is get a file descriptor (the client) from
another file descriptor (The listening socket). Which is exactly what we do
here. Fetch the file descriptor (\fBclient\fP) from \fBqueue\fP\&. From this point
the worker does standard echo server stuff.
.sp
Turning now to the master, let\(aqs take a look at how the workers are launched to
allow load balancing.
.sp
multi\-echo\-server/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
struct child_worker {
    uv_process_t req;
    uv_process_options_t options;
    uv_pipe_t pipe;
} *workers;

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The \fBchild_worker\fP structure wraps the process, and the pipe between the
master and the individual process.
.sp
multi\-echo\-server/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void setup_workers() {
    round_robin_counter = 0;

    // ...

    // launch same number of workers as number of CPUs
    uv_cpu_info_t *info;
    int cpu_count;
    uv_cpu_info(&info, &cpu_count);
    uv_free_cpu_info(info, cpu_count);

    child_worker_count = cpu_count;

    workers = calloc(cpu_count, sizeof(struct child_worker));
    while (cpu_count\-\-) {
        struct child_worker *worker = &workers[cpu_count];
        uv_pipe_init(loop, &worker\->pipe, 1);

        uv_stdio_container_t child_stdio[3];
        child_stdio[0].flags = UV_CREATE_PIPE | UV_READABLE_PIPE;
        child_stdio[0].data.stream = (uv_stream_t*) &worker\->pipe;
        child_stdio[1].flags = UV_IGNORE;
        child_stdio[2].flags = UV_INHERIT_FD;
        child_stdio[2].data.fd = 2;

        worker\->options.stdio = child_stdio;
        worker\->options.stdio_count = 3;

        worker\->options.exit_cb = close_process_handle;
        worker\->options.file = args[0];
        worker\->options.args = args;

        uv_spawn(loop, &worker\->req, &worker\->options); 
        fprintf(stderr, "Started worker %d\en", worker\->req.pid);
    }
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
In setting up the workers, we use the nifty libuv function \fBuv_cpu_info\fP to
get the number of CPUs so we can launch an equal number of workers. Again it is
important to initialize the pipe acting as the IPC channel with the third
argument as 1. We then indicate that the child process\(aq \fBstdin\fP is to be
a readable pipe (from the point of view of the child). Everything is
straightforward till here. The workers are launched and waiting for file
descriptors to be written to their standard input.
.sp
It is in \fBon_new_connection\fP (the TCP infrastructure is initialized in
\fBmain()\fP), that we accept the client socket and pass it along to the next
worker in the round\-robin.
.sp
multi\-echo\-server/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_new_connection(uv_stream_t *server, int status) {
    if (status == \-1) {
        // error!
        return;
    }

    uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
    uv_tcp_init(loop, client);
    if (uv_accept(server, (uv_stream_t*) client) == 0) {
        uv_write_t *write_req = (uv_write_t*) malloc(sizeof(uv_write_t));
        dummy_buf = uv_buf_init("a", 1);
        struct child_worker *worker = &workers[round_robin_counter];
        uv_write2(write_req, (uv_stream_t*) &worker\->pipe, &dummy_buf, 1, (uv_stream_t*) client, NULL);
        round_robin_counter = (round_robin_counter + 1) % child_worker_count;
    }
    else {
        uv_close((uv_handle_t*) client, NULL);
    }
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The \fBuv_write2\fP call handles all the abstraction and it is simply a matter of
passing in the handle (\fBclient\fP) as the right argument. With this our
multi\-process echo server is operational.
.sp
Thanks to Kyle for \fI\%pointing out\fP that \fBuv_write2()\fP requires a non\-empty
buffer even when sending handles.

.sp
.ce
----

.ce 0
.sp
.IP [1] 5
In this section domain sockets stands in for named pipes on Windows as
well.
.SS Advanced event loops
.sp
libuv provides considerable user control over event loops, and you can achieve
interesting results by juggling multiple loops. You can also embed libuv\(aqs
event loop into another event loop based library \-\- imagine a Qt based UI, and
Qt\(aqs event loop driving a libuv backend which does intensive system level
tasks.
.SS Stopping an event loop
.sp
\fBuv_stop()\fP can be used to stop an event loop. The earliest the loop will
stop running is \fIon the next iteration\fP, possibly later. This means that events
that are ready to be processed in this iteration of the loop will still be
processed, so \fBuv_stop()\fP can\(aqt be used as a kill switch. When \fBuv_stop()\fP
is called, the loop \fBwon\(aqt\fP block for i/o on this iteration. The semantics of
these things can be a bit difficult to understand, so let\(aqs look at
\fBuv_run()\fP where all the control flow occurs.
.sp
src/unix/core.c \- uv_run
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
static void uv__run_closing_handles(uv_loop_t* loop) {
  uv_handle_t* p;
  uv_handle_t* q;

  p = loop\->closing_handles;
  loop\->closing_handles = NULL;

  while (p) {
    q = p\->next_closing;
    uv__finish_close(p);
    p = q;
  }
}


int uv_is_closing(const uv_handle_t* handle) {
  return uv__is_closing(handle);
}


int uv_backend_fd(const uv_loop_t* loop) {

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBstop_flag\fP is set by \fBuv_stop()\fP\&. Now all libuv callbacks are invoked
within the event loop, which is why invoking \fBuv_stop()\fP in them will still
lead to this iteration of the loop occurring. First libuv updates timers, then
runs pending timer, idle and prepare callbacks, and invokes any pending I/O
callbacks. If you were to call \fBuv_stop()\fP in any of them, \fBstop_flag\fP
would be set. This causes \fBuv_backend_timeout()\fP to return \fB0\fP, which is
why the loop does not block on I/O. If on the other hand, you called
\fBuv_stop()\fP in one of the check handlers, I/O has already finished and is not
affected.
.sp
\fBuv_stop()\fP is useful to shutdown a loop when a result has been computed or
there is an error, without having to ensure that all handlers are stopped one
by one.
.sp
Here is a simple example that stops the loop and demonstrates how the current
iteration of the loop still takes places.
.sp
uvstop/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <uv.h>

int64_t counter = 0;

void idle_cb(uv_idle_t *handle) {
    printf("Idle callback\en");
    counter++;

    if (counter >= 5) {
        uv_stop(uv_default_loop());
        printf("uv_stop() called\en");
    }
}

void prep_cb(uv_prepare_t *handle) {
    printf("Prep callback\en");
}

int main() {
    uv_idle_t idler;
    uv_prepare_t prep;

    uv_idle_init(uv_default_loop(), &idler);
    uv_idle_start(&idler, idle_cb);

    uv_prepare_init(uv_default_loop(), &prep);
    uv_prepare_start(&prep, prep_cb);

    uv_run(uv_default_loop(), UV_RUN_DEFAULT);

    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.SS Utilities
.sp
This chapter catalogues tools and techniques which are useful for common tasks.
The \fI\%libev man page\fP already covers some patterns which can be adopted to
libuv through simple API changes. It also covers parts of the libuv API that
don\(aqt require entire chapters dedicated to them.
.SS Timers
.sp
Timers invoke the callback after a certain time has elapsed since the timer was
started. libuv timers can also be set to invoke at regular intervals instead of
just once.
.sp
Simple use is to init a watcher and start it with a \fBtimeout\fP, and optional \fBrepeat\fP\&.
Timers can be stopped at any time.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_timer_t timer_req;

uv_timer_init(loop, &timer_req);
uv_timer_start(&timer_req, callback, 5000, 2000);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
will start a repeating timer, which first starts 5 seconds (the \fBtimeout\fP) after the execution
of \fBuv_timer_start\fP, then repeats every 2 seconds (the \fBrepeat\fP). Use:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_timer_stop(&timer_req);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
to stop the timer. This can be used safely from within the callback as well.
.sp
The repeat interval can be modified at any time with:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_timer_set_repeat(uv_timer_t *timer, int64_t repeat);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
which will take effect \fBwhen possible\fP\&. If this function is called from
a timer callback, it means:
.INDENT 0.0
.IP \(bu 2
If the timer was non\-repeating, the timer has already been stopped. Use
\fBuv_timer_start\fP again.
.IP \(bu 2
If the timer is repeating, the next timeout has already been scheduled, so
the old repeat interval will be used once more before the timer switches to
the new interval.
.UNINDENT
.sp
The utility function:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int uv_timer_again(uv_timer_t *)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
applies \fBonly to repeating timers\fP and is equivalent to stopping the timer
and then starting it with both initial \fBtimeout\fP and \fBrepeat\fP set to the
old \fBrepeat\fP value. If the timer hasn\(aqt been started it fails (error code
\fBUV_EINVAL\fP) and returns \-1.
.sp
An actual timer example is in the \fI\%reference count section\fP\&.
.SS Event loop reference count
.sp
The event loop only runs as long as there are active handles. This system
works by having every handle increase the reference count of the event loop
when it is started and decreasing the reference count when stopped. It is also
possible to manually change the reference count of handles using:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void uv_ref(uv_handle_t*);
void uv_unref(uv_handle_t*);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
These functions can be used to allow a loop to exit even when a watcher is
active or to use custom objects to keep the loop alive.
.sp
The latter can be used with interval timers. You might have a garbage collector
which runs every X seconds, or your network service might send a heartbeat to
others periodically, but you don\(aqt want to have to stop them along all clean
exit paths or error scenarios. Or you want the program to exit when all your
other watchers are done. In that case just unref the timer immediately after
creation so that if it is the only watcher running then \fBuv_run\fP will still
exit.
.sp
This is also used in node.js where some libuv methods are being bubbled up to
the JS API. A \fBuv_handle_t\fP (the superclass of all watchers) is created per
JS object and can be ref/unrefed.
.sp
ref\-timer/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_loop_t *loop;
uv_timer_t gc_req;
uv_timer_t fake_job_req;

int main() {
    loop = uv_default_loop();

    uv_timer_init(loop, &gc_req);
    uv_unref((uv_handle_t*) &gc_req);

    uv_timer_start(&gc_req, gc, 0, 2000);

    // could actually be a TCP download or something
    uv_timer_init(loop, &fake_job_req);
    uv_timer_start(&fake_job_req, fake_job, 9000, 0);
    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
We initialize the garbage collector timer, then immediately \fBunref\fP it.
Observe how after 9 seconds, when the fake job is done, the program
automatically exits, even though the garbage collector is still running.
.SS Idler pattern
.sp
The callbacks of idle handles are invoked once per event loop. The idle
callback can be used to perform some very low priority activity. For example,
you could dispatch a summary of the daily application performance to the
developers for analysis during periods of idleness, or use the application\(aqs
CPU time to perform SETI calculations :) An idle watcher is also useful in
a GUI application. Say you are using an event loop for a file download. If the
TCP socket is still being established and no other events are present your
event loop will pause (\fBblock\fP), which means your progress bar will freeze
and the user will face an unresponsive application. In such a case queue up and
idle watcher to keep the UI operational.
.sp
idle\-compute/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_loop_t *loop;
uv_fs_t stdin_watcher;
uv_idle_t idler;
char buffer[1024];

int main() {
    loop = uv_default_loop();

    uv_idle_init(loop, &idler);

    uv_buf_t buf = uv_buf_init(buffer, 1024);
    uv_fs_read(loop, &stdin_watcher, 0, &buf, 1, \-1, on_type);
    uv_idle_start(&idler, crunch_away);
    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here we initialize the idle watcher and queue it up along with the actual
events we are interested in. \fBcrunch_away\fP will now be called repeatedly
until the user types something and presses Return. Then it will be interrupted
for a brief amount as the loop deals with the input data, after which it will
keep calling the idle callback again.
.sp
idle\-compute/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void crunch_away(uv_idle_t* handle) {
    // Compute extra\-terrestrial life
    // fold proteins
    // computer another digit of PI
    // or similar
    fprintf(stderr, "Computing PI...\en");
    // just to avoid overwhelming your terminal emulator
    uv_idle_stop(handle);
}


.ft P
.fi
.UNINDENT
.UNINDENT
.SS Passing data to worker thread
.sp
When using \fBuv_queue_work\fP you\(aqll usually need to pass complex data through
to the worker thread. The solution is to use a \fBstruct\fP and set
\fBuv_work_t.data\fP to point to it. A slight variation is to have the
\fBuv_work_t\fP itself as the first member of this struct (called a baton [1]).
This allows cleaning up the work request and all the data in one free call.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
struct ftp_baton {
    uv_work_t req;
    char *host;
    int port;
    char *username;
    char *password;
}
.ft P
.fi
.UNINDENT
.UNINDENT
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
ftp_baton *baton = (ftp_baton*) malloc(sizeof(ftp_baton));
baton\->req.data = (void*) baton;
baton\->host = strdup("my.webhost.com");
baton\->port = 21;
// ...

uv_queue_work(loop, &baton\->req, ftp_session, ftp_cleanup);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here we create the baton and queue the task.
.sp
Now the task function can extract the data it needs:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void ftp_session(uv_work_t *req) {
    ftp_baton *baton = (ftp_baton*) req\->data;

    fprintf(stderr, "Connecting to %s\en", baton\->host);
}

void ftp_cleanup(uv_work_t *req) {
    ftp_baton *baton = (ftp_baton*) req\->data;

    free(baton\->host);
    // ...
    free(baton);
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
We then free the baton which also frees the watcher.
.SS External I/O with polling
.sp
Usually third\-party libraries will handle their own I/O, and keep track of
their sockets and other files internally. In this case it isn\(aqt possible to use
the standard stream I/O operations, but the library can still be integrated
into the libuv event loop. All that is required is that the library allow you
to access the underlying file descriptors and provide functions that process
tasks in small increments as decided by your application. Some libraries though
will not allow such access, providing only a standard blocking function which
will perform the entire I/O transaction and only then return. It is unwise to
use these in the event loop thread, use the threadpool instead. Of
course, this will also mean losing granular control on the library.
.sp
The \fBuv_poll\fP section of libuv simply watches file descriptors using the
operating system notification mechanism. In some sense, all the I/O operations
that libuv implements itself are also backed by \fBuv_poll\fP like code. Whenever
the OS notices a change of state in file descriptors being polled, libuv will
invoke the associated callback.
.sp
Here we will walk through a simple download manager that will use \fI\%libcurl\fP to
download files. Rather than give all control to libcurl, we\(aqll instead be
using the libuv event loop, and use the non\-blocking, async \fI\%multi\fP interface to
progress with the download whenever libuv notifies of I/O readiness.
.sp
uvwget/main.c \- The setup
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <uv.h>
#include <curl/curl.h>

uv_loop_t *loop;
CURLM *curl_handle;
uv_timer_t timeout;
}

int main(int argc, char **argv) {
    loop = uv_default_loop();

    if (argc <= 1)
        return 0;

    if (curl_global_init(CURL_GLOBAL_ALL)) {
        fprintf(stderr, "Could not init cURL\en");
        return 1;
    }

    uv_timer_init(loop, &timeout);

    curl_handle = curl_multi_init();
    curl_multi_setopt(curl_handle, CURLMOPT_SOCKETFUNCTION, handle_socket);
    curl_multi_setopt(curl_handle, CURLMOPT_TIMERFUNCTION, start_timeout);

    while (argc\-\- > 1) {
        add_download(argv[argc], argc);
    }

    uv_run(loop, UV_RUN_DEFAULT);
    curl_multi_cleanup(curl_handle);
    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The way each library is integrated with libuv will vary. In the case of
libcurl, we can register two callbacks. The socket callback \fBhandle_socket\fP
is invoked whenever the state of a socket changes and we have to start polling
it. \fBstart_timeout\fP is called by libcurl to notify us of the next timeout
interval, after which we should drive libcurl forward regardless of I/O status.
This is so that libcurl can handle errors or do whatever else is required to
get the download moving.
.sp
Our downloader is to be invoked as:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ ./uvwget [url1] [url2] ...
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
So we add each argument as an URL
.sp
uvwget/main.c \- Adding urls
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

void add_download(const char *url, int num) {
    char filename[50];
    sprintf(filename, "%d.download", num);
    FILE *file;

    file = fopen(filename, "w");
    if (file == NULL) {
        fprintf(stderr, "Error opening %s\en", filename);
        return;
    }

    CURL *handle = curl_easy_init();
    curl_easy_setopt(handle, CURLOPT_WRITEDATA, file);
    curl_easy_setopt(handle, CURLOPT_URL, url);
    curl_multi_add_handle(curl_handle, handle);
    fprintf(stderr, "Added download %s \-> %s\en", url, filename);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
We let libcurl directly write the data to a file, but much more is possible if
you so desire.
.sp
\fBstart_timeout\fP will be called immediately the first time by libcurl, so
things are set in motion. This simply starts a libuv \fI\%timer\fP which
drives \fBcurl_multi_socket_action\fP with \fBCURL_SOCKET_TIMEOUT\fP whenever it
times out. \fBcurl_multi_socket_action\fP is what drives libcurl, and what we
call whenever sockets change state. But before we go into that, we need to poll
on sockets whenever \fBhandle_socket\fP is called.
.sp
uvwget/main.c \- Setting up polling
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C

void start_timeout(CURLM *multi, long timeout_ms, void *userp) {
    if (timeout_ms <= 0)
        timeout_ms = 1; /* 0 means directly call socket_action, but we\(aqll do it in a bit */
    uv_timer_start(&timeout, on_timeout, timeout_ms, 0);
}

int handle_socket(CURL *easy, curl_socket_t s, int action, void *userp, void *socketp) {
    curl_context_t *curl_context;
    if (action == CURL_POLL_IN || action == CURL_POLL_OUT) {
        if (socketp) {
            curl_context = (curl_context_t*) socketp;
        }
        else {
            curl_context = create_curl_context(s);
            curl_multi_assign(curl_handle, s, (void *) curl_context);
        }
    }

    switch (action) {
        case CURL_POLL_IN:
            uv_poll_start(&curl_context\->poll_handle, UV_READABLE, curl_perform);
            break;
        case CURL_POLL_OUT:
            uv_poll_start(&curl_context\->poll_handle, UV_WRITABLE, curl_perform);
            break;
        case CURL_POLL_REMOVE:
            if (socketp) {
                uv_poll_stop(&((curl_context_t*)socketp)\->poll_handle);
                destroy_curl_context((curl_context_t*) socketp);                
                curl_multi_assign(curl_handle, s, NULL);
            }
            break;
        default:
            abort();
    }

    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
We are interested in the socket fd \fBs\fP, and the \fBaction\fP\&. For every socket
we create a \fBuv_poll_t\fP handle if it doesn\(aqt exist, and associate it with the
socket using \fBcurl_multi_assign\fP\&. This way \fBsocketp\fP points to it whenever
the callback is invoked.
.sp
In the case that the download is done or fails, libcurl requests removal of the
poll. So we stop and free the poll handle.
.sp
Depending on what events libcurl wishes to watch for, we start polling with
\fBUV_READABLE\fP or \fBUV_WRITABLE\fP\&. Now libuv will invoke the poll callback
whenever the socket is ready for reading or writing. Calling \fBuv_poll_start\fP
multiple times on the same handle is acceptable, it will just update the events
mask with the new value. \fBcurl_perform\fP is the crux of this program.
.sp
uvwget/main.c \- Driving libcurl.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void curl_perform(uv_poll_t *req, int status, int events) {
    uv_timer_stop(&timeout);
    int running_handles;
    int flags = 0;
    if (status < 0)                      flags = CURL_CSELECT_ERR;
    if (!status && events & UV_READABLE) flags |= CURL_CSELECT_IN;
    if (!status && events & UV_WRITABLE) flags |= CURL_CSELECT_OUT;

    curl_context_t *context;

    context = (curl_context_t*)req;

    curl_multi_socket_action(curl_handle, context\->sockfd, flags, &running_handles);
    check_multi_info();   
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The first thing we do is to stop the timer, since there has been some progress
in the interval. Then depending on what event triggered the callback, we set
the correct flags. Then we call \fBcurl_multi_socket_action\fP with the socket
that progressed and the flags informing about what events happened. At this
point libcurl does all of its internal tasks in small increments, and will
attempt to return as fast as possible, which is exactly what an evented program
wants in its main thread. libcurl keeps queueing messages into its own queue
about transfer progress. In our case we are only interested in transfers that
are completed. So we extract these messages, and clean up handles whose
transfers are done.
.sp
uvwget/main.c \- Reading transfer status.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void check_multi_info(void) {
    char *done_url;
    CURLMsg *message;
    int pending;

    while ((message = curl_multi_info_read(curl_handle, &pending))) {
        switch (message\->msg) {
        case CURLMSG_DONE:
            curl_easy_getinfo(message\->easy_handle, CURLINFO_EFFECTIVE_URL,
                            &done_url);
            printf("%s DONE\en", done_url);

            curl_multi_remove_handle(curl_handle, message\->easy_handle);
            curl_easy_cleanup(message\->easy_handle);
            break;

        default:
            fprintf(stderr, "CURLMSG default\en");
            abort();
        }
    }
}

.ft P
.fi
.UNINDENT
.UNINDENT
.SS Check & Prepare watchers
.sp
TODO
.SS Loading libraries
.sp
libuv provides a cross platform API to dynamically load \fI\%shared libraries\fP\&.
This can be used to implement your own plugin/extension/module system and is
used by node.js to implement \fBrequire()\fP support for bindings. The usage is
quite simple as long as your library exports the right symbols. Be careful with
sanity and security checks when loading third party code, otherwise your
program will behave unpredictably. This example implements a very simple
plugin system which does nothing except print the name of the plugin.
.sp
Let us first look at the interface provided to plugin authors.
.sp
plugin/plugin.h
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#ifndef UVBOOK_PLUGIN_SYSTEM
#define UVBOOK_PLUGIN_SYSTEM

// Plugin authors should use this to register their plugins with mfp.
void mfp_register(const char *name);

#endif

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
You can similarly add more functions that plugin authors can use to do useful
things in your application [2]\&. A sample plugin using this API is:
.sp
plugin/hello.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include "plugin.h"

void initialize() {
    mfp_register("Hello World!");
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Our interface defines that all plugins should have an \fBinitialize\fP function
which will be called by the application. This plugin is compiled as a shared
library and can be loaded by running our application:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ ./plugin libhello.dylib
Loading libhello.dylib
Registered plugin "Hello World!"
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The shared library filename will be different depending on platforms. On
Linux it is \fBlibhello.so\fP\&.
.UNINDENT
.UNINDENT
.sp
This is done by using \fBuv_dlopen\fP to first load the shared library
\fBlibhello.dylib\fP\&. Then we get access to the \fBinitialize\fP function using
\fBuv_dlsym\fP and invoke it.
.sp
plugin/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include "plugin.h"

typedef void (*init_plugin_function)();

void mfp_register(const char *name) {
    fprintf(stderr, "Registered plugin \e"%s\e"\en", name);
}

int main(int argc, char **argv) {
    if (argc == 1) {
        fprintf(stderr, "Usage: %s [plugin1] [plugin2] ...\en", argv[0]);
        return 0;
    }

    uv_lib_t *lib = (uv_lib_t*) malloc(sizeof(uv_lib_t));
    while (\-\-argc) {
        fprintf(stderr, "Loading %s\en", argv[argc]);
        if (uv_dlopen(argv[argc], lib)) {
            fprintf(stderr, "Error: %s\en", uv_dlerror(lib));
            continue;
        }

        init_plugin_function init_plugin;
        if (uv_dlsym(lib, "initialize", (void **) &init_plugin)) {
            fprintf(stderr, "dlsym error: %s\en", uv_dlerror(lib));
            continue;
        }

        init_plugin();
    }

    return 0;
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBuv_dlopen\fP expects a path to the shared library and sets the opaque
\fBuv_lib_t\fP pointer. It returns 0 on success, \-1 on error. Use \fBuv_dlerror\fP
to get the error message.
.sp
\fBuv_dlsym\fP stores a pointer to the symbol in the second argument in the third
argument. \fBinit_plugin_function\fP is a function pointer to the sort of
function we are looking for in the application\(aqs plugins.
.SS TTY
.sp
Text terminals have supported basic formatting for a long time, with a \fI\%pretty
standardised\fP command set. This formatting is often used by programs to
improve the readability of terminal output. For example \fBgrep \-\-colour\fP\&.
libuv provides the \fBuv_tty_t\fP abstraction (a stream) and related functions to
implement the ANSI escape codes across all platforms. By this I mean that libuv
converts ANSI codes to the Windows equivalent, and provides functions to get
terminal information.
.sp
The first thing to do is to initialize a \fBuv_tty_t\fP with the file descriptor
it reads/writes from. This is achieved with:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
int uv_tty_init(uv_loop_t*, uv_tty_t*, uv_file fd, int unused)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The \fBunused\fP parameter is now auto\-detected and ignored. It previously needed
to be set to use \fBuv_read_start()\fP on the stream.
.sp
It is then best to use \fBuv_tty_set_mode\fP to set the mode to \fInormal\fP
which enables most TTY formatting, flow\-control and other settings. \fI\%Other\fP modes
are also available.
.sp
Remember to call \fBuv_tty_reset_mode\fP when your program exits to restore the
state of the terminal. Just good manners. Another set of good manners is to be
aware of redirection. If the user redirects the output of your command to
a file, control sequences should not be written as they impede readability and
\fBgrep\fP\&. To check if the file descriptor is indeed a TTY, call
\fBuv_guess_handle\fP with the file descriptor and compare the return value with
\fBUV_TTY\fP\&.
.sp
Here is a simple example which prints white text on a red background:
.sp
tty/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <uv.h>

uv_loop_t *loop;
uv_tty_t tty;
int main() {
    loop = uv_default_loop();

    uv_tty_init(loop, &tty, STDOUT_FILENO, 0);
    uv_tty_set_mode(&tty, UV_TTY_MODE_NORMAL);
    
    if (uv_guess_handle(1) == UV_TTY) {
        uv_write_t req;
        uv_buf_t buf;
        buf.base = "\e033[41;37m";
        buf.len = strlen(buf.base);
        uv_write(&req, (uv_stream_t*) &tty, &buf, 1, NULL);
    }

    uv_write_t req;
    uv_buf_t buf;
    buf.base = "Hello TTY\en";
    buf.len = strlen(buf.base);
    uv_write(&req, (uv_stream_t*) &tty, &buf, 1, NULL);
    uv_tty_reset_mode();
    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The final TTY helper is \fBuv_tty_get_winsize()\fP which is used to get the
width and height of the terminal and returns \fB0\fP on success. Here is a small
program which does some animation using the function and character position
escape codes.
.sp
tty\-gravity/main.c
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <uv.h>

uv_loop_t *loop;
uv_tty_t tty;
uv_timer_t tick;
uv_write_t write_req;
int width, height;
int pos = 0;
char *message = "  Hello TTY  ";

void update(uv_timer_t *req) {
    char data[500];

    uv_buf_t buf;
    buf.base = data;
    buf.len = sprintf(data, "\e033[2J\e033[H\e033[%dB\e033[%luC\e033[42;37m%s",
                            pos,
                            (unsigned long) (width\-strlen(message))/2,
                            message);
    uv_write(&write_req, (uv_stream_t*) &tty, &buf, 1, NULL);

    pos++;
    if (pos > height) {
        uv_tty_reset_mode();
        uv_timer_stop(&tick);
    }
}

int main() {
    loop = uv_default_loop();

    uv_tty_init(loop, &tty, STDOUT_FILENO, 0);
    uv_tty_set_mode(&tty, 0);
    
    if (uv_tty_get_winsize(&tty, &width, &height)) {
        fprintf(stderr, "Could not get TTY information\en");
        uv_tty_reset_mode();
        return 1;
    }

    fprintf(stderr, "Width %d, height %d\en", width, height);
    uv_timer_init(loop, &tick);
    uv_timer_start(&tick, update, 200, 200);
    return uv_run(loop, UV_RUN_DEFAULT);
}

.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The escape codes are:
.TS
center;
|l|l|.
_
T{
Code
T}	T{
Meaning
T}
_
T{
\fI2\fP J
T}	T{
Clear part of the screen, 2 is entire screen
T}
_
T{
H
T}	T{
Moves cursor to certain position, default top\-left
T}
_
T{
\fIn\fP B
T}	T{
Moves cursor down by n lines
T}
_
T{
\fIn\fP C
T}	T{
Moves cursor right by n columns
T}
_
T{
m
T}	T{
Obeys string of display settings, in this case green background (40+2), white text (30+7)
T}
_
.TE
.sp
As you can see this is very useful to produce nicely formatted output, or even
console based arcade games if that tickles your fancy. For fancier control you
can try \fI\%ncurses\fP\&.
.sp
Changed in version 1.23.1:: the \fIreadable\fP parameter is now unused and ignored.
The appropriate value will now be auto\-detected from the kernel.


.sp
.ce
----

.ce 0
.sp
.IP [1] 5
I was first introduced to the term baton in this context, in Konstantin
Käfer\(aqs excellent slides on writing node.js bindings \-\-
\fI\%https://kkaefer.com/node\-cpp\-modules/#baton\fP
.IP [2] 5
mfp is My Fancy Plugin
.SS About
.sp
\fI\%Nikhil Marathe\fP started writing this book one
afternoon (June 16, 2012) when he didn\(aqt feel like programming. He had recently
been stung by the lack of good documentation on libuv while working on
\fI\%node\-taglib\fP\&. Although reference
documentation was present, there were no comprehensive tutorials. This book is
the output of that need and tries to be accurate. That said, the book may have
mistakes. Pull requests are encouraged.
.sp
Nikhil is indebted to Marc Lehmann\(aqs comprehensive \fI\%man page\fP about libev which
describes much of the semantics of the two libraries.
.sp
This book was made using \fI\%Sphinx\fP and \fI\%vim\fP\&.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
In 2017 the libuv project incorporated the Nikhil\(aqs work into the official
documentation and it\(aqs maintained there henceforth.
.UNINDENT
.UNINDENT
.SS Upgrading
.sp
Migration guides for different libuv versions, starting with 1.0.
.SS libuv 0.10 \-> 1.0.0 migration guide
.sp
Some APIs changed quite a bit throughout the 1.0.0 development process. Here
is a migration guide for the most significant changes that happened after 0.10
was released.
.SS Loop initialization and closing
.sp
In libuv 0.10 (and previous versions), loops were created with \fIuv_loop_new\fP, which
allocated memory for a new loop and initialized it; and destroyed with \fIuv_loop_delete\fP,
which destroyed the loop and freed the memory. Starting with 1.0, those are deprecated
and the user is responsible for allocating the memory and then initializing the loop.
.sp
libuv 0.10
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_loop_t* loop = uv_loop_new();
\&...
uv_loop_delete(loop);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
libuv 1.0
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_loop_t* loop = malloc(sizeof *loop);
uv_loop_init(loop);
\&...
uv_loop_close(loop);
free(loop);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
Error handling was omitted for brevity. Check the documentation for \fBuv_loop_init()\fP
and \fBuv_loop_close()\fP\&.
.UNINDENT
.UNINDENT
.SS Error handling
.sp
Error handling had a major overhaul in libuv 1.0. In general, functions and status parameters
would get 0 for success and \-1 for failure on libuv 0.10, and the user had to use \fIuv_last_error\fP
to fetch the error code, which was a positive number.
.sp
In 1.0, functions and status parameters contain the actual error code, which is 0 for success, or
a negative number in case of error.
.sp
libuv 0.10
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
\&... assume \(aqserver\(aq is a TCP server which is already listening
r = uv_listen((uv_stream_t*) server, 511, NULL);
if (r == \-1) {
  uv_err_t err = uv_last_error(uv_default_loop());
  /* err.code contains UV_EADDRINUSE */
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
libuv 1.0
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
\&... assume \(aqserver\(aq is a TCP server which is already listening
r = uv_listen((uv_stream_t*) server, 511, NULL);
if (r < 0) {
  /* r contains UV_EADDRINUSE */
}
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Threadpool changes
.sp
In libuv 0.10 Unix used a threadpool which defaulted to 4 threads, while Windows used the
\fIQueueUserWorkItem\fP API, which uses a Windows internal threadpool, which defaults to 512
threads per process.
.sp
In 1.0, we unified both implementations, so Windows now uses the same implementation Unix
does. The threadpool size can be set by exporting the \fBUV_THREADPOOL_SIZE\fP environment
variable. See threadpool\&.
.SS Allocation callback API change
.sp
In libuv 0.10 the callback had to return a filled \fBuv_buf_t\fP by value:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
uv_buf_t alloc_cb(uv_handle_t* handle, size_t size) {
    return uv_buf_init(malloc(size), size);
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
In libuv 1.0 a pointer to a buffer is passed to the callback, which the user
needs to fill:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void alloc_cb(uv_handle_t* handle, size_t size, uv_buf_t* buf) {
    buf\->base = malloc(size);
    buf\->len = size;
}
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Unification of IPv4 / IPv6 APIs
.sp
libuv 1.0 unified the IPv4 and IPv6 APIS. There is no longer a \fIuv_tcp_bind\fP and \fIuv_tcp_bind6\fP
duality, there is only \fBuv_tcp_bind()\fP now.
.sp
IPv4 functions took \fBstruct sockaddr_in\fP structures by value, and IPv6 functions took
\fBstruct sockaddr_in6\fP\&. Now functions take a \fBstruct sockaddr*\fP (note it\(aqs a pointer).
It can be stack allocated.
.sp
libuv 0.10
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
struct sockaddr_in addr = uv_ip4_addr("0.0.0.0", 1234);
\&...
uv_tcp_bind(&server, addr)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
libuv 1.0
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
struct sockaddr_in addr;
uv_ip4_addr("0.0.0.0", 1234, &addr)
\&...
uv_tcp_bind(&server, (const struct sockaddr*) &addr, 0);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The IPv4 and IPv6 struct creating functions (\fBuv_ip4_addr()\fP and \fBuv_ip6_addr()\fP)
have also changed, make sure you check the documentation.
.INDENT 0.0
.TP
.B \&..note::
This change applies to all functions that made a distinction between IPv4 and IPv6
addresses.
.UNINDENT
.SS Streams / UDP  data receive callback API change
.sp
The streams and UDP data receive callbacks now get a pointer to a \fBuv_buf_t\fP buffer,
not a structure by value.
.sp
libuv 0.10
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_read(uv_stream_t* handle,
             ssize_t nread,
             uv_buf_t buf) {
    ...
}

void recv_cb(uv_udp_t* handle,
             ssize_t nread,
             uv_buf_t buf,
             struct sockaddr* addr,
             unsigned flags) {
    ...
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
libuv 1.0
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_read(uv_stream_t* handle,
             ssize_t nread,
             const uv_buf_t* buf) {
    ...
}

void recv_cb(uv_udp_t* handle,
             ssize_t nread,
             const uv_buf_t* buf,
             const struct sockaddr* addr,
             unsigned flags) {
    ...
}
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Receiving handles over pipes API change
.sp
In libuv 0.10 (and earlier versions) the \fIuv_read2_start\fP function was used to start reading
data on a pipe, which could also result in the reception of handles over it. The callback
for such function looked like this:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_read(uv_pipe_t* pipe,
             ssize_t nread,
             uv_buf_t buf,
             uv_handle_type pending) {
    ...
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
In libuv 1.0, \fIuv_read2_start\fP was removed, and the user needs to check if there are pending
handles using \fBuv_pipe_pending_count()\fP and \fBuv_pipe_pending_type()\fP while in
the read callback:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
void on_read(uv_stream_t* handle,
             ssize_t nread,
             const uv_buf_t* buf) {
    ...
    while (uv_pipe_pending_count((uv_pipe_t*) handle) != 0) {
        pending = uv_pipe_pending_type((uv_pipe_t*) handle);
        ...
    }
    ...
}
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Extracting the file descriptor out of a handle
.sp
While it wasn\(aqt supported by the API, users often accessed the libuv internals in
order to get access to the file descriptor of a TCP handle, for example.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
fd = handle\->io_watcher.fd;
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
This is now properly exposed through the \fBuv_fileno()\fP function.
.SS uv_fs_readdir rename and API change
.sp
\fIuv_fs_readdir\fP returned a list of strings in the \fIreq\->ptr\fP field upon completion in
libuv 0.10. In 1.0, this function got renamed to \fBuv_fs_scandir()\fP, since it\(aqs
actually implemented using \fBscandir(3)\fP\&.
.sp
In addition, instead of allocating a full list strings, the user is able to get one
result at a time by using the \fBuv_fs_scandir_next()\fP function. This function
does not need to make a roundtrip to the threadpool, because libuv will keep the
list of \fIdents\fP returned by \fBscandir(3)\fP around.
.SH DOWNLOADS
.sp
libuv can be downloaded from \fI\%here\fP\&.
.SH INSTALLATION
.sp
Installation instructions can be found in \fI\%the README\fP\&.
.SH AUTHOR
libuv contributors
.SH COPYRIGHT
2014-present, libuv contributors
.\" Generated by docutils manpage writer.
.