Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
/*	$NetBSD: crypt.c,v 1.39 2023/06/24 05:18:12 msaitoh Exp $	*/

/*
 * Copyright (c) 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Tom Truscott.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
#if !defined(lint)
#if 0
static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
#else
__RCSID("$NetBSD: crypt.c,v 1.39 2023/06/24 05:18:12 msaitoh Exp $");
#endif
#endif /* not lint */

#include <limits.h>
#include <pwd.h>
#include <stdlib.h>
#include <string.h> /* for strcmp */
#include <unistd.h>
#if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
#include <stdio.h>
#endif

#include "crypt.h"

/*
 * UNIX password, and DES, encryption.
 * By Tom Truscott, trt@rti.rti.org,
 * from algorithms by Robert W. Baldwin and James Gillogly.
 *
 * References:
 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
 *
 * "Password Security: A Case History," R. Morris and Ken Thompson,
 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
 *
 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
 */

/* =====  Configuration ==================== */

/*
 * define "MUST_ALIGN" if your compiler cannot load/store
 * long integers at arbitrary (e.g. odd) memory locations.
 * (Either that or never pass unaligned addresses to des_cipher!)
 */
#if !defined(__vax__) && !defined(__i386__)
#define	MUST_ALIGN
#endif

#ifdef CHAR_BITS
#if CHAR_BITS != 8
	#error C_block structure assumes 8 bit characters
#endif
#endif

/*
 * define "B64" to be the declaration for a 64 bit integer.
 * XXX this feature is currently unused, see "endian" comment below.
 */
#if defined(cray)
#define	B64	long
#endif
#if defined(convex)
#define	B64	long long
#endif

/*
 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
 * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
 * little effect on crypt().
 */
#if defined(notdef)
#define	LARGEDATA
#endif

/* compile with "-DSTATIC=void" when profiling */
#ifndef STATIC
#define	STATIC	static void
#endif

/* ==================================== */

/*
 * Cipher-block representation (Bob Baldwin):
 *
 * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
 * representation is to store one bit per byte in an array of bytes.  Bit N of
 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
 * first byte, 9..16 in the second, and so on.  The DES spec apparently has
 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
 * the MSB of the first byte.  Specifically, the 64-bit input data and key are
 * converted to LSB format, and the output 64-bit block is converted back into
 * MSB format.
 *
 * DES operates internally on groups of 32 bits which are expanded to 48 bits
 * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
 * the computation, the expansion is applied only once, the expanded
 * representation is maintained during the encryption, and a compression
 * permutation is applied only at the end.  To speed up the S-box lookups,
 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
 * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
 * most significant ones.  The low two bits of each byte are zero.  (Thus,
 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
 * first byte in the eight byte representation, bit 2 of the 48 bit value is
 * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
 * used, in which the output is the 64 bit result of an S-box lookup which
 * has been permuted by P and expanded by E, and is ready for use in the next
 * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
 * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
 * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
 * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
 * 8*64*8 = 4K bytes.
 *
 * To speed up bit-parallel operations (such as XOR), the 8 byte
 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
 * machines which support it, a 64 bit value "b64".  This data structure,
 * "C_block", has two problems.  First, alignment restrictions must be
 * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
 * the architecture becomes visible.
 *
 * The byte-order problem is unfortunate, since on the one hand it is good
 * to have a machine-independent C_block representation (bits 1..8 in the
 * first byte, etc.), and on the other hand it is good for the LSB of the
 * first byte to be the LSB of i0.  We cannot have both these things, so we
 * currently use the "little-endian" representation and avoid any multi-byte
 * operations that depend on byte order.  This largely precludes use of the
 * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
 * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
 * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
 * requires a 128 kilobyte table, so perhaps this is not a big loss.
 *
 * Permutation representation (Jim Gillogly):
 *
 * A transformation is defined by its effect on each of the 8 bytes of the
 * 64-bit input.  For each byte we give a 64-bit output that has the bits in
 * the input distributed appropriately.  The transformation is then the OR
 * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
 * each transformation.  Unless LARGEDATA is defined, however, a more compact
 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
 * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
 * is slower but tolerable, particularly for password encryption in which
 * the SPE transformation is iterated many times.  The small tables total 9K
 * bytes, the large tables total 72K bytes.
 *
 * The transformations used are:
 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
 *	This is done by collecting the 32 even-numbered bits and applying
 *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
 *	bits and applying the same transformation.  Since there are only
 *	32 input bits, the IE3264 transformation table is half the size of
 *	the usual table.
 * CF6464: Compression, final permutation, and LSB->MSB conversion.
 *	This is done by two trivial 48->32 bit compressions to obtain
 *	a 64-bit block (the bit numbering is given in the "CIFP" table)
 *	followed by a 64->64 bit "cleanup" transformation.  (It would
 *	be possible to group the bits in the 64-bit block so that 2
 *	identical 32->32 bit transformations could be used instead,
 *	saving a factor of 4 in space and possibly 2 in time, but
 *	byte-ordering and other complications rear their ugly head.
 *	Similar opportunities/problems arise in the key schedule
 *	transforms.)
 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
 *	This admittedly baroque 64->64 bit transformation is used to
 *	produce the first code (in 8*(6+2) format) of the key schedule.
 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
 *	It would be possible to define 15 more transformations, each
 *	with a different rotation, to generate the entire key schedule.
 *	To save space, however, we instead permute each code into the
 *	next by using a transformation that "undoes" the PC2 permutation,
 *	rotates the code, and then applies PC2.  Unfortunately, PC2
 *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
 *	invertible.  We get around that problem by using a modified PC2
 *	which retains the 8 otherwise-lost bits in the unused low-order
 *	bits of each byte.  The low-order bits are cleared when the
 *	codes are stored into the key schedule.
 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
 *	This is faster than applying PC2ROT[0] twice,
 *
 * The Bell Labs "salt" (Bob Baldwin):
 *
 * The salting is a simple permutation applied to the 48-bit result of E.
 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
 * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
 * 16777216 possible values.  (The original salt was 12 bits and could not
 * swap bits 13..24 with 36..48.)
 *
 * It is possible, but ugly, to warp the SPE table to account for the salt
 * permutation.  Fortunately, the conditional bit swapping requires only
 * about four machine instructions and can be done on-the-fly with about an
 * 8% performance penalty.
 */

typedef union {
	unsigned char b[8];
	struct {
		int32_t	i0;
		int32_t	i1;
	} b32;
#if defined(B64)
	B64	b64;
#endif
} C_block;

/*
 * Convert twenty-four-bit long in host-order
 * to six bits (and 2 low-order zeroes) per char little-endian format.
 */
#define	TO_SIX_BIT(rslt, src) {				\
		C_block cvt;				\
		cvt.b[0] = src; src >>= 6;		\
		cvt.b[1] = src; src >>= 6;		\
		cvt.b[2] = src; src >>= 6;		\
		cvt.b[3] = src;				\
		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
	}

/*
 * These macros may someday permit efficient use of 64-bit integers.
 */
#define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
#define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
#define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
#define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
#define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
#define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1

#if defined(LARGEDATA)
	/* Waste memory like crazy.  Also, do permutations in line */
#define	LGCHUNKBITS	3
#define	CHUNKBITS	(1<<LGCHUNKBITS)
#define	PERM6464(d,d0,d1,cpp,p)				\
	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
#define	PERM3264(d,d0,d1,cpp,p)				\
	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
#else
	/* "small data" */
#define	LGCHUNKBITS	2
#define	CHUNKBITS	(1<<LGCHUNKBITS)
#define	PERM6464(d,d0,d1,cpp,p)				\
	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
#define	PERM3264(d,d0,d1,cpp,p)				\
	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
#endif /* LARGEDATA */

STATIC	init_des(void);
STATIC	init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
		       const unsigned char [64], int, int);
#ifndef LARGEDATA
STATIC	permute(const unsigned char *, C_block *, C_block *, int);
#endif
#ifdef DEBUG
STATIC	prtab(const char *, unsigned char *, int);
#endif


#ifndef LARGEDATA
STATIC
permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
{
	DCL_BLOCK(D,D0,D1);
	C_block *tp;
	int t;

	ZERO(D,D0,D1);
	do {
		t = *cp++;
		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
	} while (--chars_in > 0);
	STORE(D,D0,D1,*out);
}
#endif /* LARGEDATA */


/* =====  (mostly) Standard DES Tables ==================== */

static const unsigned char IP[] = {	/* initial permutation */
	58, 50, 42, 34, 26, 18, 10,  2,
	60, 52, 44, 36, 28, 20, 12,  4,
	62, 54, 46, 38, 30, 22, 14,  6,
	64, 56, 48, 40, 32, 24, 16,  8,
	57, 49, 41, 33, 25, 17,  9,  1,
	59, 51, 43, 35, 27, 19, 11,  3,
	61, 53, 45, 37, 29, 21, 13,  5,
	63, 55, 47, 39, 31, 23, 15,  7,
};

/* The final permutation is the inverse of IP - no table is necessary */

static const unsigned char ExpandTr[] = {	/* expansion operation */
	32,  1,  2,  3,  4,  5,
	 4,  5,  6,  7,  8,  9,
	 8,  9, 10, 11, 12, 13,
	12, 13, 14, 15, 16, 17,
	16, 17, 18, 19, 20, 21,
	20, 21, 22, 23, 24, 25,
	24, 25, 26, 27, 28, 29,
	28, 29, 30, 31, 32,  1,
};

static const unsigned char PC1[] = {	/* permuted choice table 1 */
	57, 49, 41, 33, 25, 17,  9,
	 1, 58, 50, 42, 34, 26, 18,
	10,  2, 59, 51, 43, 35, 27,
	19, 11,  3, 60, 52, 44, 36,

	63, 55, 47, 39, 31, 23, 15,
	 7, 62, 54, 46, 38, 30, 22,
	14,  6, 61, 53, 45, 37, 29,
	21, 13,  5, 28, 20, 12,  4,
};

static const unsigned char Rotates[] = {/* PC1 rotation schedule */
	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
};

/* note: each "row" of PC2 is left-padded with bits that make it invertible */
static const unsigned char PC2[] = {	/* permuted choice table 2 */
	 9, 18,    14, 17, 11, 24,  1,  5,
	22, 25,     3, 28, 15,  6, 21, 10,
	35, 38,    23, 19, 12,  4, 26,  8,
	43, 54,    16,  7, 27, 20, 13,  2,

	 0,  0,    41, 52, 31, 37, 47, 55,
	 0,  0,    30, 40, 51, 45, 33, 48,
	 0,  0,    44, 49, 39, 56, 34, 53,
	 0,  0,    46, 42, 50, 36, 29, 32,
};

static const unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
					/* S[1]			*/
	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
					/* S[2]			*/
	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
					/* S[3]			*/
	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
					/* S[4]			*/
	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
					/* S[5]			*/
	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
					/* S[6]			*/
	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
					/* S[7]			*/
	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
					/* S[8]			*/
	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
};

static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
	16,  7, 20, 21,
	29, 12, 28, 17,
	 1, 15, 23, 26,
	 5, 18, 31, 10,
	 2,  8, 24, 14,
	32, 27,  3,  9,
	19, 13, 30,  6,
	22, 11,  4, 25,
};

static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
	 1,  2,  3,  4,   17, 18, 19, 20,
	 5,  6,  7,  8,   21, 22, 23, 24,
	 9, 10, 11, 12,   25, 26, 27, 28,
	13, 14, 15, 16,   29, 30, 31, 32,

	33, 34, 35, 36,   49, 50, 51, 52,
	37, 38, 39, 40,   53, 54, 55, 56,
	41, 42, 43, 44,   57, 58, 59, 60,
	45, 46, 47, 48,   61, 62, 63, 64,
};

static const unsigned char itoa64[] =		/* 0..63 => ascii-64 */
	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";


/* =====  Tables that are initialized at run time  ==================== */


/* Initial key schedule permutation */
static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];

/* Subsequent key schedule rotation permutations */
static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];

/* Initial permutation/expansion table */
static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];

/* Table that combines the S, P, and E operations.  */
static int32_t SPE[2][8][64];

/* compressed/interleaved => final permutation table */
static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];


/* ==================================== */


static C_block	constdatablock;			/* encryption constant */
static char	cryptresult[1+4+4+11+1];	/* encrypted result */

/*
 * We match the behavior of UFC-crypt on systems where "char" is signed by
 * default (the majority), regardless of char's signedness on our system.
 */
static inline int
ascii_to_bin(char ch)
{
	signed char sch = ch;
	int retval;

	if (sch >= 'a')
		retval = sch - ('a' - 38);
	else if (sch >= 'A') 
		retval = sch - ('A' - 12);
	else
		retval = sch - '.';

	return retval & 0x3f;
}

/*
 * When we choose to "support" invalid salts, nevertheless disallow those
 * containing characters that would violate the passwd file format.
 */
static inline int
ascii_is_unsafe(char ch)
{
	return !ch || ch == '\n' || ch == ':';
}

/*
 * We extract the scheme from setting str to allow for 
 * full scheme name comparison
 * Updated to reflect alc suggestion(s) 
 *
 * returns boolean 0 on failure, 1 on success, 
 */
static int 
nondes_scheme_substr(const char * setting,char * scheme, unsigned int len)
{
	const char * start;
	const char * sep;

	/* initialize head pointer */
	start = setting;

	/* clear out scheme buffer regardless of result */
	memset(scheme, 0, len);

	/* make sure we are working on non-des scheme string */
	if (*start != _PASSWORD_NONDES) {
		return 0;
	}

	/* increment passed initial _PASSWORD_NONDES */
	start++;

	if ((sep = memchr(start, _PASSWORD_NONDES,len-1)) == NULL) {
		return 0;
	}

	/* if empty string, we are done */
	if (sep == start) {
		return 1;
	}

	/* copy scheme substr to buffer */
	memcpy(scheme, start, (size_t)(sep - start));

	return 1;
}

/*
 * Return a pointer to static data consisting of the "setting"
 * followed by an encryption produced by the "key" and "setting".
 */
static char *
__crypt(const char *key, const char *setting)
{
	char *encp;
	char scheme[12]; 
	int32_t i;
	int t;
	int r;
	int32_t salt;
	int num_iter, salt_size;
	C_block keyblock, rsltblock;

	/* Non-DES encryption schemes hook in here. */
	if (setting[0] == _PASSWORD_NONDES) {
		r = nondes_scheme_substr(
			setting, scheme, sizeof(scheme));

		/* return NULL if we are unable to extract substring */
		if (!r) {
			return NULL;
		}

		/* $2a$ found in bcrypt.c:encode_salt  */
		if (strcmp(scheme, "2a") == 0) {
			return (__bcrypt(key, setting));
		} else if (strcmp(scheme, "sha1") == 0) {
		     /* $sha1$ found in crypt.h:SHA1_MAGIC */
			return (__crypt_sha1(key, setting));
		} else if (strcmp(scheme, "1") == 0) {
		     /* $1$ found in pw_gensalt.c:__gensalt_md5 */
			return (__md5crypt(key, setting));
#ifdef HAVE_ARGON2
		/* explicit argon2 variant */
		} else if (strcmp(scheme, "argon2id") == 0) {
		     /* $argon2id$ found in pw_gensalt.c:__gensalt_argon2 */
			return (__crypt_argon2(key, setting));
		} else if (strcmp(scheme, "argon2i") == 0) {
		     /* $argon2i$ found in pw_gensalt.c:__gensalt_argon2 */
			return (__crypt_argon2(key, setting));
		} else if (strcmp(scheme, "argon2d") == 0) {
		     /* $argon2d$ found in pw_gensalt.c:__gensalt_argon2 */
			return (__crypt_argon2(key, setting));
#endif /* HAVE_ARGON2 */
		} else {
		     /* invalid scheme, including empty string */
			return NULL;
		}
	}
	/* End non-DES handling */

	for (i = 0; i < 8; i++) {
		if ((t = 2*(unsigned char)(*key)) != 0)
			key++;
		keyblock.b[i] = t;
	}
	if (des_setkey((char *)keyblock.b))
		return (NULL);

	encp = &cryptresult[0];
	switch (*setting) {
	case _PASSWORD_EFMT1:
		/*
		 * Involve the rest of the password 8 characters at a time.
		 */
		while (*key) {
			if (des_cipher((char *)(void *)&keyblock,
			    (char *)(void *)&keyblock, 0L, 1))
				return (NULL);
			for (i = 0; i < 8; i++) {
				if ((t = 2*(unsigned char)(*key)) != 0)
					key++;
				keyblock.b[i] ^= t;
			}
			if (des_setkey((char *)keyblock.b))
				return (NULL);
		}

		*encp++ = *setting++;

		/* get iteration count */
		num_iter = 0;
		for (i = 4; --i >= 0; ) {
			int value = ascii_to_bin(setting[i]);
			if (itoa64[value] != setting[i])
				return NULL;
			encp[i] = setting[i];
			num_iter = (num_iter << 6) | value;
		}
		if (num_iter == 0)
			return NULL;
		setting += 4;
		encp += 4;
		salt_size = 4;
		break;
	default:
		num_iter = 25;
		salt_size = 2;
		if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
			return NULL;
	}

	salt = 0;
	for (i = salt_size; --i >= 0; ) {
		int value = ascii_to_bin(setting[i]);
		if (salt_size > 2 && itoa64[value] != setting[i])
			return NULL;
		encp[i] = setting[i];
		salt = (salt << 6) | value;
	}
	encp += salt_size;
	if (des_cipher((char *)(void *)&constdatablock,
	    (char *)(void *)&rsltblock, salt, num_iter))
		return (NULL);

	/*
	 * Encode the 64 cipher bits as 11 ascii characters.
	 */
	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
	    rsltblock.b[2];
	encp[3] = itoa64[i&0x3f];	i >>= 6;
	encp[2] = itoa64[i&0x3f];	i >>= 6;
	encp[1] = itoa64[i&0x3f];	i >>= 6;
	encp[0] = itoa64[i];		encp += 4;
	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
	    rsltblock.b[5];
	encp[3] = itoa64[i&0x3f];	i >>= 6;
	encp[2] = itoa64[i&0x3f];	i >>= 6;
	encp[1] = itoa64[i&0x3f];	i >>= 6;
	encp[0] = itoa64[i];		encp += 4;
	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
	encp[2] = itoa64[i&0x3f];	i >>= 6;
	encp[1] = itoa64[i&0x3f];	i >>= 6;
	encp[0] = itoa64[i];

	encp[3] = 0;

	return (cryptresult);
}

char *
crypt(const char *key, const char *salt)
{
	char *res = __crypt(key, salt);

	if (res)
		return res;
	/* How do I handle errors ? Return "*0" or "*1" */
	return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
}

/*
 * The Key Schedule, filled in by des_setkey() or setkey().
 */
#define	KS_SIZE	16
static C_block	KS[KS_SIZE];

/*
 * Set up the key schedule from the key.
 */
int
des_setkey(const char *key)
{
	DCL_BLOCK(K, K0, K1);
	C_block *help, *ptabp;
	int i;
	static int des_ready = 0;

	if (!des_ready) {
		init_des();
		des_ready = 1;
	}

	PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
	help = &KS[0];
	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
	for (i = 1; i < 16; i++) {
		help++;
		STORE(K,K0,K1,*help);
		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
		PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
	}
	return (0);
}

/*
 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
 * iterations of DES, using the given 24-bit salt and the pre-computed key
 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
 *
 * NOTE: the performance of this routine is critically dependent on your
 * compiler and machine architecture.
 */
int
des_cipher(const char *in, char *out, long salt, int num_iter)
{
	/* variables that we want in registers, most important first */
#if defined(pdp11)
	int j;
#endif
	int32_t L0, L1, R0, R1, k;
	C_block *kp;
	int ks_inc, loop_count;
	C_block B;

	L0 = salt;
	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */

#if defined(__vax__) || defined(pdp11)
	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
#define	SALT (~salt)
#else
#define	SALT salt
#endif

#if defined(MUST_ALIGN)
	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
	LOAD(L,L0,L1,B);
#else
	LOAD(L,L0,L1,*(const C_block *)in);
#endif
	LOADREG(R,R0,R1,L,L0,L1);
	L0 &= 0x55555555L;
	L1 &= 0x55555555L;
	L0 = ((uint32_t)L0 << 1) | L1;	/* L0 is the even-numbered input bits */
	R0 &= 0xaaaaaaaaL;
	R1 = ((uint32_t)R1 >> 1) & 0x55555555L;
	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
	STORE(L,L0,L1,B);
	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */

	if (num_iter >= 0)
	{		/* encryption */
		kp = &KS[0];
		ks_inc  = sizeof(*kp);
	}
	else
	{		/* decryption */
		num_iter = -num_iter;
		kp = &KS[KS_SIZE-1];
		ks_inc  = -(long)sizeof(*kp);
	}

	while (--num_iter >= 0) {
		loop_count = 8;
		do {

#define	SPTAB(t, i) \
	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
#if defined(gould)
			/* use this if B.b[i] is evaluated just once ... */
#define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
#else
#if defined(pdp11)
			/* use this if your "long" int indexing is slow */
#define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
#else
			/* use this if "k" is allocated to a register ... */
#define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
#endif
#endif

#define	CRUNCH(p0, p1, q0, q1)	\
			k = (q0 ^ q1) & SALT;	\
			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
			kp = (C_block *)((char *)kp+ks_inc);	\
							\
			DOXOR(p0, p1, 0);		\
			DOXOR(p0, p1, 1);		\
			DOXOR(p0, p1, 2);		\
			DOXOR(p0, p1, 3);		\
			DOXOR(p0, p1, 4);		\
			DOXOR(p0, p1, 5);		\
			DOXOR(p0, p1, 6);		\
			DOXOR(p0, p1, 7);

			CRUNCH(L0, L1, R0, R1);
			CRUNCH(R0, R1, L0, L1);
		} while (--loop_count != 0);
		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));


		/* swap L and R */
		L0 ^= R0;  L1 ^= R1;
		R0 ^= L0;  R1 ^= L1;
		L0 ^= R0;  L1 ^= R1;
	}

	/* store the encrypted (or decrypted) result */
	L0 = (((uint32_t)L0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)L1 << 1) & 0xf0f0f0f0L);
	L1 = (((uint32_t)R0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)R1 << 1) & 0xf0f0f0f0L);
	STORE(L,L0,L1,B);
	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
#if defined(MUST_ALIGN)
	STORE(L,L0,L1,B);
	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
#else
	STORE(L,L0,L1,*(C_block *)out);
#endif
	return (0);
}


/*
 * Initialize various tables.  This need only be done once.  It could even be
 * done at compile time, if the compiler were capable of that sort of thing.
 */
STATIC
init_des(void)
{
	int i, j;
	int32_t k;
	int tableno;
	static unsigned char perm[64], tmp32[32];	/* "static" for speed */

	/*
	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
	 */
	for (i = 0; i < 64; i++)
		perm[i] = 0;
	for (i = 0; i < 64; i++) {
		if ((k = PC2[i]) == 0)
			continue;
		k += Rotates[0]-1;
		if ((k%28) < Rotates[0]) k -= 28;
		k = PC1[k];
		if (k > 0) {
			k--;
			k = (k|07) - (k&07);
			k++;
		}
		perm[i] = k;
	}
#ifdef DEBUG
	prtab("pc1tab", perm, 8);
#endif
	init_perm(PC1ROT, perm, 8, 8);

	/*
	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
	 */
	for (j = 0; j < 2; j++) {
		unsigned char pc2inv[64];
		for (i = 0; i < 64; i++)
			perm[i] = pc2inv[i] = 0;
		for (i = 0; i < 64; i++) {
			if ((k = PC2[i]) == 0)
				continue;
			pc2inv[k-1] = i+1;
		}
		for (i = 0; i < 64; i++) {
			if ((k = PC2[i]) == 0)
				continue;
			k += j;
			if ((k%28) <= j) k -= 28;
			perm[i] = pc2inv[k];
		}
#ifdef DEBUG
		prtab("pc2tab", perm, 8);
#endif
		init_perm(PC2ROT[j], perm, 8, 8);
	}

	/*
	 * Bit reverse, then initial permutation, then expansion.
	 */
	for (i = 0; i < 8; i++) {
		for (j = 0; j < 8; j++) {
			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
			if (k > 32)
				k -= 32;
			else if (k > 0)
				k--;
			if (k > 0) {
				k--;
				k = (k|07) - (k&07);
				k++;
			}
			perm[i*8+j] = k;
		}
	}
#ifdef DEBUG
	prtab("ietab", perm, 8);
#endif
	init_perm(IE3264, perm, 4, 8);

	/*
	 * Compression, then final permutation, then bit reverse.
	 */
	for (i = 0; i < 64; i++) {
		k = IP[CIFP[i]-1];
		if (k > 0) {
			k--;
			k = (k|07) - (k&07);
			k++;
		}
		perm[k-1] = i+1;
	}
#ifdef DEBUG
	prtab("cftab", perm, 8);
#endif
	init_perm(CF6464, perm, 8, 8);

	/*
	 * SPE table
	 */
	for (i = 0; i < 48; i++)
		perm[i] = P32Tr[ExpandTr[i]-1];
	for (tableno = 0; tableno < 8; tableno++) {
		for (j = 0; j < 64; j++)  {
			k = (((j >> 0) &01) << 5)|
			    (((j >> 1) &01) << 3)|
			    (((j >> 2) &01) << 2)|
			    (((j >> 3) &01) << 1)|
			    (((j >> 4) &01) << 0)|
			    (((j >> 5) &01) << 4);
			k = S[tableno][k];
			k = (((k >> 3)&01) << 0)|
			    (((k >> 2)&01) << 1)|
			    (((k >> 1)&01) << 2)|
			    (((k >> 0)&01) << 3);
			for (i = 0; i < 32; i++)
				tmp32[i] = 0;
			for (i = 0; i < 4; i++)
				tmp32[4 * tableno + i] = (k >> i) & 01;
			k = 0;
			for (i = 24; --i >= 0; )
				k = (k<<1) | tmp32[perm[i]-1];
			TO_SIX_BIT(SPE[0][tableno][j], k);
			k = 0;
			for (i = 24; --i >= 0; )
				k = (k<<1) | tmp32[perm[i+24]-1];
			TO_SIX_BIT(SPE[1][tableno][j], k);
		}
	}
}

/*
 * Initialize "perm" to represent transformation "p", which rearranges
 * (perhaps with expansion and/or contraction) one packed array of bits
 * (of size "chars_in" characters) into another array (of size "chars_out"
 * characters).
 *
 * "perm" must be all-zeroes on entry to this routine.
 */
STATIC
init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
    int chars_in, int chars_out)
{
	int i, j, k, l;

	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
		l = p[k] - 1;		/* where this bit comes from */
		if (l < 0)
			continue;	/* output bit is always 0 */
		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
			if ((j & l) != 0)
				perm[i][j].b[k>>3] |= 1<<(k&07);
		}
	}
}

/*
 * "setkey" routine (for backwards compatibility)
 */
int
setkey(const char *key)
{
	int i, j, k;
	C_block keyblock;

	for (i = 0; i < 8; i++) {
		k = 0;
		for (j = 0; j < 8; j++) {
			k <<= 1;
			k |= (unsigned char)*key++;
		}
		keyblock.b[i] = k;
	}
	return (des_setkey((char *)keyblock.b));
}

/*
 * "encrypt" routine (for backwards compatibility)
 */
int
encrypt(char *block, int flag)
{
	int i, j, k;
	C_block cblock;

	for (i = 0; i < 8; i++) {
		k = 0;
		for (j = 0; j < 8; j++) {
			k <<= 1;
			k |= (unsigned char)*block++;
		}
		cblock.b[i] = k;
	}
	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
		return (1);
	for (i = 7; i >= 0; i--) {
		k = cblock.b[i];
		for (j = 7; j >= 0; j--) {
			*--block = k&01;
			k >>= 1;
		}
	}
	return (0);
}

#ifdef DEBUG
STATIC
prtab(const char *s, unsigned char *t, int num_rows)
{
	int i, j;

	(void)printf("%s:\n", s);
	for (i = 0; i < num_rows; i++) {
		for (j = 0; j < 8; j++) {
			 (void)printf("%3d", t[i*8+j]);
		}
		(void)printf("\n");
	}
	(void)printf("\n");
}
#endif

#if defined(MAIN) || defined(UNIT_TEST)
#include <err.h>

int
main(int argc, char *argv[])
{
	if (argc < 2) {
		fprintf(stderr, "Usage: %s password [salt]\n", getprogname());
		return EXIT_FAILURE;
	}

	printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
	return EXIT_SUCCESS;
}
#endif