Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/* $NetBSD: tc_bus_mem.c,v 1.40 2021/07/04 22:42:36 thorpej Exp $ */

/*
 * Copyright (c) 1996 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: Chris G. Demetriou
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 * Common TURBOchannel Chipset "bus memory" functions.
 */

#include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */

__KERNEL_RCSID(0, "$NetBSD: tc_bus_mem.c,v 1.40 2021/07/04 22:42:36 thorpej Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <sys/device.h>

#include <sys/bus.h>
#include <dev/tc/tcvar.h>

#define	__C(A,B)	__CONCAT(A,B)

/* mapping/unmapping */
static int	tc_mem_map(void *, bus_addr_t, bus_size_t, int,
		    bus_space_handle_t *, int);
static void	tc_mem_unmap(void *, bus_space_handle_t, bus_size_t, int);
static int	tc_mem_subregion(void *, bus_space_handle_t, bus_size_t,
		    bus_size_t, bus_space_handle_t *);

static int	tc_mem_translate(void *, bus_addr_t, bus_size_t,
		    int, struct alpha_bus_space_translation *);
static int	tc_mem_get_window(void *, int,
		    struct alpha_bus_space_translation *);

/* allocation/deallocation */
static int	tc_mem_alloc(void *, bus_addr_t, bus_addr_t, bus_size_t,
		    bus_size_t, bus_addr_t, int, bus_addr_t *,
		    bus_space_handle_t *);
static void	tc_mem_free(void *, bus_space_handle_t, bus_size_t);

/* get kernel virtual address */
static void *	tc_mem_vaddr(void *, bus_space_handle_t);

/* mmap for user */
static paddr_t	tc_mem_mmap(void *, bus_addr_t, off_t, int, int);

/* barrier */
static inline void tc_mem_barrier(void *, bus_space_handle_t,
		    bus_size_t, bus_size_t, int);

/* read (single) */
static inline uint8_t  tc_mem_read_1(void *, bus_space_handle_t, bus_size_t);
static inline uint16_t tc_mem_read_2(void *, bus_space_handle_t, bus_size_t);
static inline uint32_t tc_mem_read_4(void *, bus_space_handle_t, bus_size_t);
static inline uint64_t tc_mem_read_8(void *, bus_space_handle_t, bus_size_t);

/* read multiple */
static void	tc_mem_read_multi_1(void *, bus_space_handle_t,
		    bus_size_t, uint8_t *, bus_size_t);
static void	tc_mem_read_multi_2(void *, bus_space_handle_t,
		    bus_size_t, uint16_t *, bus_size_t);
static void	tc_mem_read_multi_4(void *, bus_space_handle_t,
		    bus_size_t, uint32_t *, bus_size_t);
static void	tc_mem_read_multi_8(void *, bus_space_handle_t,
		    bus_size_t, uint64_t *, bus_size_t);

/* read region */
static void	tc_mem_read_region_1(void *, bus_space_handle_t,
		    bus_size_t, uint8_t *, bus_size_t);
static void	tc_mem_read_region_2(void *, bus_space_handle_t,
		    bus_size_t, uint16_t *, bus_size_t);
static void	tc_mem_read_region_4(void *, bus_space_handle_t,
		    bus_size_t, uint32_t *, bus_size_t);
static void	tc_mem_read_region_8(void *, bus_space_handle_t,
		    bus_size_t, uint64_t *, bus_size_t);

/* write (single) */
static inline void tc_mem_write_1(void *, bus_space_handle_t, bus_size_t,
		    uint8_t);
static inline void tc_mem_write_2(void *, bus_space_handle_t, bus_size_t,
		    uint16_t);
static inline void tc_mem_write_4(void *, bus_space_handle_t, bus_size_t,
		    uint32_t);
static inline void tc_mem_write_8(void *, bus_space_handle_t, bus_size_t,
		    uint64_t);

/* write multiple */
static void	tc_mem_write_multi_1(void *, bus_space_handle_t,
		    bus_size_t, const uint8_t *, bus_size_t);
static void	tc_mem_write_multi_2(void *, bus_space_handle_t,
		    bus_size_t, const uint16_t *, bus_size_t);
static void	tc_mem_write_multi_4(void *, bus_space_handle_t,
		    bus_size_t, const uint32_t *, bus_size_t);
static void	tc_mem_write_multi_8(void *, bus_space_handle_t,
		    bus_size_t, const uint64_t *, bus_size_t);

/* write region */
static void	tc_mem_write_region_1(void *, bus_space_handle_t,
		    bus_size_t, const uint8_t *, bus_size_t);
static void	tc_mem_write_region_2(void *, bus_space_handle_t,
		    bus_size_t, const uint16_t *, bus_size_t);
static void	tc_mem_write_region_4(void *, bus_space_handle_t,
		    bus_size_t, const uint32_t *, bus_size_t);
static void	tc_mem_write_region_8(void *, bus_space_handle_t,
		    bus_size_t, const uint64_t *, bus_size_t);

/* set multiple */
static void	tc_mem_set_multi_1(void *, bus_space_handle_t,
		    bus_size_t, uint8_t, bus_size_t);
static void	tc_mem_set_multi_2(void *, bus_space_handle_t,
		    bus_size_t, uint16_t, bus_size_t);
static void	tc_mem_set_multi_4(void *, bus_space_handle_t,
		    bus_size_t, uint32_t, bus_size_t);
static void	tc_mem_set_multi_8(void *, bus_space_handle_t,
		    bus_size_t, uint64_t, bus_size_t);

/* set region */
static void	tc_mem_set_region_1(void *, bus_space_handle_t,
		    bus_size_t, uint8_t, bus_size_t);
static void	tc_mem_set_region_2(void *, bus_space_handle_t,
		    bus_size_t, uint16_t, bus_size_t);
static void	tc_mem_set_region_4(void *, bus_space_handle_t,
		    bus_size_t, uint32_t, bus_size_t);
static void	tc_mem_set_region_8(void *, bus_space_handle_t,
		    bus_size_t, uint64_t, bus_size_t);

/* copy */
static void	tc_mem_copy_region_1(void *, bus_space_handle_t,
		    bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t);
static void	tc_mem_copy_region_2(void *, bus_space_handle_t,
		    bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t);
static void	tc_mem_copy_region_4(void *, bus_space_handle_t,
		    bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t);
static void	tc_mem_copy_region_8(void *, bus_space_handle_t,
		    bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t);

static struct alpha_bus_space tc_mem_space = {
	/* cookie */
	NULL,

	/* mapping/unmapping */
	tc_mem_map,
	tc_mem_unmap,
	tc_mem_subregion,

	tc_mem_translate,
	tc_mem_get_window,

	/* allocation/deallocation */
	tc_mem_alloc,
	tc_mem_free,

	/* get kernel virtual address */
	tc_mem_vaddr,

	/* mmap for user */
	tc_mem_mmap,

	/* barrier */
	tc_mem_barrier,

	/* read (single) */
	tc_mem_read_1,
	tc_mem_read_2,
	tc_mem_read_4,
	tc_mem_read_8,

	/* read multiple */
	tc_mem_read_multi_1,
	tc_mem_read_multi_2,
	tc_mem_read_multi_4,
	tc_mem_read_multi_8,

	/* read region */
	tc_mem_read_region_1,
	tc_mem_read_region_2,
	tc_mem_read_region_4,
	tc_mem_read_region_8,

	/* write (single) */
	tc_mem_write_1,
	tc_mem_write_2,
	tc_mem_write_4,
	tc_mem_write_8,

	/* write multiple */
	tc_mem_write_multi_1,
	tc_mem_write_multi_2,
	tc_mem_write_multi_4,
	tc_mem_write_multi_8,

	/* write region */
	tc_mem_write_region_1,
	tc_mem_write_region_2,
	tc_mem_write_region_4,
	tc_mem_write_region_8,

	/* set multiple */
	tc_mem_set_multi_1,
	tc_mem_set_multi_2,
	tc_mem_set_multi_4,
	tc_mem_set_multi_8,

	/* set region */
	tc_mem_set_region_1,
	tc_mem_set_region_2,
	tc_mem_set_region_4,
	tc_mem_set_region_8,

	/* copy */
	tc_mem_copy_region_1,
	tc_mem_copy_region_2,
	tc_mem_copy_region_4,
	tc_mem_copy_region_8,
};

bus_space_tag_t
tc_bus_mem_init(void *memv)
{
	bus_space_tag_t h = &tc_mem_space;

	h->abs_cookie = memv;
	return (h);
}

/* ARGSUSED */
static int
tc_mem_translate(void *v, bus_addr_t memaddr, bus_size_t memlen, int flags, struct alpha_bus_space_translation *abst)
{

	return (EOPNOTSUPP);
}

/* ARGSUSED */
static int
tc_mem_get_window(void *v, int window, struct alpha_bus_space_translation *abst)
{

	return (EOPNOTSUPP);
}

/* ARGSUSED */
static int
tc_mem_map(void *v, bus_addr_t memaddr, bus_size_t memsize, int flags, bus_space_handle_t *memhp, int acct)
{
	int cacheable = flags & BUS_SPACE_MAP_CACHEABLE;
	int linear = flags & BUS_SPACE_MAP_LINEAR;

	/* Requests for linear uncacheable space can't be satisfied. */
	if (linear && !cacheable)
		return (EOPNOTSUPP);

	if (memaddr & 0x7)
		panic("%s: need 8 byte alignment", __func__);
	if (cacheable)
		*memhp = ALPHA_PHYS_TO_K0SEG(memaddr);
	else
		*memhp = ALPHA_PHYS_TO_K0SEG(TC_DENSE_TO_SPARSE(memaddr));
	return (0);
}

/* ARGSUSED */
static void
tc_mem_unmap(void *v, bus_space_handle_t memh, bus_size_t memsize, int acct)
{

	/* XXX XX XXX nothing to do. */
}

static int
tc_mem_subregion(void *v, bus_space_handle_t memh, bus_size_t offset, bus_size_t size, bus_space_handle_t *nmemh)
{

	/* Disallow subregioning that would make the handle unaligned. */
	if ((offset & 0x7) != 0)
		return (1);

	if ((memh & TC_SPACE_SPARSE) != 0)
		*nmemh = memh + (offset << 1);
	else
		*nmemh = memh + offset;

	return (0);
}

static int
tc_mem_alloc(void *v, bus_addr_t rstart, bus_addr_t rend, bus_size_t size, bus_size_t align, bus_size_t boundary, int flags, bus_addr_t *addrp, bus_space_handle_t *bshp)
{

	/* XXX XXX XXX XXX XXX XXX */
	panic("%s: unimplemented", __func__);
}

static void
tc_mem_free(void *v, bus_space_handle_t bsh, bus_size_t size)
{

	/* XXX XXX XXX XXX XXX XXX */
	panic("%s: unimplemented", __func__);
}

static void *
tc_mem_vaddr(void *v, bus_space_handle_t bsh)
{
#ifdef DIAGNOSTIC
	if ((bsh & TC_SPACE_SPARSE) != 0) {
		/*
		 * tc_mem_map() catches linear && !cacheable,
		 * so we shouldn't come here
		 */
		panic("%s: can't do sparse", __func__);
	}
#endif
	return ((void *)bsh);
}

static paddr_t
tc_mem_mmap(void *v, bus_addr_t addr, off_t off, int prot, int flags)
{
	int linear = flags & BUS_SPACE_MAP_LINEAR;
	bus_addr_t rv;

	if (linear)
		rv = addr + off;
	else
		rv = TC_DENSE_TO_SPARSE(addr + off);

	return (alpha_btop(rv));
}

static inline void
tc_mem_barrier(void *v, bus_space_handle_t h, bus_size_t o, bus_size_t l, int f)
{

	if ((f & BUS_SPACE_BARRIER_READ) != 0)
		alpha_mb();
	else if ((f & BUS_SPACE_BARRIER_WRITE) != 0)
		alpha_wmb();
}

/*
 * https://web-docs.gsi.de/~kraemer/COLLECTION/DEC/d3syspmb.pdf
 * http://h20565.www2.hpe.com/hpsc/doc/public/display?docId=emr_na-c04623255
 */
#define TC_SPARSE_PTR(memh, off) \
    ((void *)((memh) + ((off & ((bus_size_t)-1 << 2)) << 1)))

static inline uint8_t
tc_mem_read_1(void *v, bus_space_handle_t memh, bus_size_t off)
{

	alpha_mb();		/* XXX XXX XXX */

	if ((memh & TC_SPACE_SPARSE) != 0) {
		volatile uint32_t *p;

		p = TC_SPARSE_PTR(memh, off);
		return ((*p >> ((off & 3) << 3)) & 0xff);
	} else {
		volatile uint8_t *p;

		p = (uint8_t *)(memh + off);
		return (*p);
	}
}

static inline uint16_t
tc_mem_read_2(void *v, bus_space_handle_t memh, bus_size_t off)
{

	alpha_mb();		/* XXX XXX XXX */

	if ((memh & TC_SPACE_SPARSE) != 0) {
		volatile uint32_t *p;

		p = TC_SPARSE_PTR(memh, off);
		return ((*p >> ((off & 2) << 3)) & 0xffff);
	} else {
		volatile uint16_t *p;

		p = (uint16_t *)(memh + off);
		return (*p);
	}
}

static inline uint32_t
tc_mem_read_4(void *v, bus_space_handle_t memh, bus_size_t off)
{
	volatile uint32_t *p;

	alpha_mb();		/* XXX XXX XXX */

	if ((memh & TC_SPACE_SPARSE) != 0)
		/* Nothing special to do for 4-byte sparse space accesses */
		p = (uint32_t *)(memh + (off << 1));
	else
		/*
		 * LDL to a dense space address always results in two
		 * TURBOchannel I/O read transactions to consecutive longword
		 * addresses. Use caution in dense space if the option has
		 * registers with read side effects.
		 */
		p = (uint32_t *)(memh + off);
	return (*p);
}

static inline uint64_t
tc_mem_read_8(void *v, bus_space_handle_t memh, bus_size_t off)
{
	volatile uint64_t *p;

	alpha_mb();		/* XXX XXX XXX */

	if ((memh & TC_SPACE_SPARSE) != 0)
		panic("%s: not implemented for sparse space", __func__);

	p = (uint64_t *)(memh + off);
	return (*p);
}

#define	tc_mem_read_multi_N(BYTES,TYPE)					\
static void								\
__C(tc_mem_read_multi_,BYTES)(						\
	void *v,							\
	bus_space_handle_t h,						\
	bus_size_t o,							\
	TYPE *a,							\
	bus_size_t c)							\
{									\
									\
	while (c-- > 0) {						\
		tc_mem_barrier(v, h, o, sizeof *a, BUS_SPACE_BARRIER_READ); \
		*a++ = __C(tc_mem_read_,BYTES)(v, h, o);		\
	}								\
}
tc_mem_read_multi_N(1,uint8_t)
tc_mem_read_multi_N(2,uint16_t)
tc_mem_read_multi_N(4,uint32_t)
tc_mem_read_multi_N(8,uint64_t)

#define	tc_mem_read_region_N(BYTES,TYPE)				\
static void								\
__C(tc_mem_read_region_,BYTES)(						\
	void *v,							\
	bus_space_handle_t h,						\
	bus_size_t o,							\
	TYPE *a,							\
	bus_size_t c)							\
{									\
									\
	while (c-- > 0) {						\
		*a++ = __C(tc_mem_read_,BYTES)(v, h, o);		\
		o += sizeof *a;						\
	}								\
}
tc_mem_read_region_N(1,uint8_t)
tc_mem_read_region_N(2,uint16_t)
tc_mem_read_region_N(4,uint32_t)
tc_mem_read_region_N(8,uint64_t)

#define TC_SPARSE_WR_PVAL(msk, b, v) \
    ((UINT64_C(msk) << (32 + (b))) | ((uint64_t)(v) << ((b) << 3)))

static inline void
tc_mem_write_1(void *v, bus_space_handle_t memh, bus_size_t off, uint8_t val)
{

	if ((memh & TC_SPACE_SPARSE) != 0) {
		volatile uint64_t *p;

		p = TC_SPARSE_PTR(memh, off);
		*p = TC_SPARSE_WR_PVAL(0x1, off & 3, val);
	} else
		panic("%s: not implemented for dense space", __func__);

	alpha_mb();		/* XXX XXX XXX */
}

static inline void
tc_mem_write_2(void *v, bus_space_handle_t memh, bus_size_t off, uint16_t val)
{

	if ((memh & TC_SPACE_SPARSE) != 0) {
		volatile uint64_t *p;

		p = TC_SPARSE_PTR(memh, off);
		*p = TC_SPARSE_WR_PVAL(0x3, off & 2, val);
	} else
		panic("%s: not implemented for dense space", __func__);

	alpha_mb();		/* XXX XXX XXX */
}

static inline void
tc_mem_write_4(void *v, bus_space_handle_t memh, bus_size_t off, uint32_t val)
{
	volatile uint32_t *p;

	if ((memh & TC_SPACE_SPARSE) != 0)
		/* Nothing special to do for 4-byte sparse space accesses */
		p = (uint32_t *)(memh + (off << 1));
	else
		p = (uint32_t *)(memh + off);
	*p = val;

	alpha_mb();		/* XXX XXX XXX */
}

static inline void
tc_mem_write_8(void *v, bus_space_handle_t memh, bus_size_t off, uint64_t val)
{
	volatile uint64_t *p;

	if ((memh & TC_SPACE_SPARSE) != 0)
		panic("%s: not implemented for sparse space", __func__);

	p = (uint64_t *)(memh + off);
	*p = val;

	alpha_mb();		/* XXX XXX XXX */
}

#define	tc_mem_write_multi_N(BYTES,TYPE)				\
static void								\
__C(tc_mem_write_multi_,BYTES)(						\
	void *v,							\
	bus_space_handle_t h,						\
	bus_size_t o,							\
	const TYPE *a,							\
	bus_size_t c)							\
{									\
									\
	while (c-- > 0) {						\
		__C(tc_mem_write_,BYTES)(v, h, o, *a++);		\
		tc_mem_barrier(v, h, o, sizeof *a, BUS_SPACE_BARRIER_WRITE); \
	}								\
}
tc_mem_write_multi_N(1,uint8_t)
tc_mem_write_multi_N(2,uint16_t)
tc_mem_write_multi_N(4,uint32_t)
tc_mem_write_multi_N(8,uint64_t)

#define	tc_mem_write_region_N(BYTES,TYPE)				\
static void								\
__C(tc_mem_write_region_,BYTES)(					\
	void *v,							\
	bus_space_handle_t h,						\
	bus_size_t o,							\
	const TYPE *a,							\
	bus_size_t c)							\
{									\
									\
	while (c-- > 0) {						\
		__C(tc_mem_write_,BYTES)(v, h, o, *a++);		\
		o += sizeof *a;						\
	}								\
}
tc_mem_write_region_N(1,uint8_t)
tc_mem_write_region_N(2,uint16_t)
tc_mem_write_region_N(4,uint32_t)
tc_mem_write_region_N(8,uint64_t)

#define	tc_mem_set_multi_N(BYTES,TYPE)					\
static void								\
__C(tc_mem_set_multi_,BYTES)(						\
	void *v,							\
	bus_space_handle_t h,						\
	bus_size_t o,							\
	TYPE val,							\
	bus_size_t c)							\
{									\
									\
	while (c-- > 0) {						\
		__C(tc_mem_write_,BYTES)(v, h, o, val);			\
		tc_mem_barrier(v, h, o, sizeof val, BUS_SPACE_BARRIER_WRITE); \
	}								\
}
tc_mem_set_multi_N(1,uint8_t)
tc_mem_set_multi_N(2,uint16_t)
tc_mem_set_multi_N(4,uint32_t)
tc_mem_set_multi_N(8,uint64_t)

#define	tc_mem_set_region_N(BYTES,TYPE)					\
static void								\
__C(tc_mem_set_region_,BYTES)(						\
	void *v,							\
	bus_space_handle_t h,						\
	bus_size_t o,							\
	TYPE val,							\
	bus_size_t c)							\
{									\
									\
	while (c-- > 0) {						\
		__C(tc_mem_write_,BYTES)(v, h, o, val);			\
		o += sizeof val;					\
	}								\
}
tc_mem_set_region_N(1,uint8_t)
tc_mem_set_region_N(2,uint16_t)
tc_mem_set_region_N(4,uint32_t)
tc_mem_set_region_N(8,uint64_t)

#define	tc_mem_copy_region_N(BYTES)					\
static void								\
__C(tc_mem_copy_region_,BYTES)(						\
	void *v,							\
	bus_space_handle_t h1,						\
	bus_size_t o1,							\
	bus_space_handle_t h2,						\
	bus_size_t o2,							\
	bus_size_t c)							\
{									\
	bus_size_t o;							\
									\
	if ((h1 & TC_SPACE_SPARSE) != 0 &&				\
	    (h2 & TC_SPACE_SPARSE) != 0) {				\
		memmove((void *)(h2 + o2), (void *)(h1 + o1), c * BYTES); \
		return;							\
	}								\
									\
	if (h1 + o1 >= h2 + o2)						\
		/* src after dest: copy forward */			\
		for (o = 0; c > 0; c--, o += BYTES)			\
			__C(tc_mem_write_,BYTES)(v, h2, o2 + o,		\
			    __C(tc_mem_read_,BYTES)(v, h1, o1 + o));	\
	else								\
		/* dest after src: copy backwards */			\
		for (o = (c - 1) * BYTES; c > 0; c--, o -= BYTES)	\
			__C(tc_mem_write_,BYTES)(v, h2, o2 + o,		\
			    __C(tc_mem_read_,BYTES)(v, h1, o1 + o));	\
}
tc_mem_copy_region_N(1)
tc_mem_copy_region_N(2)
tc_mem_copy_region_N(4)
tc_mem_copy_region_N(8)