Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/*	$NetBSD: ucbsnd.c,v 1.26 2020/11/21 21:23:48 thorpej Exp $ */

/*-
 * Copyright (c) 2000 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by UCHIYAMA Yasushi.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Device driver for PHILIPS UCB1200 Advanced modem/audio analog front-end
 *	Audio codec part.
 *
 * /dev/ucbsnd0 : sampling rate 22.154kHz monoral 16bit straight PCM device.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ucbsnd.c,v 1.26 2020/11/21 21:23:48 thorpej Exp $");

#include "opt_use_poll.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/endian.h>
#include <sys/bus.h>
#include <sys/intr.h>

#include <mips/locore.h>
#include <mips/cache.h>

#include <hpcmips/tx/tx39var.h>
#include <hpcmips/tx/tx39sibvar.h>
#include <hpcmips/tx/tx39sibreg.h>
#include <hpcmips/tx/tx39icureg.h>
#include <hpcmips/tx/txsnd.h>

#include <hpcmips/dev/ucb1200var.h>
#include <hpcmips/dev/ucb1200reg.h>

#define AUDIOUNIT(x)		(minor(x)&0x0f)
#define AUDIODEV(x)		(minor(x)&0xf0)

#ifdef UCBSNDDEBUG
int	ucbsnd_debug = 1;
#define	DPRINTF(arg) if (ucbsnd_debug) printf arg;
#define	DPRINTFN(n, arg) if (ucbsnd_debug > (n)) printf arg;
#else
#define	DPRINTF(arg)
#define DPRINTFN(n, arg)
#endif

#define UCBSND_BUFBLOCK		5
/*
 * XXX temporary DMA buffer
 */
static u_int8_t dmabuf_static[TX39_SIBDMA_SIZE * UCBSND_BUFBLOCK] __attribute__((__aligned__(16))); /* XXX */
static size_t	dmabufcnt_static[UCBSND_BUFBLOCK]; /* XXX */

enum ucbsnd_state {
/* 0 */	UCBSND_IDLE,
/* 1 */	UCBSND_INIT,
/* 2 */ UCBSND_ENABLE_SAMPLERATE,
/* 3 */ UCBSND_ENABLE_OUTPUTPATH,
/* 4 */ UCBSND_ENABLE_SETVOLUME,
/* 5 */ UCBSND_ENABLE_SPEAKER0,
/* 6 */ UCBSND_ENABLE_SPEAKER1,
/* 7 */ UCBSND_TRANSITION_PIO,
/* 8 */ UCBSND_PIO,
/* 9 */ UCBSND_TRANSITION_DISABLE,
/*10 */ UCBSND_DISABLE_OUTPUTPATH,
/*11 */ UCBSND_DISABLE_SPEAKER0,
/*12 */ UCBSND_DISABLE_SPEAKER1,
/*13 */	UCBSND_DISABLE_SIB,
/*14 */ UCBSND_DMASTART,
/*15 */ UCBSND_DMAEND,
};

struct ring_buf {
	u_int32_t rb_buf;	/* buffer start address */
	size_t	*rb_bufcnt;	/* effective data count (max rb_blksize)*/

	size_t	rb_bufsize;	/* total amount of buffer */
	int	rb_blksize;	/* DMA block size */
	int	rb_maxblks;	/* # of blocks in ring */

	int	rb_inp;		/* start of input (to buffer) */
	int	rb_outp;	/* output pointer */
};

struct ucbsnd_softc {
	device_t		sc_dev;
	device_t		sc_sib; /* parent (TX39 SIB module) */
	device_t		sc_ucb; /* parent (UCB1200 module) */
	tx_chipset_tag_t	sc_tc;

	struct	tx_sound_tag	sc_tag;
	int			sc_mute;

	/* 
	 *  audio codec state machine 
	 */
	int		sa_transfer_mode;
#define UCBSND_TRANSFERMODE_DMA		0
#define UCBSND_TRANSFERMODE_PIO		1
	enum ucbsnd_state sa_state;
	int		sa_snd_attenuation;
#define UCBSND_DEFAULT_ATTENUATION	0	/* Full volume */
	int		sa_snd_rate; /* passed down from SIB module */
	int		sa_tel_rate;
	void*		sa_sf0ih;
	void*		sa_sndih;
	int		sa_retry;
	int		sa_cnt; /* misc counter */

	/*
	 *  input buffer
	 */
	size_t		sa_dmacnt;
	struct ring_buf sc_rb;
};

int	ucbsnd_match(device_t, cfdata_t, void *);
void	ucbsnd_attach(device_t, device_t, void *);

int	ucbsnd_exec_output(void *);
int	ucbsnd_busy(void *);

void	ucbsnd_sound_init(struct ucbsnd_softc *);
void	__ucbsnd_sound_click(tx_sound_tag_t);
void	__ucbsnd_sound_mute(tx_sound_tag_t, int);

int	ucbsndwrite_subr(struct ucbsnd_softc *, u_int32_t *, size_t,
	    struct uio *);

int	ringbuf_allocate(struct ring_buf *, size_t, int);
void	ringbuf_deallocate(struct ring_buf *);
void	ringbuf_reset(struct ring_buf *);
int	ringbuf_full(struct ring_buf *);
void	*ringbuf_producer_get(struct ring_buf *);
void	ringbuf_producer_return(struct ring_buf *, size_t);
void	*ringbuf_consumer_get(struct ring_buf *, size_t *);
void	ringbuf_consumer_return(struct ring_buf *);

CFATTACH_DECL_NEW(ucbsnd, sizeof(struct ucbsnd_softc),
    ucbsnd_match, ucbsnd_attach, NULL, NULL);

dev_type_open(ucbsndopen);
dev_type_close(ucbsndclose);
dev_type_read(ucbsndread);
dev_type_write(ucbsndwrite);

const struct cdevsw ucbsnd_cdevsw = {
	.d_open = ucbsndopen,
	.d_close = ucbsndclose,
	.d_read = ucbsndread,
	.d_write = ucbsndwrite,
	.d_ioctl = nullioctl,
	.d_stop = nostop,
	.d_tty = notty,
	.d_poll = nopoll,
	.d_mmap = nommap,
	.d_kqfilter = nokqfilter,
	.d_discard = nodiscard,
	.d_flag = 0
};

int
ucbsnd_match(device_t parent, cfdata_t cf, void *aux)
{

	return (1);
}

void
ucbsnd_attach(device_t parent, device_t self, void *aux)
{
	struct ucb1200_attach_args *ucba = aux;
	struct ucbsnd_softc *sc = device_private(self);
	tx_chipset_tag_t tc;

	sc->sc_dev = self;
	tc = sc->sc_tc = ucba->ucba_tc;
	sc->sc_sib = ucba->ucba_sib;
	sc->sc_ucb = ucba->ucba_ucb;

	/* register sound functions */
	ucbsnd_sound_init(sc);

	sc->sa_snd_rate = ucba->ucba_snd_rate;
	sc->sa_tel_rate = ucba->ucba_tel_rate;

	sc->sa_snd_attenuation = UCBSND_DEFAULT_ATTENUATION;
#define KHZ(a) ((a) / 1000), (((a) % 1000))
	printf(": audio %d.%03d kHz telecom %d.%03d kHz",
	    KHZ((tx39sib_clock(sc->sc_sib) * 2) / 
		(sc->sa_snd_rate * 64)), 
	    KHZ((tx39sib_clock(sc->sc_sib) * 2) / 
		(sc->sa_tel_rate * 64)));

	ucb1200_state_install(parent, ucbsnd_busy, self, 
	    UCB1200_SND_MODULE);
	
	ringbuf_allocate(&sc->sc_rb, TX39_SIBDMA_SIZE, UCBSND_BUFBLOCK);

	printf("\n");
}

int
ucbsnd_busy(void *arg)
{
	struct ucbsnd_softc *sc = arg;
	
	return (sc->sa_state != UCBSND_IDLE);
}

int
ucbsnd_exec_output(void *arg)
{
	struct ucbsnd_softc *sc = arg;	
	tx_chipset_tag_t tc = sc->sc_tc;
	txreg_t reg;
	u_int32_t *buf;
	size_t bufcnt;

	switch (sc->sa_state) {
	default:
		panic("ucbsnd_exec_output: invalid state %d", sc->sa_state);
		/* NOTREACHED */
		break;

	case UCBSND_IDLE:
		/* nothing to do */
		return (0);

	case UCBSND_INIT:
		sc->sa_sf0ih = tx_intr_establish(
			tc, MAKEINTR(1, TX39_INTRSTATUS1_SIBSF0INT),
			IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc);

		sc->sa_state = UCBSND_ENABLE_SAMPLERATE;
		return (0);
		
	case UCBSND_ENABLE_SAMPLERATE:
		/* Enable UCB1200 side sample rate */
		reg = TX39_SIBSF0_WRITE;
		reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLA_REG);
		reg = TX39_SIBSF0_REGDATA_SET(reg, sc->sa_snd_rate);
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);
		
		sc->sa_state = UCBSND_ENABLE_OUTPUTPATH;
		return (0);
		
	case UCBSND_ENABLE_OUTPUTPATH:
		/* Enable UCB1200 side */
		reg = TX39_SIBSF0_WRITE;
		reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLB_REG);
		reg = TX39_SIBSF0_REGDATA_SET(reg, sc->sa_snd_attenuation |
		    UCB1200_AUDIOCTRLB_OUTEN);
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);

		/* Enable SIB side */
		reg = tx_conf_read(tc, TX39_SIBCTRL_REG);	
		tx_conf_write(tc, TX39_SIBCTRL_REG, 
		    reg | TX39_SIBCTRL_ENSND);

		sc->sa_state = UCBSND_ENABLE_SPEAKER0;
		sc->sa_retry = 10;
		return (0);
	case UCBSND_ENABLE_SPEAKER0:
		/* Speaker on */

		reg = TX39_SIBSF0_REGADDR_SET(0, UCB1200_IO_DATA_REG);
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);

		sc->sa_state = UCBSND_ENABLE_SPEAKER1;
		return (0);

	case UCBSND_ENABLE_SPEAKER1:
		reg = tx_conf_read(tc, TX39_SIBSF0STAT_REG);
		if ((TX39_SIBSF0_REGADDR(reg) != UCB1200_IO_DATA_REG) && 
		    --sc->sa_retry > 0) {

			sc->sa_state = UCBSND_ENABLE_SPEAKER0;
			return (0);
		}
		
		if (sc->sa_retry <= 0) {
			printf("ucbsnd_exec_output: subframe0 busy\n");
			
			sc->sa_state = UCBSND_IDLE;
			return (0);
		}

		reg |= TX39_SIBSF0_WRITE;		
		reg |= UCB1200_IO_DATA_SPEAKER;
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);

		/*
		 * Begin to transfer.
		 */
		switch (sc->sa_transfer_mode) {
		case UCBSND_TRANSFERMODE_DMA:
			sc->sa_state = UCBSND_DMASTART;
			sc->sa_dmacnt = 0;
			break;
		case UCBSND_TRANSFERMODE_PIO:
			sc->sa_state = UCBSND_TRANSITION_PIO;
			break;
		}

		return (0);
	case UCBSND_DMASTART:
		/* get data */
		if (sc->sa_dmacnt) /* return previous buffer */
			ringbuf_consumer_return(&sc->sc_rb);
		buf = ringbuf_consumer_get(&sc->sc_rb, &bufcnt);
		if (buf == 0) {
			sc->sa_state = UCBSND_DMAEND;
			return (0);
		}

		if (sc->sa_dmacnt == 0) {
			/* change interrupt source */
			if (sc->sa_sf0ih) {
				tx_intr_disestablish(tc, sc->sa_sf0ih);
				sc->sa_sf0ih = 0;
			}
			sc->sa_sndih = tx_intr_establish(
				tc, MAKEINTR(1, TX39_INTRSTATUS1_SND1_0INT),
				IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc);
		} else {
			wakeup(&sc->sc_rb);
		}

		/* set DMA buffer address */
		tx_conf_write(tc, TX39_SIBSNDTXSTART_REG,
		    MIPS_KSEG0_TO_PHYS(buf));

		/* set DMA buffer size */
		tx_conf_write(tc, TX39_SIBSIZE_REG,
		    TX39_SIBSIZE_SNDSIZE_SET(0, bufcnt));
				      
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, TX39_SIBSF0_SNDVALID);

		/* kick DMA */
		reg = tx_conf_read(tc, TX39_SIBDMACTRL_REG);
		reg |= TX39_SIBDMACTRL_ENDMATXSND;
		tx_conf_write(tc, TX39_SIBDMACTRL_REG, reg);

		/* set next */
		sc->sa_dmacnt += bufcnt;

		break;

	case UCBSND_DMAEND:
		sc->sa_state = UCBSND_TRANSITION_DISABLE;
		break;
	case UCBSND_TRANSITION_PIO:
		/* change interrupt source */
		if (sc->sa_sf0ih) {
			tx_intr_disestablish(tc, sc->sa_sf0ih);
			sc->sa_sf0ih = 0;
		}
		sc->sa_sndih = tx_intr_establish(
			tc, MAKEINTR(1, TX39_INTRSTATUS1_SNDININT),
			IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc);

		sc->sa_state = UCBSND_PIO;
		sc->sa_cnt = 0;
		return (0);

	case UCBSND_PIO:
	{
		/* PIO test routine */
		int dummy_data = sc->sa_cnt * 3;
		tx_conf_write(tc, TX39_SIBSNDHOLD_REG, 
		    dummy_data << 16 | dummy_data);
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, TX39_SIBSF0_SNDVALID);
		if (sc->sa_cnt++ > 50) {
			sc->sa_state = UCBSND_TRANSITION_DISABLE;
		}
		return (0);
	}
	case UCBSND_TRANSITION_DISABLE:
		/* change interrupt source */
		if (sc->sa_sndih) {
			tx_intr_disestablish(tc, sc->sa_sndih);
			sc->sa_sndih = 0;
		}
		sc->sa_sf0ih = tx_intr_establish(
			tc, MAKEINTR(1, TX39_INTRSTATUS1_SIBSF0INT),
			IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc);
		
		sc->sa_state = UCBSND_DISABLE_OUTPUTPATH;
		return (0);
	
	case UCBSND_DISABLE_OUTPUTPATH:
		/* disable codec output path and mute */
		reg = TX39_SIBSF0_WRITE;
		reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLB_REG);
		reg = TX39_SIBSF0_REGDATA_SET(reg, UCB1200_AUDIOCTRLB_MUTE);
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);

		sc->sa_state = UCBSND_DISABLE_SPEAKER0;
		sc->sa_retry = 10;
		return (0);

	case UCBSND_DISABLE_SPEAKER0:
		/* Speaker off */
		reg = TX39_SIBSF0_REGADDR_SET(0, UCB1200_IO_DATA_REG);
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);

		sc->sa_state = UCBSND_DISABLE_SPEAKER1;
		return (0);
		
	case UCBSND_DISABLE_SPEAKER1:
		reg = tx_conf_read(tc, TX39_SIBSF0STAT_REG);
		if ((TX39_SIBSF0_REGADDR(reg) != UCB1200_IO_DATA_REG) && 
		    --sc->sa_retry > 0) {

			sc->sa_state = UCBSND_DISABLE_SPEAKER0;
			return (0);
		}
		
		if (sc->sa_retry <= 0) {
			printf("ucbsnd_exec_output: subframe0 busy\n");

			sc->sa_state = UCBSND_IDLE;
			return (0);
		}

		reg |= TX39_SIBSF0_WRITE;
		reg &= ~UCB1200_IO_DATA_SPEAKER;
		tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);

		sc->sa_state = UCBSND_DISABLE_SIB;
		return (0);

	case UCBSND_DISABLE_SIB:
		/* Disable SIB side */
		reg = tx_conf_read(tc, TX39_SIBCTRL_REG);	
		reg &= ~TX39_SIBCTRL_ENSND;
		tx_conf_write(tc, TX39_SIBCTRL_REG, reg);
		
		/* end audio disable sequence */
		if (sc->sa_sf0ih) {
			tx_intr_disestablish(tc, sc->sa_sf0ih);
			sc->sa_sf0ih = 0;
		}
		sc->sa_state = UCBSND_IDLE;

		return (0);
	}

	return (0);
}

/*
 * global sound interface.
 */
void
ucbsnd_sound_init(struct ucbsnd_softc *sc)
{
	tx_sound_tag_t ts = &sc->sc_tag;
	tx_chipset_tag_t tc = sc->sc_tc;

	ts->ts_v = sc;
	ts->ts_click	= __ucbsnd_sound_click;
	ts->ts_mute	= __ucbsnd_sound_mute;

	tx_conf_register_sound(tc, ts);
}

void
__ucbsnd_sound_click(tx_sound_tag_t arg)
{
	struct ucbsnd_softc *sc = (void*)arg;
	
	if (!sc->sc_mute && sc->sa_state == UCBSND_IDLE) {
		sc->sa_transfer_mode = UCBSND_TRANSFERMODE_PIO;
		sc->sa_state = UCBSND_INIT;
		ucbsnd_exec_output((void*)sc);
	}
}

void
__ucbsnd_sound_mute(tx_sound_tag_t arg, int onoff)
{
	struct ucbsnd_softc *sc = (void*)arg;

	sc->sc_mute = onoff;
}

/*
 * device access
 */
extern struct cfdriver ucbsnd_cd;

int
ucbsndopen(dev_t dev, int flags, int ifmt, struct lwp *l)
{
	int unit = AUDIOUNIT(dev);
	struct ucbsnd_softc *sc;
	int s;
	
	sc = device_lookup_private(&ucbsnd_cd, unit);
	if (sc == NULL)
		return (ENXIO);
	
	s = splvm();
	ringbuf_reset(&sc->sc_rb);
	splx(s);

	return (0);
}

int
ucbsndclose(dev_t dev, int flags, int ifmt, struct lwp *l)
{
	int unit = AUDIOUNIT(dev);
	struct ucbsnd_softc *sc;
	
	sc = device_lookup_private(&ucbsnd_cd, unit);
	if (sc == NULL)
		return (ENXIO);

	return (0);
}

int
ucbsndread(dev_t dev, struct uio *uio, int ioflag)
{
	int unit = AUDIOUNIT(dev);
	struct ucbsnd_softc *sc;
	int error = 0;
	
	sc = device_lookup_private(&ucbsnd_cd, unit);
	if (sc == NULL)
		return (ENXIO);
	/* not supported yet */

	return (error);
}

int
ucbsndwrite_subr(struct ucbsnd_softc *sc, u_int32_t *buf, size_t bufsize,
    struct uio *uio)
{
	int i, s, error;

	error = uiomove(buf, bufsize, uio);
	/*
	 * inverse endian for UCB1200
	 */
	for (i = 0; i < bufsize / sizeof(int); i++)
		buf[i] = htobe32(buf[i]);
	mips_dcache_wbinv_range((vaddr_t)buf, bufsize);
	
	ringbuf_producer_return(&sc->sc_rb, bufsize);

	s = splvm();
	if (sc->sa_state == UCBSND_IDLE && ringbuf_full(&sc->sc_rb)) {
		sc->sa_transfer_mode = UCBSND_TRANSFERMODE_DMA;
		sc->sa_state = UCBSND_INIT;
		ucbsnd_exec_output((void*)sc);			
	}
	splx(s);
	
	return (error);
}

int
ucbsndwrite(dev_t dev, struct uio *uio, int ioflag)
{
	int unit = AUDIOUNIT(dev);
	struct ucbsnd_softc *sc;
	int len, error = 0;
	int i, n, s, rest;
	void *buf;
	
	sc = device_lookup_private(&ucbsnd_cd, unit);
	if (sc == NULL)
		return (ENXIO);

	len = uio->uio_resid;
	n = (len + TX39_SIBDMA_SIZE - 1) / TX39_SIBDMA_SIZE;
	rest = len % TX39_SIBDMA_SIZE;
	
	if (rest)
		--n;

	for (i = 0; i < n; i++) {
		while (!(buf = ringbuf_producer_get(&sc->sc_rb))) {
			error = tsleep(&sc->sc_rb, PRIBIO, "ucbsnd", 1000);
			if (error)
				goto errout;
		}

		error = ucbsndwrite_subr(sc, buf, TX39_SIBDMA_SIZE, uio);
		if (error)
			goto out;
	}

	if (rest) {
		while (!(buf = ringbuf_producer_get(&sc->sc_rb))) {
			error = tsleep(&sc->sc_rb, PRIBIO, "ucbsnd", 1000);
			if (error)
				goto errout;
		}
		
		error = ucbsndwrite_subr(sc, buf, rest, uio);
	}

 out:
	return (error);
 errout:
	printf("%s: timeout. reset ring-buffer.\n", device_xname(sc->sc_dev));
	s = splvm();
	ringbuf_reset(&sc->sc_rb);
	splx(s);

	return (error);
}

/*
 * Ring buffer.
 */
int
ringbuf_allocate(struct ring_buf *rb, size_t blksize, int maxblk)
{
	rb->rb_bufsize = blksize * maxblk;
	rb->rb_blksize = blksize;
	rb->rb_maxblks = maxblk;
#if notyet
	rb->rb_buf = (u_int32_t)kmem_alloc(rb->rb_bufsize, KM_SLEEP);
#else
	rb->rb_buf = (u_int32_t)dmabuf_static;
#endif
	if (rb->rb_buf == 0) {
		printf("ringbuf_allocate: can't allocate buffer\n");
		return (1);
	}
	memset((char*)rb->rb_buf, 0, rb->rb_bufsize);
#if notyet
	rb->rb_bufcnt = kmem_alloc(rb->rb_maxblks * sizeof(size_t), KM_SLEEP);
#else
	rb->rb_bufcnt = dmabufcnt_static;
#endif
	if (rb->rb_bufcnt == 0) {
		printf("ringbuf_allocate: can't allocate buffer\n");
		return (1);
	}
	memset((char*)rb->rb_bufcnt, 0, rb->rb_maxblks * sizeof(size_t));

	ringbuf_reset(rb);

	return (0);
}

void
ringbuf_deallocate(struct ring_buf *rb)
{
#if notyet
	kmem_free((void*)rb->rb_buf, rb->rb_bufsize);
	kmem_free(rb->rb_bufcnt, rb->rb_maxblks * sizeof(size_t));
#endif
}

void
ringbuf_reset(struct ring_buf *rb)
{
	rb->rb_outp = 0;
	rb->rb_inp = 0;
}

int
ringbuf_full(struct ring_buf *rb)
{
	int ret;

	ret = rb->rb_outp == rb->rb_maxblks;

	return (ret);
}

void*
ringbuf_producer_get(struct ring_buf *rb)
{
	u_int32_t ret;
	int s;

	s = splvm();
	ret = ringbuf_full(rb) ? 0 : 
	    rb->rb_buf + rb->rb_inp * rb->rb_blksize;
	splx(s);

	return (void *)ret;
}

void
ringbuf_producer_return(struct ring_buf *rb, size_t cnt)
{
	int s;

	assert(cnt <= rb->rb_blksize);

	s = splvm();
	rb->rb_outp++;
	
	rb->rb_bufcnt[rb->rb_inp] = cnt;
	rb->rb_inp = (rb->rb_inp + 1) % rb->rb_maxblks;
	splx(s);
}

void*
ringbuf_consumer_get(struct ring_buf *rb, size_t *cntp)
{
	u_int32_t p;
	int idx;
  
	if (rb->rb_outp == 0)
		return (0);

	idx = (rb->rb_inp - rb->rb_outp + rb->rb_maxblks) % rb->rb_maxblks;

	p = rb->rb_buf + idx * rb->rb_blksize;
	*cntp = rb->rb_bufcnt[idx];

	return (void *)p;
}

void
ringbuf_consumer_return(struct ring_buf *rb)
{

	if (rb->rb_outp > 0)
		rb->rb_outp--;
}