Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
*	$NetBSD: get_op.sa,v 1.5 2022/11/02 20:38:22 andvar Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	get_op.sa 3.6 5/19/92
*
*	get_op.sa 3.5 4/26/91
*
*  Description: This routine is called by the unsupported format/data
* type exception handler ('unsupp' - vector 55) and the unimplemented
* instruction exception handler ('unimp' - vector 11).  'get_op'
* determines the opclass (0, 2, or 3) and branches to the
* opclass handler routine.  See 68881/2 User's Manual table 4-11
* for a description of the opclasses.
*
* For UNSUPPORTED data/format (exception vector 55) and for
* UNIMPLEMENTED instructions (exception vector 11) the following
* applies:
*
* - For unnormormalized numbers (opclass 0, 2, or 3) the
* number(s) is normalized and the operand type tag is updated.
*		
* - For a packed number (opclass 2) the number is unpacked and the
* operand type tag is updated.
*
* - For denormalized numbers (opclass 0 or 2) the number(s) is not
* changed but passed to the next module.  The next module for
* unimp is do_func, the next module for unsupp is res_func.
*
* For UNSUPPORTED data/format (exception vector 55) only the
* following applies:
*
* - If there is a move out with a packed number (opclass 3) the
* number is packed and written to user memory.  For the other
* opclasses the number(s) are written back to the fsave stack
* and the instruction is then restored back into the '040.  The
* '040 is then able to complete the instruction.
*
* For example:
* fadd.x fpm,fpn where the fpm contains an unnormalized number.
* The '040 takes an unsupported data trap and gets to this
* routine.  The number is normalized, put back on the stack and
* then an frestore is done to restore the instruction back into
* the '040.  The '040 then re-executes the fadd.x fpm,fpn with
* a normalized number in the source and the instruction is
* successful.
*		
* Next consider if in the process of normalizing the un-
* normalized number it becomes a denormalized number.  The
* routine which converts the unnorm to a norm (called mk_norm)
* detects this and tags the number as a denorm.  The routine
* res_func sees the denorm tag and converts the denorm to a
* norm.  The instruction is then restored back into the '040
* which re_executess the instruction.
*

GET_OP    IDNT    2,1 Motorola 040 Floating Point Software Package

	section	8

	include	fpsp.h

	xdef	PIRN,PIRZRM,PIRP
	xdef	SMALRN,SMALRZRM,SMALRP
	xdef	BIGRN,BIGRZRM,BIGRP

PIRN:
	dc.l $40000000,$c90fdaa2,$2168c235    ;pi
PIRZRM:
	dc.l $40000000,$c90fdaa2,$2168c234    ;pi
PIRP:
	dc.l $40000000,$c90fdaa2,$2168c235    ;pi

*round to nearest
SMALRN:
	dc.l $3ffd0000,$9a209a84,$fbcff798    ;log10(2)
	dc.l $40000000,$adf85458,$a2bb4a9a    ;e
	dc.l $3fff0000,$b8aa3b29,$5c17f0bc    ;log2(e)
	dc.l $3ffd0000,$de5bd8a9,$37287195    ;log10(e)
	dc.l $00000000,$00000000,$00000000    ;0.0
* round to zero;round to negative infinity
SMALRZRM:
	dc.l $3ffd0000,$9a209a84,$fbcff798    ;log10(2)
	dc.l $40000000,$adf85458,$a2bb4a9a    ;e
	dc.l $3fff0000,$b8aa3b29,$5c17f0bb    ;log2(e)
	dc.l $3ffd0000,$de5bd8a9,$37287195    ;log10(e)
	dc.l $00000000,$00000000,$00000000    ;0.0
* round to positive infinity
SMALRP:
	dc.l $3ffd0000,$9a209a84,$fbcff799    ;log10(2)
	dc.l $40000000,$adf85458,$a2bb4a9b    ;e
	dc.l $3fff0000,$b8aa3b29,$5c17f0bc    ;log2(e)
	dc.l $3ffd0000,$de5bd8a9,$37287195    ;log10(e)
	dc.l $00000000,$00000000,$00000000    ;0.0

*round to nearest
BIGRN:
	dc.l $3ffe0000,$b17217f7,$d1cf79ac    ;ln(2)
	dc.l $40000000,$935d8ddd,$aaa8ac17    ;ln(10)
	dc.l $3fff0000,$80000000,$00000000    ;10 ^ 0

	xdef	PTENRN
PTENRN:
	dc.l $40020000,$A0000000,$00000000    ;10 ^ 1
	dc.l $40050000,$C8000000,$00000000    ;10 ^ 2
	dc.l $400C0000,$9C400000,$00000000    ;10 ^ 4
	dc.l $40190000,$BEBC2000,$00000000    ;10 ^ 8
	dc.l $40340000,$8E1BC9BF,$04000000    ;10 ^ 16
	dc.l $40690000,$9DC5ADA8,$2B70B59E    ;10 ^ 32
	dc.l $40D30000,$C2781F49,$FFCFA6D5    ;10 ^ 64
	dc.l $41A80000,$93BA47C9,$80E98CE0    ;10 ^ 128
	dc.l $43510000,$AA7EEBFB,$9DF9DE8E    ;10 ^ 256
	dc.l $46A30000,$E319A0AE,$A60E91C7    ;10 ^ 512
	dc.l $4D480000,$C9767586,$81750C17    ;10 ^ 1024
	dc.l $5A920000,$9E8B3B5D,$C53D5DE5    ;10 ^ 2048
	dc.l $75250000,$C4605202,$8A20979B    ;10 ^ 4096
*round to minus infinity
BIGRZRM:
	dc.l $3ffe0000,$b17217f7,$d1cf79ab    ;ln(2)
	dc.l $40000000,$935d8ddd,$aaa8ac16    ;ln(10)
	dc.l $3fff0000,$80000000,$00000000    ;10 ^ 0

	xdef	PTENRM
PTENRM:
	dc.l $40020000,$A0000000,$00000000    ;10 ^ 1
	dc.l $40050000,$C8000000,$00000000    ;10 ^ 2
	dc.l $400C0000,$9C400000,$00000000    ;10 ^ 4
	dc.l $40190000,$BEBC2000,$00000000    ;10 ^ 8
	dc.l $40340000,$8E1BC9BF,$04000000    ;10 ^ 16
	dc.l $40690000,$9DC5ADA8,$2B70B59D    ;10 ^ 32
	dc.l $40D30000,$C2781F49,$FFCFA6D5    ;10 ^ 64
	dc.l $41A80000,$93BA47C9,$80E98CDF    ;10 ^ 128
	dc.l $43510000,$AA7EEBFB,$9DF9DE8D    ;10 ^ 256
	dc.l $46A30000,$E319A0AE,$A60E91C6    ;10 ^ 512
	dc.l $4D480000,$C9767586,$81750C17    ;10 ^ 1024
	dc.l $5A920000,$9E8B3B5D,$C53D5DE5    ;10 ^ 2048
	dc.l $75250000,$C4605202,$8A20979A    ;10 ^ 4096
*round to positive infinity
BIGRP:
	dc.l $3ffe0000,$b17217f7,$d1cf79ac    ;ln(2)
	dc.l $40000000,$935d8ddd,$aaa8ac17    ;ln(10)
	dc.l $3fff0000,$80000000,$00000000    ;10 ^ 0

	xdef	PTENRP
PTENRP:
	dc.l $40020000,$A0000000,$00000000    ;10 ^ 1
	dc.l $40050000,$C8000000,$00000000    ;10 ^ 2
	dc.l $400C0000,$9C400000,$00000000    ;10 ^ 4
	dc.l $40190000,$BEBC2000,$00000000    ;10 ^ 8
	dc.l $40340000,$8E1BC9BF,$04000000    ;10 ^ 16
	dc.l $40690000,$9DC5ADA8,$2B70B59E    ;10 ^ 32
	dc.l $40D30000,$C2781F49,$FFCFA6D6    ;10 ^ 64
	dc.l $41A80000,$93BA47C9,$80E98CE0    ;10 ^ 128
	dc.l $43510000,$AA7EEBFB,$9DF9DE8E    ;10 ^ 256
	dc.l $46A30000,$E319A0AE,$A60E91C7    ;10 ^ 512
	dc.l $4D480000,$C9767586,$81750C18    ;10 ^ 1024
	dc.l $5A920000,$9E8B3B5D,$C53D5DE6    ;10 ^ 2048
	dc.l $75250000,$C4605202,$8A20979B    ;10 ^ 4096

	xref	nrm_zero
	xref	decbin
	xref	round

	xdef    get_op
	xdef    uns_getop
	xdef    uni_getop
get_op:
	clr.b	DY_MO_FLG(a6)
	tst.b	UFLG_TMP(a6)	;test flag for unsupp/unimp state
	beq.b	short_uni_getop

uns_getop:
	btst.b	#direction_bit,CMDREG1B(a6)
	bne.w	opclass3	;branch if a fmove out (any kind)
	btst.b	#6,CMDREG1B(a6)
	beq.b	uns_notpacked

	bfextu	CMDREG1B(a6){3:3},d0
	cmp.b	#3,d0
	beq.w	pack_source	;check for a packed src op, branch if so
uns_notpacked:
	bsr	chk_dy_mo	;set the dyadic/monadic flag
	tst.b	DY_MO_FLG(a6)
	beq.b	src_op_ck	;if monadic, go check src op
*				;else, check dst op (fall through)

	btst.b	#7,DTAG(a6)
	beq.b	src_op_ck	;if dst op is norm, check src op
	bra.b	dst_ex_dnrm	;else, handle destination unnorm/dnrm

uni_getop:
short_uni_getop:
	bfextu	CMDREG1B(a6){0:6},d0 ;get opclass and src fields
	cmpi.l	#$17,d0		;if op class and size fields are $17, 
*				;it is FMOVECR; if not, continue
*
* If the instruction is fmovecr, exit get_op.  It is handled
* in do_func and smovecr.sa.
*
	bne.w	not_fmovecr	;handle fmovecr as an unimplemented inst
	rts

not_fmovecr:
	btst.b	#E1,E_BYTE(a6)	;if set, there is a packed operand
	bne.w	pack_source	;check for packed src op, branch if so

* The following lines of are coded to optimize on normalized operands
	move.b	STAG(a6),d0
	or.b	DTAG(a6),d0	;check if either of STAG/DTAG msb set
	bmi.b	dest_op_ck	;if so, some op needs to be fixed
	rts

dest_op_ck:
	btst.b	#7,DTAG(a6)	;check for unsupported data types in
	beq.b	src_op_ck	;the destination, if not, check src op
	bsr	chk_dy_mo	;set dyadic/monadic flag
	tst.b	DY_MO_FLG(a6)	;
	beq.b	src_op_ck	;if monadic, check src op
*
* At this point, destination has an extended denorm or unnorm.
*
dst_ex_dnrm:
	move.w	FPTEMP_EX(a6),d0 ;get destination exponent
	andi.w	#$7fff,d0	;mask sign, check if exp = 0000
	beq.b	src_op_ck	;if denorm then check source op.
*				;denorms are taken care of in res_func 
*				;(unsupp) or do_func (unimp)
*				;else unnorm fall through
	lea.l	FPTEMP(a6),a0	;point a0 to dop - used in mk_norm
	bsr	mk_norm		;go normalize - mk_norm returns:
*				;L_SCR1{7:5} = operand tag 
*				;	(000 = norm, 100 = denorm)
*				;L_SCR1{4} = fpte15 or ete15 
*				;	0 = exp >  $3fff
*				;	1 = exp <= $3fff
*				;and puts the normalized num back 
*				;on the fsave stack
*
	move.b L_SCR1(a6),DTAG(a6) ;write the new tag & fpte15 
*				;to the fsave stack and fall 
*				;through to check source operand
*
src_op_ck:
	btst.b	#7,STAG(a6)
	beq.w	end_getop	;check for unsupported data types on the
*				;source operand
	btst.b	#5,STAG(a6)
	bne.b	src_sd_dnrm	;if bit 5 set, handle sgl/dbl denorms
*
* At this point only unnorms or extended denorms are possible.
*
src_ex_dnrm:
	move.w	ETEMP_EX(a6),d0 ;get source exponent
	andi.w	#$7fff,d0	;mask sign, check if exp = 0000
	beq.w	end_getop	;if denorm then exit, denorms are 
*				;handled in do_func
	lea.l	ETEMP(a6),a0	;point a0 to sop - used in mk_norm
	bsr	mk_norm		;go normalize - mk_norm returns:
*				;L_SCR1{7:5} = operand tag 
*				;	(000 = norm, 100 = denorm)
*				;L_SCR1{4} = fpte15 or ete15 
*				;	0 = exp >  $3fff
*				;	1 = exp <= $3fff
*				;and puts the normalized num back 
*				;on the fsave stack
*
	move.b	L_SCR1(a6),STAG(a6) ;write the new tag & ete15 
	rts			;end_getop

*
* At this point, only single or double denorms are possible.
* If the inst is not fmove, normalize the source.  If it is,
* do nothing to the input.
*
src_sd_dnrm:
	btst.b	#4,CMDREG1B(a6)	;differentiate between sgl/dbl denorm
	bne.b	is_double
is_single:
	move.w	#$3f81,d1	;write bias for sgl denorm
	bra.b	common		;goto the common code
is_double:
	move.w	#$3c01,d1	;write the bias for a dbl denorm
common:
	btst.b	#sign_bit,ETEMP_EX(a6) ;grab sign bit of mantissa
	beq.b	pos	
	bset	#15,d1		;set sign bit because it is negative
pos:
	move.w	d1,ETEMP_EX(a6)
*				;put exponent on stack

	move.w	CMDREG1B(a6),d1
	and.w	#$e3ff,d1	;clear out source specifier
	or.w	#$0800,d1	;set source specifier to extended prec
	move.w	d1,CMDREG1B(a6)	;write back to the command word in stack
*				;this is needed to fix unsupp data stack
	lea.l	ETEMP(a6),a0	;point a0 to sop
	
	bsr	mk_norm		;convert sgl/dbl denorm to norm
	move.b	L_SCR1(a6),STAG(a6) ;put tag into source tag reg - d0
	rts			;end_getop
*
* At this point, the source is definitely packed, whether
* instruction is dyadic or monadic is still unknown
*
pack_source:
	move.l	FPTEMP_LO(a6),ETEMP(a6)	;write ms part of packed 
*				;number to etemp slot
	bsr	chk_dy_mo	;set dyadic/monadic flag
	bsr	unpack

	tst.b	DY_MO_FLG(a6)
	beq.b	end_getop	;if monadic, exit
*				;else, fix FPTEMP
pack_dya:
	bfextu	CMDREG1B(a6){6:3},d0 ;extract dest fp reg
	move.l	#7,d1
	sub.l	d0,d1
	clr.l	d0
	bset.l	d1,d0		;set up d0 as a dynamic register mask
	fmovem.x d0,FPTEMP(a6)	;write to FPTEMP

	btst.b	#7,DTAG(a6)	;check dest tag for unnorm or denorm
	bne.w	dst_ex_dnrm	;else, handle the unnorm or ext denorm
*
* Dest is not denormalized.  Check for norm, and set fpte15 
* accordingly.
*
	move.b	DTAG(a6),d0
	andi.b	#$f0,d0		;strip to only dtag:fpte15
	tst.b	d0		;check for normalized value
	bne.b	end_getop	;if inf/nan/zero leave get_op
	move.w	FPTEMP_EX(a6),d0
	andi.w	#$7fff,d0
	cmpi.w	#$3fff,d0	;check if fpte15 needs setting
	bge.b	end_getop	;if >= $3fff, leave fpte15=0
	or.b	#$10,DTAG(a6)
	bra.b	end_getop

*
* At this point, it is either an fmoveout packed, unnorm or denorm
*
opclass3:
	clr.b	DY_MO_FLG(a6)	;set dyadic/monadic flag to monadic
	bfextu	CMDREG1B(a6){4:2},d0
	cmpi.b	#3,d0
	bne.w	src_ex_dnrm	;if not equal, must be unnorm or denorm
*				;else it is a packed move out
*				;exit
end_getop:
	rts

*
* Sets the DY_MO_FLG correctly. This is used only on if it is an
* unsupported data type exception.  Set if dyadic.
*
chk_dy_mo:
	move.w	CMDREG1B(a6),d0	
	btst.l	#5,d0		;testing extension command word
	beq.b	set_mon		;if bit 5 = 0 then monadic
	btst.l	#4,d0		;know that bit 5 = 1
	beq.b	set_dya		;if bit 4 = 0 then dyadic
	andi.w	#$007f,d0	;get rid of all but extension bits {6:0}
	cmpi.w 	#$0038,d0	;if extension = $38 then fcmp (dyadic)
	bne.b	set_mon
set_dya:
	st.b	DY_MO_FLG(a6)	;set the inst flag type to dyadic
	rts
set_mon:
	clr.b	DY_MO_FLG(a6)	;set the inst flag type to monadic
	rts
*
*	MK_NORM
*
* Normalizes unnormalized numbers, sets tag to norm or denorm, sets unfl
* exception if denorm.
*
* CASE opclass 0x0 unsupp
*	mk_norm till msb set
*	set tag = norm
*
* CASE opclass 0x0 unimp
*	mk_norm till msb set or exp = 0
*	if integer bit = 0
*	   tag = denorm
*	else
*	   tag = norm
*
* CASE opclass 011 unsupp
*	mk_norm till msb set or exp = 0
*	if integer bit = 0
*	   tag = denorm
*	   set unfl_nmcexe = 1
*	else
*	   tag = norm
*
* if exp <= $3fff
*   set ete15 or fpte15 = 1
* else set ete15 or fpte15 = 0

* input:
*	a0 = points to operand to be normalized
* output:
*	L_SCR1{7:5} = operand tag (000 = norm, 100 = denorm)
*	L_SCR1{4}   = fpte15 or ete15 (0 = exp > $3fff, 1 = exp <=$3fff)
*	the normalized operand is placed back on the fsave stack
mk_norm:	
	clr.l	L_SCR1(a6)
	bclr.b	#sign_bit,LOCAL_EX(a0)
	sne	LOCAL_SGN(a0)	;transform into internal extended format

	cmpi.b	#$2c,1+EXC_VEC(a6) ;check if unimp
	bne.b	uns_data	;branch if unsupp
	bsr	uni_inst	;call if unimp (opclass 0x0)
	bra.b	reload
uns_data:
	btst.b	#direction_bit,CMDREG1B(a6) ;check transfer direction
	bne.b	bit_set		;branch if set (opclass 011)
	bsr	uns_opx		;call if opclass 0x0
	bra.b	reload
bit_set:
	bsr	uns_op3		;opclass 011
reload:
	cmp.w	#$3fff,LOCAL_EX(a0) ;if exp > $3fff
	bgt.b	end_mk		;   fpte15/ete15 already set to 0
	bset.b	#4,L_SCR1(a6)	;else set fpte15/ete15 to 1
*				;calling routine actually sets the 
*				;value on the stack (along with the 
*				;tag), since this routine doesn't 
*				;know if it should set ete15 or fpte15
*				;ie, it doesn't know if this is the 
*				;src op or dest op.
end_mk:
	bfclr	LOCAL_SGN(a0){0:8}
	beq.b	end_mk_pos
	bset.b	#sign_bit,LOCAL_EX(a0) ;convert back to IEEE format
end_mk_pos:
	rts
*
*     CASE opclass 011 unsupp
*
uns_op3:
	bsr	nrm_zero	;normalize till msb = 1 or exp = zero
	btst.b	#7,LOCAL_HI(a0)	;if msb = 1
	bne.b	no_unfl		;then branch
set_unfl:
	or.b	#dnrm_tag,L_SCR1(a6) ;set denorm tag
	bset.b	#unfl_bit,FPSR_EXCEPT(a6) ;set unfl exception bit
no_unfl:
	rts
*
*     CASE opclass 0x0 unsupp
*
uns_opx:
	bsr	nrm_zero	;normalize the number
	btst.b	#7,LOCAL_HI(a0)	;check if integer bit (j-bit) is set 
	beq.b	uns_den		;if clear then now have a denorm
uns_nrm:
	or.b	#norm_tag,L_SCR1(a6) ;set tag to norm
	rts
uns_den:
	or.b	#dnrm_tag,L_SCR1(a6) ;set tag to denorm
	rts
*
*     CASE opclass 0x0 unimp
*
uni_inst:
	bsr	nrm_zero
	btst.b	#7,LOCAL_HI(a0)	;check if integer bit (j-bit) is set 
	beq.b	uni_den		;if clear then now have a denorm
uni_nrm:
	or.b	#norm_tag,L_SCR1(a6) ;set tag to norm
	rts
uni_den:
	or.b	#dnrm_tag,L_SCR1(a6) ;set tag to denorm
	rts

*
*	Decimal to binary conversion
*
* Special cases of inf and NaNs are completed outside of decbin.  
* If the input is an snan, the snan bit is not set.
* 
* input:
*	ETEMP(a6)	- points to packed decimal string in memory
* output:
*	fp0	- contains packed string converted to extended precision
*	ETEMP	- same as fp0
unpack:
	move.w	CMDREG1B(a6),d0	;examine command word, looking for fmove's
	and.w	#$3b,d0
	beq	move_unpack	;special handling for fmove: must set FPSR_CC

	move.w	ETEMP(a6),d0	;get word with inf information
	bfextu	d0{20:12},d1	;get exponent into d1
	cmpi.w	#$0fff,d1	;test for inf or NaN
	bne.b	try_zero	;if not equal, it is not special
	bfextu	d0{17:3},d1	;get SE and y bits into d1
	cmpi.w	#7,d1		;SE and y bits must be on for special
	bne.b	try_zero	;if not on, it is not special
*input is of the special cases of inf and NaN
	tst.l	ETEMP_HI(a6)	;check ms mantissa
	bne.b	fix_nan		;if non-zero, it is a NaN
	tst.l	ETEMP_LO(a6)	;check ls mantissa
	bne.b	fix_nan		;if non-zero, it is a NaN
	bra.w	finish		;special already on stack
fix_nan:
	btst.b	#signan_bit,ETEMP_HI(a6) ;test for snan
	bne.w	finish
	or.l	#snaniop_mask,USER_FPSR(a6) ;always set snan if it is so
	bra.w	finish
try_zero:
	move.w	ETEMP_EX+2(a6),d0 ;get word 4
	andi.w	#$000f,d0	;clear all but last ni(y)bble
	tst.w	d0		;check for zero.
	bne.w	not_spec
	tst.l	ETEMP_HI(a6)	;check words 3 and 2
	bne.w	not_spec
	tst.l	ETEMP_LO(a6)	;check words 1 and 0
	bne.w	not_spec
	tst.l	ETEMP(a6)	;test sign of the zero
	bge.b	pos_zero
	move.l	#$80000000,ETEMP(a6) ;write neg zero to etemp
	clr.l	ETEMP_HI(a6)
	clr.l	ETEMP_LO(a6)
	bra.w	finish
pos_zero:
	clr.l	ETEMP(a6)
	clr.l	ETEMP_HI(a6)
	clr.l	ETEMP_LO(a6)
	bra.w	finish

not_spec:
	fmovem.x fp0-fp1,-(a7)	;save fp0 - decbin returns in it
	bsr	decbin
	fmove.x fp0,ETEMP(a6)	;put the unpacked sop in the fsave stack
	fmovem.x (a7)+,fp0-fp1
	fmove.l	#0,FPSR		;clr fpsr from decbin
	bra	finish

*
* Special handling for packed move in:  Same results as all other
* packed cases, but we must set the FPSR condition codes properly.
*
move_unpack:
	move.w	ETEMP(a6),d0	;get word with inf information
	bfextu	d0{20:12},d1	;get exponent into d1
	cmpi.w	#$0fff,d1	;test for inf or NaN
	bne.b	mtry_zero	;if not equal, it is not special
	bfextu	d0{17:3},d1	;get SE and y bits into d1
	cmpi.w	#7,d1		;SE and y bits must be on for special
	bne.b	mtry_zero	;if not on, it is not special
*input is of the special cases of inf and NaN
	tst.l	ETEMP_HI(a6)	;check ms mantissa
	bne.b	mfix_nan		;if non-zero, it is a NaN
	tst.l	ETEMP_LO(a6)	;check ls mantissa
	bne.b	mfix_nan		;if non-zero, it is a NaN
*input is inf
	or.l	#inf_mask,USER_FPSR(a6) ;set I bit
	tst.l	ETEMP(a6)	;check sign
	bge.w	finish
	or.l	#neg_mask,USER_FPSR(a6) ;set N bit
	bra.w	finish		;special already on stack
mfix_nan:
	or.l	#nan_mask,USER_FPSR(a6) ;set NaN bit
	move.b	#nan_tag,STAG(a6)	;set stag to NaN
	btst.b	#signan_bit,ETEMP_HI(a6) ;test for snan
	bne.b	mn_snan
	or.l	#snaniop_mask,USER_FPSR(a6) ;set snan bit
	btst.b	#snan_bit,FPCR_ENABLE(a6) ;test for snan enabled
	bne.b	mn_snan
	bset.b	#signan_bit,ETEMP_HI(a6) ;force snans to qnans
mn_snan:
	tst.l	ETEMP(a6)	;check for sign
	bge.w	finish		;if clr, go on
	or.l	#neg_mask,USER_FPSR(a6) ;set N bit
	bra.w	finish

mtry_zero:
	move.w	ETEMP_EX+2(a6),d0 ;get word 4
	andi.w	#$000f,d0	;clear all but last ni(y)bble
	tst.w	d0		;check for zero.
	bne.b	mnot_spec
	tst.l	ETEMP_HI(a6)	;check words 3 and 2
	bne.b	mnot_spec
	tst.l	ETEMP_LO(a6)	;check words 1 and 0
	bne.b	mnot_spec
	tst.l	ETEMP(a6)	;test sign of the zero
	bge.b	mpos_zero
	or.l	#neg_mask+z_mask,USER_FPSR(a6) ;set N and Z
	move.l	#$80000000,ETEMP(a6) ;write neg zero to etemp
	clr.l	ETEMP_HI(a6)
	clr.l	ETEMP_LO(a6)
	bra.b	finish
mpos_zero:
	or.l	#z_mask,USER_FPSR(a6) ;set Z
	clr.l	ETEMP(a6)
	clr.l	ETEMP_HI(a6)
	clr.l	ETEMP_LO(a6)
	bra.b	finish

mnot_spec:
	fmovem.x fp0-fp1,-(a7)	;save fp0 ,fp1 - decbin returns in fp0
	bsr	decbin
	fmove.x fp0,ETEMP(a6)
*				;put the unpacked sop in the fsave stack
	fmovem.x (a7)+,fp0-fp1

finish:
	move.w	CMDREG1B(a6),d0	;get the command word
	and.w	#$fbff,d0	;change the source specifier field to 
*				;extended (was packed).
	move.w	d0,CMDREG1B(a6)	;write command word back to fsave stack
*				;we need to do this so the 040 will 
*				;re-execute the inst. without taking 
*				;another packed trap.

fix_stag:
*Converted result is now in etemp on fsave stack, now set the source 
*tag (stag) 
*	if (ete =$7fff) then INF or NAN
*		if (etemp = $x.0----0) then
*			stag = INF
*		else
*			stag = NAN
*	else
*		if (ete = $0000) then
*			stag = ZERO
*		else
*			stag = NORM
*
* Note also that the etemp_15 bit (just right of the stag) must
* be set accordingly.  
*
	move.w		ETEMP_EX(a6),d1
	andi.w		#$7fff,d1   ;strip sign
	cmp.w  		#$7fff,d1
	bne.b  		z_or_nrm
	move.l		ETEMP_HI(a6),d1
	bne.b		is_nan
	move.l		ETEMP_LO(a6),d1
	bne.b		is_nan
is_inf:
	move.b		#$40,STAG(a6)
	move.l		#$40,d0
	rts
is_nan:
	move.b		#$60,STAG(a6)
	move.l		#$60,d0
	rts
z_or_nrm:
	tst.w		d1  
	bne.b		is_nrm
is_zro:
* For a zero, set etemp_15
	move.b		#$30,STAG(a6)
	move.l		#$20,d0
	rts
is_nrm:
* For a norm, check if the exp <= $3fff; if so, set etemp_15
	cmpi.w		#$3fff,d1
	ble.b		set_bit15
	clr.b		STAG(a6)
	bra.b		end_is_nrm
set_bit15:
	move.b		#$10,STAG(a6)
end_is_nrm:
	clr.l		d0
end_fix:
	rts
 
end_get:
	rts
	end