Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
*	$NetBSD: srem_mod.sa,v 1.3 1994/10/26 07:49:58 cgd Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	srem_mod.sa 3.1 12/10/90
*
*      The entry point sMOD computes the floating point MOD of the
*      input values X and Y. The entry point sREM computes the floating
*      point (IEEE) REM of the input values X and Y.
*
*      INPUT
*      -----
*      Double-extended value Y is pointed to by address in register
*      A0. Double-extended value X is located in -12(A0). The values
*      of X and Y are both nonzero and finite; although either or both
*      of them can be denormalized. The special cases of zeros, NaNs,
*      and infinities are handled elsewhere.
*
*      OUTPUT
*      ------
*      FREM(X,Y) or FMOD(X,Y), depending on entry point.
*
*       ALGORITHM
*       ---------
*
*       Step 1.  Save and strip signs of X and Y: signX := sign(X),
*                signY := sign(Y), X := |X|, Y := |Y|, 
*                signQ := signX EOR signY. Record whether MOD or REM
*                is requested.
*
*       Step 2.  Set L := expo(X)-expo(Y), k := 0, Q := 0.
*                If (L < 0) then
*                   R := X, go to Step 4.
*                else
*                   R := 2^(-L)X, j := L.
*                endif
*
*       Step 3.  Perform MOD(X,Y)
*            3.1 If R = Y, go to Step 9.
*            3.2 If R > Y, then { R := R - Y, Q := Q + 1}
*            3.3 If j = 0, go to Step 4.
*            3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to
*                Step 3.1.
*
*       Step 4.  At this point, R = X - QY = MOD(X,Y). Set
*                Last_Subtract := false (used in Step 7 below). If
*                MOD is requested, go to Step 6. 
*
*       Step 5.  R = MOD(X,Y), but REM(X,Y) is requested.
*            5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to
*                Step 6.
*            5.2 If R > Y/2, then { set Last_Subtract := true,
*                Q := Q + 1, Y := signY*Y }. Go to Step 6.
*            5.3 This is the tricky case of R = Y/2. If Q is odd,
*                then { Q := Q + 1, signX := -signX }.
*
*       Step 6.  R := signX*R.
*
*       Step 7.  If Last_Subtract = true, R := R - Y.
*
*       Step 8.  Return signQ, last 7 bits of Q, and R as required.
*
*       Step 9.  At this point, R = 2^(-j)*X - Q Y = Y. Thus,
*                X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1),
*                R := 0. Return signQ, last 7 bits of Q, and R.
*                

SREM_MOD    IDNT    2,1 Motorola 040 Floating Point Software Package

	section    8

	include	fpsp.h

Mod_Flag  equ	L_SCR3
SignY     equ	FP_SCR3+4
SignX     equ	FP_SCR3+8
SignQ     equ	FP_SCR3+12
Sc_Flag   equ	FP_SCR4

Y         equ	FP_SCR1
Y_Hi      equ	Y+4
Y_Lo      equ	Y+8

R         equ	FP_SCR2
R_Hi      equ	R+4
R_Lo      equ	R+8


Scale     DC.L	$00010000,$80000000,$00000000,$00000000

	xref	t_avoid_unsupp

        xdef        smod
smod:

   Clr.L                Mod_Flag(a6)
   BRA.B                Mod_Rem

        xdef        srem
srem:

   Move.L               #1,Mod_Flag(a6)

Mod_Rem:
*..Save sign of X and Y
   MoveM.L              D2-D7,-(A7)     ...save data registers
   Move.W               (A0),D3
   Move.W               D3,SignY(a6)
   AndI.L               #$00007FFF,D3   ...Y := |Y|

*
   Move.L               4(A0),D4
   Move.L               8(A0),D5        ...(D3,D4,D5) is |Y|

   Tst.L                D3
   BNE.B                Y_Normal

   Move.L               #$00003FFE,D3	...$3FFD + 1
   Tst.L                D4
   BNE.B                HiY_not0

HiY_0:
   Move.L               D5,D4
   CLR.L                D5
   SubI.L               #32,D3
   CLR.L                D6
   BFFFO                D4{0:32},D6
   LSL.L                D6,D4
   Sub.L                D6,D3           ...(D3,D4,D5) is normalized
*                                       ...with bias $7FFD
   BRA.B                Chk_X

HiY_not0:
   CLR.L                D6
   BFFFO                D4{0:32},D6
   Sub.L                D6,D3
   LSL.L                D6,D4
   Move.L               D5,D7           ...a copy of D5
   LSL.L                D6,D5
   Neg.L                D6
   AddI.L               #32,D6
   LSR.L                D6,D7
   Or.L                 D7,D4           ...(D3,D4,D5) normalized
*                                       ...with bias $7FFD
   BRA.B                Chk_X

Y_Normal:
   AddI.L               #$00003FFE,D3   ...(D3,D4,D5) normalized
*                                       ...with bias $7FFD

Chk_X:
   Move.W               -12(A0),D0
   Move.W               D0,SignX(a6)
   Move.W               SignY(a6),D1
   EOr.L                D0,D1
   AndI.L               #$00008000,D1
   Move.W               D1,SignQ(a6)	...sign(Q) obtained
   AndI.L               #$00007FFF,D0
   Move.L               -8(A0),D1
   Move.L               -4(A0),D2       ...(D0,D1,D2) is |X|
   Tst.L                D0
   BNE.B                X_Normal
   Move.L               #$00003FFE,D0
   Tst.L                D1
   BNE.B                HiX_not0

HiX_0:
   Move.L               D2,D1
   CLR.L                D2
   SubI.L               #32,D0
   CLR.L                D6
   BFFFO                D1{0:32},D6
   LSL.L                D6,D1
   Sub.L                D6,D0           ...(D0,D1,D2) is normalized
*                                       ...with bias $7FFD
   BRA.B                Init

HiX_not0:
   CLR.L                D6
   BFFFO                D1{0:32},D6
   Sub.L                D6,D0
   LSL.L                D6,D1
   Move.L               D2,D7           ...a copy of D2
   LSL.L                D6,D2
   Neg.L                D6
   AddI.L               #32,D6
   LSR.L                D6,D7
   Or.L                 D7,D1           ...(D0,D1,D2) normalized
*                                       ...with bias $7FFD
   BRA.B                Init

X_Normal:
   AddI.L               #$00003FFE,D0   ...(D0,D1,D2) normalized
*                                       ...with bias $7FFD

Init:
*
   Move.L               D3,L_SCR1(a6)   ...save biased expo(Y)
   move.l		d0,L_SCR2(a6)	;save d0
   Sub.L                D3,D0           ...L := expo(X)-expo(Y)
*   Move.L               D0,L            ...D0 is j
   CLR.L                D6              ...D6 := carry <- 0
   CLR.L                D3              ...D3 is Q
   MoveA.L              #0,A1           ...A1 is k; j+k=L, Q=0

*..(Carry,D1,D2) is R
   Tst.L                D0
   BGE.B                Mod_Loop

*..expo(X) < expo(Y). Thus X = mod(X,Y)
*
   move.l		L_SCR2(a6),d0	;restore d0
   BRA.W                Get_Mod

*..At this point  R = 2^(-L)X; Q = 0; k = 0; and  k+j = L


Mod_Loop:
   Tst.L                D6              ...test carry bit
   BGT.B                R_GT_Y

*..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
   Cmp.L                D4,D1           ...compare hi(R) and hi(Y)
   BNE.B                R_NE_Y
   Cmp.L                D5,D2           ...compare lo(R) and lo(Y)
   BNE.B                R_NE_Y

*..At this point, R = Y
   BRA.W                Rem_is_0

R_NE_Y:
*..use the borrow of the previous compare
   BCS.B                R_LT_Y          ...borrow is set iff R < Y

R_GT_Y:
*..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
*..and Y < (D1,D2) < 2Y. Either way, perform R - Y
   Sub.L                D5,D2           ...lo(R) - lo(Y)
   SubX.L               D4,D1           ...hi(R) - hi(Y)
   CLR.L                D6              ...clear carry
   AddQ.L               #1,D3           ...Q := Q + 1

R_LT_Y:
*..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
   Tst.L                D0              ...see if j = 0.
   BEQ.B                PostLoop

   Add.L                D3,D3           ...Q := 2Q
   Add.L                D2,D2           ...lo(R) = 2lo(R)
   AddX.L               D1,D1           ...hi(R) = 2hi(R) + carry
   SCS                  D6              ...set Carry if 2(R) overflows
   AddQ.L               #1,A1           ...k := k+1
   SubQ.L               #1,D0           ...j := j - 1
*..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.

   BRA.B                Mod_Loop

PostLoop:
*..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.

*..normalize R.
   Move.L               L_SCR1(a6),D0           ...new biased expo of R
   Tst.L                D1
   BNE.B                HiR_not0

HiR_0:
   Move.L               D2,D1
   CLR.L                D2
   SubI.L               #32,D0
   CLR.L                D6
   BFFFO                D1{0:32},D6
   LSL.L                D6,D1
   Sub.L                D6,D0           ...(D0,D1,D2) is normalized
*                                       ...with bias $7FFD
   BRA.B                Get_Mod

HiR_not0:
   CLR.L                D6
   BFFFO                D1{0:32},D6
   BMI.B                Get_Mod         ...already normalized
   Sub.L                D6,D0
   LSL.L                D6,D1
   Move.L               D2,D7           ...a copy of D2
   LSL.L                D6,D2
   Neg.L                D6
   AddI.L               #32,D6
   LSR.L                D6,D7
   Or.L                 D7,D1           ...(D0,D1,D2) normalized

*
Get_Mod:
   CmpI.L		#$000041FE,D0
   BGE.B		No_Scale
Do_Scale:
   Move.W		D0,R(a6)
   clr.w		R+2(a6)
   Move.L		D1,R_Hi(a6)
   Move.L		D2,R_Lo(a6)
   Move.L		L_SCR1(a6),D6
   Move.W		D6,Y(a6)
   clr.w		Y+2(a6)
   Move.L		D4,Y_Hi(a6)
   Move.L		D5,Y_Lo(a6)
   FMove.X		R(a6),fp0		...no exception
   Move.L		#1,Sc_Flag(a6)
   BRA.B		ModOrRem
No_Scale:
   Move.L		D1,R_Hi(a6)
   Move.L		D2,R_Lo(a6)
   SubI.L		#$3FFE,D0
   Move.W		D0,R(a6)
   clr.w		R+2(a6)
   Move.L		L_SCR1(a6),D6
   SubI.L		#$3FFE,D6
   Move.L		D6,L_SCR1(a6)
   FMove.X		R(a6),fp0
   Move.W		D6,Y(a6)
   Move.L		D4,Y_Hi(a6)
   Move.L		D5,Y_Lo(a6)
   Clr.L		Sc_Flag(a6)

*


ModOrRem:
   Move.L               Mod_Flag(a6),D6
   BEQ.B                Fix_Sign

   Move.L               L_SCR1(a6),D6           ...new biased expo(Y)
   SubQ.L               #1,D6           ...biased expo(Y/2)
   Cmp.L                D6,D0
   BLT.B                Fix_Sign
   BGT.B                Last_Sub

   Cmp.L                D4,D1
   BNE.B                Not_EQ
   Cmp.L                D5,D2
   BNE.B                Not_EQ
   BRA.W                Tie_Case

Not_EQ:
   BCS.B                Fix_Sign

Last_Sub:
*
   FSub.X		Y(a6),fp0		...no exceptions
   AddQ.L               #1,D3           ...Q := Q + 1

*

Fix_Sign:
*..Get sign of X
   Move.W               SignX(a6),D6
   BGE.B		Get_Q
   FNeg.X		fp0

*..Get Q
*
Get_Q:
   clr.l		d6		
   Move.W               SignQ(a6),D6        ...D6 is sign(Q)
   Move.L               #8,D7
   LSR.L                D7,D6           
   AndI.L               #$0000007F,D3   ...7 bits of Q
   Or.L                 D6,D3           ...sign and bits of Q
   Swap                 D3
   FMove.L              fpsr,D6
   AndI.L               #$FF00FFFF,D6
   Or.L                 D3,D6
   FMove.L              D6,fpsr         ...put Q in fpsr

*
Restore:
   MoveM.L              (A7)+,D2-D7
   FMove.L              USER_FPCR(a6),fpcr
   Move.L               Sc_Flag(a6),D0
   BEQ.B                Finish
   FMul.X		Scale(pc),fp0	...may cause underflow
   bra			t_avoid_unsupp	;check for denorm as a
*					;result of the scaling

Finish:
	fmove.x		fp0,fp0		;capture exceptions & round
	rts

Rem_is_0:
*..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
   AddQ.L               #1,D3
   CmpI.L               #8,D0           ...D0 is j 
   BGE.B                Q_Big

   LSL.L                D0,D3
   BRA.B                Set_R_0

Q_Big:
   CLR.L                D3

Set_R_0:
   FMove.S		#:00000000,fp0
   Clr.L		Sc_Flag(a6)
   BRA.W                Fix_Sign

Tie_Case:
*..Check parity of Q
   Move.L               D3,D6
   AndI.L               #$00000001,D6
   Tst.L                D6
   BEq.W                Fix_Sign	...Q is even

*..Q is odd, Q := Q + 1, signX := -signX
   AddQ.L               #1,D3
   Move.W               SignX(a6),D6
   EOrI.L               #$00008000,D6
   Move.W               D6,SignX(a6)
   BRA.W                Fix_Sign

   End