/* $NetBSD: pwmregulator.c,v 1.3 2021/01/27 03:10:21 thorpej Exp $ */
/*
* Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pwmregulator.c,v 1.3 2021/01/27 03:10:21 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <dev/fdt/fdtvar.h>
#include <dev/pwm/pwmvar.h>
static int pwmregulator_match(device_t, cfdata_t, void *);
static void pwmregulator_attach(device_t, device_t, void *);
/* fdtbus_regulator_controller_func callback */
static int pwmregulator_acquire(device_t);
static void pwmregulator_release(device_t);
static int pwmregulator_enable(device_t, bool);
static int pwmregulator_set_voltage(device_t, u_int, u_int);
static int pwmregulator_get_voltage(device_t, u_int *);
static const struct fdtbus_regulator_controller_func pwmregulator_funcs = {
.acquire = pwmregulator_acquire,
.release = pwmregulator_release,
.enable = pwmregulator_enable,
.set_voltage = pwmregulator_set_voltage,
.get_voltage = pwmregulator_get_voltage
};
struct voltage_duty {
uint32_t microvolt;
uint32_t duty; /* percentage; 0-100 */
};
struct pwmregulator_softc {
device_t sc_dev;
pwm_tag_t sc_pwm;
struct fdtbus_gpio_pin *sc_pin;
struct voltage_duty *sc_voltage_table;
int sc_voltage_table_num;
int sc_phandle;
uint32_t sc_microvolt_min;
uint32_t sc_microvolt_max;
uint32_t sc_dutycycle_unit;
uint32_t sc_dutycycle_range[2];
bool sc_always_on;
bool sc_boot_on;
};
CFATTACH_DECL_NEW(pregulator, sizeof(struct pwmregulator_softc),
pwmregulator_match, pwmregulator_attach, NULL, NULL);
static const struct device_compatible_entry compat_data[] = {
{ .compat = "pwm-regulator" },
DEVICE_COMPAT_EOL
};
static int
pwmregulator_match(device_t parent, cfdata_t cf, void *aux)
{
const struct fdt_attach_args *faa = aux;
return of_compatible_match(faa->faa_phandle, compat_data);
}
static void
pwmregulator_attach(device_t parent, device_t self, void *aux)
{
struct pwmregulator_softc * const sc = device_private(self);
const struct fdt_attach_args *faa = aux;
const int phandle = faa->faa_phandle;
int len;
char *name;
sc->sc_dev = self;
sc->sc_phandle = phandle;
aprint_naive("\n");
len = OF_getproplen(phandle, "regulator-name");
if (len > 0) {
name = kmem_zalloc(len, KM_SLEEP);
if (OF_getprop(phandle, "regulator-name", name, len) == len)
aprint_normal(": %s\n", name);
else
aprint_normal("\n");
kmem_free(name, len);
} else {
aprint_normal("\n");
}
if (of_getprop_uint32(phandle, "regulator-min-microvolt",
&sc->sc_microvolt_min) != 0) {
aprint_error_dev(sc->sc_dev,
"missing regulator-min-microvolt properties\n");
return;
}
if (of_getprop_uint32(phandle, "regulator-max-microvolt",
&sc->sc_microvolt_max) != 0) {
aprint_error_dev(sc->sc_dev,
"missing regulator-max-microvolt properties\n");
return;
}
if (of_getprop_uint32(phandle, "pwm-dutycycle-unit",
&sc->sc_dutycycle_unit) != 0)
sc->sc_dutycycle_unit = 100;
if (of_getprop_uint32_array(phandle, "pwm-dutycycle-range",
sc->sc_dutycycle_range, 2) != 0) {
sc->sc_dutycycle_range[0] = 0;
sc->sc_dutycycle_range[1] = 100;
}
len = OF_getproplen(phandle, "voltage-table");
if (len > 0) {
struct voltage_duty *voltage_table = kmem_zalloc(len, KM_SLEEP);
if (of_getprop_uint32_array(phandle, "voltage-table",
(uint32_t *)voltage_table, len / sizeof(uint32_t)) == 0) {
sc->sc_voltage_table = voltage_table;
sc->sc_voltage_table_num =
len / sizeof(struct voltage_duty);
#ifdef PWMREGULATOR_DEBUG
for (int i = 0; i < sc->sc_voltage_table_num; i++) {
aprint_debug_dev(sc->sc_dev,
"VoltageTable[%d]: %uuV = Duty:%u%%\n", i,
voltage_table[i].voltage,
voltage_table[i].duty);
}
#endif
/*
* if voltage-table is provided, the duty in the table
* represents a percentage, i.e. 0-100%, so
* dutycycle_unit is 100.
*/
sc->sc_dutycycle_unit = 100;
} else {
kmem_free(sc->sc_voltage_table, len);
}
}
#ifdef PWMREGULATOR_DEBUG
if (sc->sc_voltage_table_num == 0) {
aprint_debug_dev(sc->sc_dev, "Duty:%u%%=%uuV, Duty:%u%%=%uuV\n",
sc->sc_dutycycle_range[0], sc->sc_microvolt_min,
sc->sc_dutycycle_range[1], sc->sc_microvolt_max);
}
#endif
sc->sc_always_on = of_getprop_bool(phandle, "regulator-always-on");
sc->sc_boot_on = of_getprop_bool(phandle, "regulator-boot-on");
fdtbus_register_regulator_controller(self, phandle,
&pwmregulator_funcs);
/*
* If the regulator is flagged as always on or enabled at boot,
* ensure that it is enabled
*/
if (sc->sc_always_on || sc->sc_boot_on)
pwmregulator_enable(self, true);
}
static int
pwmregulator_acquire(device_t dev)
{
struct pwmregulator_softc * const sc = device_private(dev);
/* "enable-gpios" is optional */
sc->sc_pin = fdtbus_gpio_acquire(sc->sc_phandle, "enable-gpios",
GPIO_PIN_OUTPUT);
sc->sc_pwm = fdtbus_pwm_acquire(sc->sc_phandle, "pwms");
if (sc->sc_pwm == NULL)
return ENXIO;
return 0;
}
static void
pwmregulator_release(device_t dev)
{
struct pwmregulator_softc * const sc = device_private(dev);
if (sc->sc_pin != NULL) {
fdtbus_gpio_write(sc->sc_pin, 0);
fdtbus_gpio_release(sc->sc_pin);
}
sc->sc_pwm = NULL;
}
static int
pwmregulator_enable(device_t dev, bool enable)
{
struct pwmregulator_softc * const sc = device_private(dev);
int error;
if (sc->sc_pwm == NULL)
return ENXIO;
if (enable) {
if (sc->sc_pin != NULL)
fdtbus_gpio_write(sc->sc_pin, 1);
error = pwm_enable(sc->sc_pwm);
} else {
error = pwm_disable(sc->sc_pwm);
if (sc->sc_pin != NULL)
fdtbus_gpio_write(sc->sc_pin, 0);
}
return error;
}
static int
pwmregulator_set_voltage(device_t dev, u_int min_uvolt, u_int max_uvolt)
{
struct pwmregulator_softc * const sc = device_private(dev);
struct pwm_config conf;
int duty, d0, d1, v0, v1, uv, rc;
if (sc->sc_pwm == NULL)
return ENXIO;
rc = pwm_get_config(sc->sc_pwm, &conf);
if (rc != 0) {
device_printf(dev, "%s: couldn't get pwm config, error=%d\n",
__func__, rc);
return rc;
}
uv = (min_uvolt + max_uvolt) / 2;
if (sc->sc_voltage_table_num > 0) {
/* find the nearest duty from voltage-table */
int i, bestidx = 0;
for (i = 1; i < sc->sc_voltage_table_num; i++) {
if (abs(sc->sc_voltage_table[i].microvolt - uv) <
abs(sc->sc_voltage_table[bestidx].microvolt - uv))
bestidx = i;
}
duty = sc->sc_voltage_table[bestidx].duty;
} else {
/* calculate duty from voltage */
v0 = sc->sc_microvolt_min;
v1 = sc->sc_microvolt_max;
d0 = sc->sc_dutycycle_range[0];
d1 = sc->sc_dutycycle_range[1];
duty = (uv - v0) * (d1 - d0) / (v1 - v0) + d0;
}
conf.duty_cycle = duty * conf.period / sc->sc_dutycycle_unit;
rc = pwm_set_config(sc->sc_pwm, &conf);
if (rc != 0)
device_printf(dev, "couldn't set pwm config, error=%d\n", rc);
return rc;
}
static int
pwmregulator_get_voltage(device_t dev, u_int *puvolt)
{
struct pwmregulator_softc * const sc = device_private(dev);
struct pwm_config conf;
int duty, d0, d1, v0, v1, uv, rc;
if (sc->sc_pwm == NULL)
return ENXIO;
rc = pwm_get_config(sc->sc_pwm, &conf);
if (rc != 0) {
device_printf(dev, "%s: couldn't get pwm config, error=%d\n",
__func__, rc);
return rc;
}
duty = conf.duty_cycle * sc->sc_dutycycle_unit / conf.period;
if (sc->sc_voltage_table_num > 0) {
/* find the nearest voltage from voltage-table */
int i, bestidx = 0;
for (i = 1; i < sc->sc_voltage_table_num; i++) {
if (abs(sc->sc_voltage_table[i].duty - duty) <
abs(sc->sc_voltage_table[bestidx].duty - duty))
bestidx = i;
}
uv = sc->sc_voltage_table[bestidx].microvolt;
} else {
/* calculate voltage from duty */
d0 = sc->sc_dutycycle_range[0];
d1 = sc->sc_dutycycle_range[1];
v0 = sc->sc_microvolt_min;
v1 = sc->sc_microvolt_max;
uv = (duty - d0) * (v1 - v0) / (d1 - d0) + v0;
}
*puvolt = uv;
return 0;
}