Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/*	$NetBSD: amdgpu_ras_eeprom.c,v 1.4 2021/12/19 12:31:45 riastradh Exp $	*/

/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: amdgpu_ras_eeprom.c,v 1.4 2021/12/19 12:31:45 riastradh Exp $");

#include "amdgpu_ras_eeprom.h"
#include "amdgpu.h"
#include "amdgpu_ras.h"
#include <linux/bits.h>
#include "smu_v11_0_i2c.h"

#include <linux/nbsd-namespace.h>

#define EEPROM_I2C_TARGET_ADDR_ARCTURUS  0xA8
#define EEPROM_I2C_TARGET_ADDR_VEGA20    0xA0

/*
 * The 2 macros bellow represent the actual size in bytes that
 * those entities occupy in the EEPROM memory.
 * EEPROM_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
 * uses uint64 to store 6b fields such as retired_page.
 */
#define EEPROM_TABLE_HEADER_SIZE 20
#define EEPROM_TABLE_RECORD_SIZE 24

#define EEPROM_ADDRESS_SIZE 0x2

/* Table hdr is 'AMDR' */
#define EEPROM_TABLE_HDR_VAL 0x414d4452
#define EEPROM_TABLE_VER 0x00010000

/* Assume 2 Mbit size */
#define EEPROM_SIZE_BYTES 256000
#define EEPROM_PAGE__SIZE_BYTES 256
#define EEPROM_HDR_START 0
#define EEPROM_RECORD_START (EEPROM_HDR_START + EEPROM_TABLE_HEADER_SIZE)
#define EEPROM_MAX_RECORD_NUM ((EEPROM_SIZE_BYTES - EEPROM_TABLE_HEADER_SIZE) / EEPROM_TABLE_RECORD_SIZE)
#define EEPROM_ADDR_MSB_MASK GENMASK(17, 8)

#define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev

static void __encode_table_header_to_buff(struct amdgpu_ras_eeprom_table_header *hdr,
					  unsigned char *buff)
{
	uint32_t *pp = (uint32_t *) buff;

	pp[0] = cpu_to_le32(hdr->header);
	pp[1] = cpu_to_le32(hdr->version);
	pp[2] = cpu_to_le32(hdr->first_rec_offset);
	pp[3] = cpu_to_le32(hdr->tbl_size);
	pp[4] = cpu_to_le32(hdr->checksum);
}

static void __decode_table_header_from_buff(struct amdgpu_ras_eeprom_table_header *hdr,
					  unsigned char *buff)
{
	uint32_t *pp = (uint32_t *)buff;

	hdr->header 	      = le32_to_cpu(pp[0]);
	hdr->version 	      = le32_to_cpu(pp[1]);
	hdr->first_rec_offset = le32_to_cpu(pp[2]);
	hdr->tbl_size 	      = le32_to_cpu(pp[3]);
	hdr->checksum 	      = le32_to_cpu(pp[4]);
}

static int __update_table_header(struct amdgpu_ras_eeprom_control *control,
				 unsigned char *buff)
{
	int ret = 0;
	struct i2c_msg msg = {
			.addr	= 0,
			.flags	= 0,
			.len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
			.buf	= buff,
	};


	*(uint16_t *)buff = EEPROM_HDR_START;
	__encode_table_header_to_buff(&control->tbl_hdr, buff + EEPROM_ADDRESS_SIZE);

	msg.addr = control->i2c_address;

	ret = i2c_transfer(&control->eeprom_accessor, &msg, 1);
	if (ret < 1)
		DRM_ERROR("Failed to write EEPROM table header, ret:%d", ret);

	return ret;
}



static uint32_t  __calc_hdr_byte_sum(struct amdgpu_ras_eeprom_control *control)
{
	int i;
	uint32_t tbl_sum = 0;

	/* Header checksum, skip checksum field in the calculation */
	for (i = 0; i < sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); i++)
		tbl_sum += *(((unsigned char *)&control->tbl_hdr) + i);

	return tbl_sum;
}

static uint32_t  __calc_recs_byte_sum(struct eeprom_table_record *records,
				      int num)
{
	int i, j;
	uint32_t tbl_sum = 0;

	/* Records checksum */
	for (i = 0; i < num; i++) {
		struct eeprom_table_record *record = &records[i];

		for (j = 0; j < sizeof(*record); j++) {
			tbl_sum += *(((unsigned char *)record) + j);
		}
	}

	return tbl_sum;
}

static inline uint32_t  __calc_tbl_byte_sum(struct amdgpu_ras_eeprom_control *control,
				  struct eeprom_table_record *records, int num)
{
	return __calc_hdr_byte_sum(control) + __calc_recs_byte_sum(records, num);
}

/* Checksum = 256 -((sum of all table entries) mod 256) */
static void __update_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
				  struct eeprom_table_record *records, int num,
				  uint32_t old_hdr_byte_sum)
{
	/*
	 * This will update the table sum with new records.
	 *
	 * TODO: What happens when the EEPROM table is to be wrapped around
	 * and old records from start will get overridden.
	 */

	/* need to recalculate updated header byte sum */
	control->tbl_byte_sum -= old_hdr_byte_sum;
	control->tbl_byte_sum += __calc_tbl_byte_sum(control, records, num);

	control->tbl_hdr.checksum = 256 - (control->tbl_byte_sum % 256);
}

/* table sum mod 256 + checksum must equals 256 */
static bool __validate_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
			    struct eeprom_table_record *records, int num)
{
	control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num);

	if (control->tbl_hdr.checksum + (control->tbl_byte_sum % 256) != 256) {
		DRM_WARN("Checksum mismatch, checksum: %u ", control->tbl_hdr.checksum);
		return false;
	}

	return true;
}

int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
{
	unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
	int ret = 0;

	mutex_lock(&control->tbl_mutex);

	hdr->header = EEPROM_TABLE_HDR_VAL;
	hdr->version = EEPROM_TABLE_VER;
	hdr->first_rec_offset = EEPROM_RECORD_START;
	hdr->tbl_size = EEPROM_TABLE_HEADER_SIZE;

	control->tbl_byte_sum = 0;
	__update_tbl_checksum(control, NULL, 0, 0);
	control->next_addr = EEPROM_RECORD_START;

	ret = __update_table_header(control, buff);

	mutex_unlock(&control->tbl_mutex);

	return ret;

}

int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control)
{
	int ret = 0;
	struct amdgpu_device *adev = to_amdgpu_device(control);
	unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
	struct i2c_msg msg = {
			.addr	= 0,
			.flags	= I2C_M_RD,
			.len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
			.buf	= buff,
	};

	mutex_init(&control->tbl_mutex);

	switch (adev->asic_type) {
	case CHIP_VEGA20:
		control->i2c_address = EEPROM_I2C_TARGET_ADDR_VEGA20;
		ret = smu_v11_0_i2c_eeprom_control_init(&control->eeprom_accessor);
		break;

	case CHIP_ARCTURUS:
		control->i2c_address = EEPROM_I2C_TARGET_ADDR_ARCTURUS;
		ret = smu_i2c_eeprom_init(&adev->smu, &control->eeprom_accessor);
		break;

	default:
		return 0;
	}

	if (ret) {
		DRM_ERROR("Failed to init I2C controller, ret:%d", ret);
		return ret;
	}

	msg.addr = control->i2c_address;

	/* Read/Create table header from EEPROM address 0 */
	ret = i2c_transfer(&control->eeprom_accessor, &msg, 1);
	if (ret < 1) {
		DRM_ERROR("Failed to read EEPROM table header, ret:%d", ret);
		return ret;
	}

	__decode_table_header_from_buff(hdr, &buff[2]);

	if (hdr->header == EEPROM_TABLE_HDR_VAL) {
		control->num_recs = (hdr->tbl_size - EEPROM_TABLE_HEADER_SIZE) /
				    EEPROM_TABLE_RECORD_SIZE;
		control->tbl_byte_sum = __calc_hdr_byte_sum(control);
		control->next_addr = EEPROM_RECORD_START;

		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
				 control->num_recs);

	} else {
		DRM_INFO("Creating new EEPROM table");

		ret = amdgpu_ras_eeprom_reset_table(control);
	}

	return ret == 1 ? 0 : -EIO;
}

void amdgpu_ras_eeprom_fini(struct amdgpu_ras_eeprom_control *control)
{
	struct amdgpu_device *adev = to_amdgpu_device(control);

	switch (adev->asic_type) {
	case CHIP_VEGA20:
		smu_v11_0_i2c_eeprom_control_fini(&control->eeprom_accessor);
		break;
	case CHIP_ARCTURUS:
		smu_i2c_eeprom_fini(&adev->smu, &control->eeprom_accessor);
		break;

	default:
		return;
	}

	mutex_destroy(&control->tbl_mutex);
}

static void __encode_table_record_to_buff(struct amdgpu_ras_eeprom_control *control,
					  struct eeprom_table_record *record,
					  unsigned char *buff)
{
	__le64 tmp = 0;
	int i = 0;

	/* Next are all record fields according to EEPROM page spec in LE foramt */
	buff[i++] = record->err_type;

	buff[i++] = record->bank;

	tmp = cpu_to_le64(record->ts);
	memcpy(buff + i, &tmp, 8);
	i += 8;

	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
	memcpy(buff + i, &tmp, 6);
	i += 6;

	buff[i++] = record->mem_channel;
	buff[i++] = record->mcumc_id;

	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
	memcpy(buff + i, &tmp, 6);
}

static void __decode_table_record_from_buff(struct amdgpu_ras_eeprom_control *control,
					    struct eeprom_table_record *record,
					    unsigned char *buff)
{
	__le64 tmp = 0;
	int i =  0;

	/* Next are all record fields according to EEPROM page spec in LE foramt */
	record->err_type = buff[i++];

	record->bank = buff[i++];

	memcpy(&tmp, buff + i, 8);
	record->ts = le64_to_cpu(tmp);
	i += 8;

	memcpy(&tmp, buff + i, 6);
	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
	i += 6;

	record->mem_channel = buff[i++];
	record->mcumc_id = buff[i++];

	memcpy(&tmp, buff + i,  6);
	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
}

/*
 * When reaching end of EEPROM memory jump back to 0 record address
 * When next record access will go beyond EEPROM page boundary modify bits A17/A8
 * in I2C selector to go to next page
 */
static uint32_t __correct_eeprom_dest_address(uint32_t curr_address)
{
	uint32_t next_address = curr_address + EEPROM_TABLE_RECORD_SIZE;

	/* When all EEPROM memory used jump back to 0 address */
	if (next_address > EEPROM_SIZE_BYTES) {
		DRM_INFO("Reached end of EEPROM memory, jumping to 0 "
			 "and overriding old record");
		return EEPROM_RECORD_START;
	}

	/*
	 * To check if we overflow page boundary  compare next address with
	 * current and see if bits 17/8 of the EEPROM address will change
	 * If they do start from the next 256b page
	 *
	 * https://www.st.com/resource/en/datasheet/m24m02-dr.pdf sec. 5.1.2
	 */
	if ((curr_address & EEPROM_ADDR_MSB_MASK) != (next_address & EEPROM_ADDR_MSB_MASK)) {
		DRM_DEBUG_DRIVER("Reached end of EEPROM memory page, jumping to next: %lx",
				(next_address & EEPROM_ADDR_MSB_MASK));

		return  (next_address & EEPROM_ADDR_MSB_MASK);
	}

	return curr_address;
}

int amdgpu_ras_eeprom_process_recods(struct amdgpu_ras_eeprom_control *control,
					    struct eeprom_table_record *records,
					    bool write,
					    int num)
{
	int i, ret = 0;
	struct i2c_msg *msgs, *msg;
	unsigned char *buffs, *buff;
	struct eeprom_table_record *record;
	struct amdgpu_device *adev = to_amdgpu_device(control);

	if (adev->asic_type != CHIP_VEGA20 && adev->asic_type != CHIP_ARCTURUS)
		return 0;

	buffs = kcalloc(num, EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE,
			 GFP_KERNEL);
	if (!buffs)
		return -ENOMEM;

	mutex_lock(&control->tbl_mutex);

	msgs = kcalloc(num, sizeof(*msgs), GFP_KERNEL);
	if (!msgs) {
		ret = -ENOMEM;
		goto free_buff;
	}

	/* In case of overflow just start from beginning to not lose newest records */
	if (write && (control->next_addr + EEPROM_TABLE_RECORD_SIZE * num > EEPROM_SIZE_BYTES))
		control->next_addr = EEPROM_RECORD_START;


	/*
	 * TODO Currently makes EEPROM writes for each record, this creates
	 * internal fragmentation. Optimized the code to do full page write of
	 * 256b
	 */
	for (i = 0; i < num; i++) {
		buff = &buffs[i * (EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
		record = &records[i];
		msg = &msgs[i];

		control->next_addr = __correct_eeprom_dest_address(control->next_addr);

		/*
		 * Update bits 16,17 of EEPROM address in I2C address by setting them
		 * to bits 1,2 of Device address byte
		 */
		msg->addr = control->i2c_address |
			        ((control->next_addr & EEPROM_ADDR_MSB_MASK) >> 15);
		msg->flags	= write ? 0 : I2C_M_RD;
		msg->len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE;
		msg->buf	= buff;

		/* Insert the EEPROM dest addess, bits 0-15 */
		buff[0] = ((control->next_addr >> 8) & 0xff);
		buff[1] = (control->next_addr & 0xff);

		/* EEPROM table content is stored in LE format */
		if (write)
			__encode_table_record_to_buff(control, record, buff + EEPROM_ADDRESS_SIZE);

		/*
		 * The destination EEPROM address might need to be corrected to account
		 * for page or entire memory wrapping
		 */
		control->next_addr += EEPROM_TABLE_RECORD_SIZE;
	}

	ret = i2c_transfer(&control->eeprom_accessor, msgs, num);
	if (ret < 1) {
		DRM_ERROR("Failed to process EEPROM table records, ret:%d", ret);

		/* TODO Restore prev next EEPROM address ? */
		goto free_msgs;
	}


	if (!write) {
		for (i = 0; i < num; i++) {
			buff = &buffs[i*(EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
			record = &records[i];

			__decode_table_record_from_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
		}
	}

	if (write) {
		uint32_t old_hdr_byte_sum = __calc_hdr_byte_sum(control);

		/*
		 * Update table header with size and CRC and account for table
		 * wrap around where the assumption is that we treat it as empty
		 * table
		 *
		 * TODO - Check the assumption is correct
		 */
		control->num_recs += num;
		control->num_recs %= EEPROM_MAX_RECORD_NUM;
		control->tbl_hdr.tbl_size += EEPROM_TABLE_RECORD_SIZE * num;
		if (control->tbl_hdr.tbl_size > EEPROM_SIZE_BYTES)
			control->tbl_hdr.tbl_size = EEPROM_TABLE_HEADER_SIZE +
			control->num_recs * EEPROM_TABLE_RECORD_SIZE;

		__update_tbl_checksum(control, records, num, old_hdr_byte_sum);

		__update_table_header(control, buffs);
	} else if (!__validate_tbl_checksum(control, records, num)) {
		DRM_WARN("EEPROM Table checksum mismatch!");
		/* TODO Uncomment when EEPROM read/write is relliable */
		/* ret = -EIO; */
	}

free_msgs:
	kfree(msgs);

free_buff:
	kfree(buffs);

	mutex_unlock(&control->tbl_mutex);

	return ret == num ? 0 : -EIO;
}

/* Used for testing if bugs encountered */
#if 0
void amdgpu_ras_eeprom_test(struct amdgpu_ras_eeprom_control *control)
{
	int i;
	struct eeprom_table_record *recs = kcalloc(1, sizeof(*recs), GFP_KERNEL);

	if (!recs)
		return;

	for (i = 0; i < 1 ; i++) {
		recs[i].address = 0xdeadbeef;
		recs[i].retired_page = i;
	}

	if (!amdgpu_ras_eeprom_process_recods(control, recs, true, 1)) {

		memset(recs, 0, sizeof(*recs) * 1);

		control->next_addr = EEPROM_RECORD_START;

		if (!amdgpu_ras_eeprom_process_recods(control, recs, false, 1)) {
			for (i = 0; i < 1; i++)
				DRM_INFO("rec.address :0x%llx, rec.retired_page :%llu",
					 recs[i].address, recs[i].retired_page);
		} else
			DRM_ERROR("Failed in reading from table");

	} else
		DRM_ERROR("Failed in writing to table");
}
#endif