Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*	$NetBSD: subr_prof.c,v 1.50 2021/08/14 17:51:20 ryo Exp $	*/

/*-
 * Copyright (c) 1982, 1986, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)subr_prof.c	8.4 (Berkeley) 2/14/95
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_prof.c,v 1.50 2021/08/14 17:51:20 ryo Exp $");

#ifdef _KERNEL_OPT
#include "opt_gprof.h"
#include "opt_multiprocessor.h"
#endif

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/syscallargs.h>
#include <sys/sysctl.h>

#include <sys/cpu.h>

#ifdef GPROF
#include <sys/malloc.h>
#include <sys/gmon.h>
#include <sys/xcall.h>

MALLOC_DEFINE(M_GPROF, "gprof", "kernel profiling buffer");

static int sysctl_kern_profiling(SYSCTLFN_ARGS);
#ifdef MULTIPROCESSOR
void _gmonparam_merge(struct gmonparam *, struct gmonparam *);
#endif

/*
 * Froms is actually a bunch of unsigned shorts indexing tos
 */
struct gmonparam _gmonparam = { .state = GMON_PROF_OFF };

/* Actual start of the kernel text segment. */
extern char kernel_text[];

extern char etext[];


void
kmstartup(void)
{
	char *cp;
	struct gmonparam *p = &_gmonparam;
	unsigned long size;
	/*
	 * Round lowpc and highpc to multiples of the density we're using
	 * so the rest of the scaling (here and in gprof) stays in ints.
	 */
	p->lowpc = rounddown(((u_long)kernel_text),
		HISTFRACTION * sizeof(HISTCOUNTER));
	p->highpc = roundup((u_long)etext,
		HISTFRACTION * sizeof(HISTCOUNTER));
	p->textsize = p->highpc - p->lowpc;
	printf("Profiling kernel, textsize=%ld [%lx..%lx]\n",
	       p->textsize, p->lowpc, p->highpc);
	p->kcountsize = p->textsize / HISTFRACTION;
	p->hashfraction = HASHFRACTION;
	p->fromssize = p->textsize / HASHFRACTION;
	p->tolimit = p->textsize * ARCDENSITY / 100;
	if (p->tolimit < MINARCS)
		p->tolimit = MINARCS;
	else if (p->tolimit > MAXARCS)
		p->tolimit = MAXARCS;
	p->tossize = p->tolimit * sizeof(struct tostruct);

	size = p->kcountsize + p->fromssize + p->tossize;
#ifdef MULTIPROCESSOR
	CPU_INFO_ITERATOR cii;
	struct cpu_info *ci;
	for (CPU_INFO_FOREACH(cii, ci)) {
		p = malloc(sizeof(struct gmonparam) + size, M_GPROF,
		    M_NOWAIT | M_ZERO);
		if (p == NULL) {
			printf("No memory for profiling on %s\n",
			    cpu_name(ci));
			/* cannot profile on this cpu */
			continue;
		}
		memcpy(p, &_gmonparam, sizeof(_gmonparam));
		ci->ci_gmon = p;

		/*
		 * To allow profiling to be controlled only by the global
		 * _gmonparam.state, set the default value for each CPU to
		 * GMON_PROF_ON. If _gmonparam.state is not ON, mcount will
		 * not be executed.
		 * This is For compatibility of the kgmon(8) kmem interface.
		 */
		p->state = GMON_PROF_ON;

		cp = (char *)(p + 1);
		p->tos = (struct tostruct *)cp;
		p->kcount = (u_short *)(cp + p->tossize);
		p->froms = (u_short *)(cp + p->tossize + p->kcountsize);
	}

	sysctl_createv(NULL, 0, NULL, NULL,
	    0, CTLTYPE_NODE, "percpu",
	    SYSCTL_DESCR("per cpu profiling information"),
	    NULL, 0, NULL, 0,
	    CTL_KERN, KERN_PROF, GPROF_PERCPU, CTL_EOL);

	for (CPU_INFO_FOREACH(cii, ci)) {
		if (ci->ci_gmon == NULL)
			continue;

		sysctl_createv(NULL, 0, NULL, NULL,
		    0, CTLTYPE_NODE, cpu_name(ci),
		    NULL,
		    NULL, 0, NULL, 0,
		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci), CTL_EOL);

		sysctl_createv(NULL, 0, NULL, NULL,
		    CTLFLAG_READWRITE, CTLTYPE_INT, "state",
		    SYSCTL_DESCR("Profiling state"),
		    sysctl_kern_profiling, 0, (void *)ci, 0,
		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
		    GPROF_STATE, CTL_EOL);
		sysctl_createv(NULL, 0, NULL, NULL,
		    CTLFLAG_READWRITE, CTLTYPE_STRUCT, "count",
		    SYSCTL_DESCR("Array of statistical program counters"),
		    sysctl_kern_profiling, 0, (void *)ci, 0,
		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
		    GPROF_COUNT, CTL_EOL);
		sysctl_createv(NULL, 0, NULL, NULL,
		    CTLFLAG_READWRITE, CTLTYPE_STRUCT, "froms",
		    SYSCTL_DESCR("Array indexed by program counter of "
		    "call-from points"),
		    sysctl_kern_profiling, 0, (void *)ci, 0,
		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
		    GPROF_FROMS, CTL_EOL);
		sysctl_createv(NULL, 0, NULL, NULL,
		    CTLFLAG_READWRITE, CTLTYPE_STRUCT, "tos",
		    SYSCTL_DESCR("Array of structures describing "
		    "destination of calls and their counts"),
		    sysctl_kern_profiling, 0, (void *)ci, 0,
		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
		    GPROF_TOS, CTL_EOL);
		sysctl_createv(NULL, 0, NULL, NULL,
		    CTLFLAG_READWRITE, CTLTYPE_STRUCT, "gmonparam",
		    SYSCTL_DESCR("Structure giving the sizes of the above "
		    "arrays"),
		    sysctl_kern_profiling, 0, (void *)ci, 0,
		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
		    GPROF_GMONPARAM, CTL_EOL);
	}

	/*
	 * For minimal compatibility of the kgmon(8) kmem interface,
	 * the _gmonparam and cpu0:ci_gmon share buffers.
	 */
	p = curcpu()->ci_gmon;
	if (p != NULL) {
		_gmonparam.tos = p->tos;
		_gmonparam.kcount = p->kcount;
		_gmonparam.froms = p->froms;
	}
#else /* MULTIPROCESSOR */
	cp = malloc(size, M_GPROF, M_NOWAIT | M_ZERO);
	if (cp == 0) {
		printf("No memory for profiling.\n");
		return;
	}
	p->tos = (struct tostruct *)cp;
	cp += p->tossize;
	p->kcount = (u_short *)cp;
	cp += p->kcountsize;
	p->froms = (u_short *)cp;
#endif /* MULTIPROCESSOR */
}

#ifdef MULTIPROCESSOR
static void
prof_set_state_xc(void *arg1, void *arg2 __unused)
{
	int state = PTRTOUINT64(arg1);
	struct gmonparam *gp = curcpu()->ci_gmon;

	if (gp != NULL)
		gp->state = state;
}
#endif /* MULTIPROCESSOR */

/*
 * Return kernel profiling information.
 */
/*
 * sysctl helper routine for kern.profiling subtree.  enables/disables
 * kernel profiling and gives out copies of the profiling data.
 */
static int
sysctl_kern_profiling(SYSCTLFN_ARGS)
{
	struct sysctlnode node = *rnode;
	struct gmonparam *gp;
	int error;
#ifdef MULTIPROCESSOR
	CPU_INFO_ITERATOR cii;
	struct cpu_info *ci, *target_ci;
	uint64_t where;
	int state;
	bool prof_on, do_merge;

	target_ci = (struct cpu_info *)rnode->sysctl_data;
	do_merge = (oldp != NULL) && (target_ci == NULL) &&
	    ((node.sysctl_num == GPROF_COUNT) ||
	    (node.sysctl_num == GPROF_FROMS) ||
	    (node.sysctl_num == GPROF_TOS));

	if (do_merge) {
		/* kern.profiling.{count,froms,tos} */
		unsigned long size;
		char *cp;

		/* allocate temporary gmonparam, and merge results of all CPU */
		size = _gmonparam.kcountsize + _gmonparam.fromssize +
		    _gmonparam.tossize;
		gp = malloc(sizeof(struct gmonparam) + size, M_GPROF,
		    M_NOWAIT | M_ZERO);
		if (gp == NULL)
			return ENOMEM;
		memcpy(gp, &_gmonparam, sizeof(_gmonparam));
		cp = (char *)(gp + 1);
		gp->tos = (struct tostruct *)cp;
		gp->kcount = (u_short *)(cp + gp->tossize);
		gp->froms = (u_short *)(cp + gp->tossize + gp->kcountsize);

		for (CPU_INFO_FOREACH(cii, ci)) {
			if (ci->ci_gmon == NULL)
				continue;
			_gmonparam_merge(gp, ci->ci_gmon);
		}
	} else if (target_ci != NULL) {
		/* kern.profiling.percpu.* */
		gp = target_ci->ci_gmon;
	} else {
		/* kern.profiling.{state,gmonparam} */
		gp = &_gmonparam;
	}
#else /* MULTIPROCESSOR */
	gp = &_gmonparam;
#endif

	switch (node.sysctl_num) {
	case GPROF_STATE:
#ifdef MULTIPROCESSOR
		/*
		 * if _gmonparam.state is OFF, the state of each CPU is
		 * considered to be OFF, even if it is actually ON.
		 */
		if (_gmonparam.state == GMON_PROF_OFF ||
		    gp->state == GMON_PROF_OFF)
			state = GMON_PROF_OFF;
		else
			state = GMON_PROF_ON;
		node.sysctl_data = &state;
#else
		node.sysctl_data = &gp->state;
#endif
		break;
	case GPROF_COUNT:
		node.sysctl_data = gp->kcount;
		node.sysctl_size = gp->kcountsize;
		break;
	case GPROF_FROMS:
		node.sysctl_data = gp->froms;
		node.sysctl_size = gp->fromssize;
		break;
	case GPROF_TOS:
		node.sysctl_data = gp->tos;
		node.sysctl_size = gp->tossize;
		break;
	case GPROF_GMONPARAM:
		node.sysctl_data = gp;
		node.sysctl_size = sizeof(*gp);
		break;
	default:
		return (EOPNOTSUPP);
	}

	error = sysctl_lookup(SYSCTLFN_CALL(&node));
	if (error || newp == NULL)
		goto done;

#ifdef MULTIPROCESSOR
	switch (node.sysctl_num) {
	case GPROF_STATE:
		if (target_ci != NULL) {
			where = xc_unicast(0, prof_set_state_xc,
			    UINT64TOPTR(state), NULL, target_ci);
			xc_wait(where);

			/* if even one CPU being profiled, enable perfclock. */
			prof_on = false;
			for (CPU_INFO_FOREACH(cii, ci)) {
				if (ci->ci_gmon == NULL)
					continue;
				if (ci->ci_gmon->state != GMON_PROF_OFF) {
					prof_on = true;
					break;
				}
			}
			mutex_spin_enter(&proc0.p_stmutex);
			if (prof_on)
				startprofclock(&proc0);
			else
				stopprofclock(&proc0);
			mutex_spin_exit(&proc0.p_stmutex);

			if (prof_on) {
				_gmonparam.state = GMON_PROF_ON;
			} else {
				_gmonparam.state = GMON_PROF_OFF;
				/*
				 * when _gmonparam.state and all CPU gmon state
				 * are OFF, all CPU states should be ON so that
				 * the entire CPUs profiling can be controlled
				 * by _gmonparam.state only.
				 */
				for (CPU_INFO_FOREACH(cii, ci)) {
					if (ci->ci_gmon == NULL)
						continue;
					ci->ci_gmon->state = GMON_PROF_ON;
				}
			}
		} else {
			_gmonparam.state = state;
			where = xc_broadcast(0, prof_set_state_xc,
			    UINT64TOPTR(state), NULL);
			xc_wait(where);

			mutex_spin_enter(&proc0.p_stmutex);
			if (state == GMON_PROF_OFF)
				stopprofclock(&proc0);
			else
				startprofclock(&proc0);
			mutex_spin_exit(&proc0.p_stmutex);
		}
		break;
	case GPROF_COUNT:
		/*
		 * if 'kern.profiling.{count,froms,tos}' is written, the same
		 * data will be written to 'kern.profiling.percpu.cpuN.xxx'
		 */
		if (target_ci == NULL) {
			for (CPU_INFO_FOREACH(cii, ci)) {
				if (ci->ci_gmon == NULL)
					continue;
				memmove(ci->ci_gmon->kcount, gp->kcount,
				    newlen);
			}
		}
		break;
	case GPROF_FROMS:
		if (target_ci == NULL) {
			for (CPU_INFO_FOREACH(cii, ci)) {
				if (ci->ci_gmon == NULL)
					continue;
				memmove(ci->ci_gmon->froms, gp->froms, newlen);
			}
		}
		break;
	case GPROF_TOS:
		if (target_ci == NULL) {
			for (CPU_INFO_FOREACH(cii, ci)) {
				if (ci->ci_gmon == NULL)
					continue;
				memmove(ci->ci_gmon->tos, gp->tos, newlen);
			}
		}
		break;
	}
#else
	if (node.sysctl_num == GPROF_STATE) {
		mutex_spin_enter(&proc0.p_stmutex);
		if (gp->state == GMON_PROF_OFF)
			stopprofclock(&proc0);
		else
			startprofclock(&proc0);
		mutex_spin_exit(&proc0.p_stmutex);
	}
#endif

 done:
#ifdef MULTIPROCESSOR
	if (do_merge)
		free(gp, M_GPROF);
#endif
	return error;
}

SYSCTL_SETUP(sysctl_kern_gprof_setup, "sysctl kern.profiling subtree setup")
{

	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT,
		       CTLTYPE_NODE, "profiling",
		       SYSCTL_DESCR("Profiling information (available)"),
		       NULL, 0, NULL, 0,
		       CTL_KERN, KERN_PROF, CTL_EOL);

	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
		       CTLTYPE_INT, "state",
		       SYSCTL_DESCR("Profiling state"),
		       sysctl_kern_profiling, 0, NULL, 0,
		       CTL_KERN, KERN_PROF, GPROF_STATE, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
		       CTLTYPE_STRUCT, "count",
		       SYSCTL_DESCR("Array of statistical program counters"),
		       sysctl_kern_profiling, 0, NULL, 0,
		       CTL_KERN, KERN_PROF, GPROF_COUNT, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
		       CTLTYPE_STRUCT, "froms",
		       SYSCTL_DESCR("Array indexed by program counter of "
				    "call-from points"),
		       sysctl_kern_profiling, 0, NULL, 0,
		       CTL_KERN, KERN_PROF, GPROF_FROMS, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
		       CTLTYPE_STRUCT, "tos",
		       SYSCTL_DESCR("Array of structures describing "
				    "destination of calls and their counts"),
		       sysctl_kern_profiling, 0, NULL, 0,
		       CTL_KERN, KERN_PROF, GPROF_TOS, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT,
		       CTLTYPE_STRUCT, "gmonparam",
		       SYSCTL_DESCR("Structure giving the sizes of the above "
				    "arrays"),
		       sysctl_kern_profiling, 0, NULL, 0,
		       CTL_KERN, KERN_PROF, GPROF_GMONPARAM, CTL_EOL);
}
#endif /* GPROF */

/*
 * Profiling system call.
 *
 * The scale factor is a fixed point number with 16 bits of fraction, so that
 * 1.0 is represented as 0x10000.  A scale factor of 0 turns off profiling.
 */
/* ARGSUSED */
int
sys_profil(struct lwp *l, const struct sys_profil_args *uap, register_t *retval)
{
	/* {
		syscallarg(char *) samples;
		syscallarg(size_t) size;
		syscallarg(u_long) offset;
		syscallarg(u_int) scale;
	} */
	struct proc *p = l->l_proc;
	struct uprof *upp;

	if (SCARG(uap, scale) > (1 << 16))
		return (EINVAL);
	if (SCARG(uap, scale) == 0) {
		mutex_spin_enter(&p->p_stmutex);
		stopprofclock(p);
		mutex_spin_exit(&p->p_stmutex);
		return (0);
	}
	upp = &p->p_stats->p_prof;

	/* Block profile interrupts while changing state. */
	mutex_spin_enter(&p->p_stmutex);
	upp->pr_off = SCARG(uap, offset);
	upp->pr_scale = SCARG(uap, scale);
	upp->pr_base = SCARG(uap, samples);
	upp->pr_size = SCARG(uap, size);
	startprofclock(p);
	mutex_spin_exit(&p->p_stmutex);

	return (0);
}

/*
 * Scale is a fixed-point number with the binary point 16 bits
 * into the value, and is <= 1.0.  pc is at most 32 bits, so the
 * intermediate result is at most 48 bits.
 */
#define	PC_TO_INDEX(pc, prof) \
	((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
	    (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)

/*
 * Collect user-level profiling statistics; called on a profiling tick,
 * when a process is running in user-mode.  This routine may be called
 * from an interrupt context.  We schedule an AST that will vector us
 * to trap() with a context in which copyin and copyout will work.
 * Trap will then call addupc_task().
 *
 * XXX We could use ufetch/ustore here if the profile buffers were
 * wired.
 *
 * Note that we may (rarely) not get around to the AST soon enough, and
 * lose profile ticks when the next tick overwrites this one, but in this
 * case the system is overloaded and the profile is probably already
 * inaccurate.
 */
void
addupc_intr(struct lwp *l, u_long pc)
{
	struct uprof *prof;
	struct proc *p;
	u_int i;

	p = l->l_proc;

	KASSERT(mutex_owned(&p->p_stmutex));

	prof = &p->p_stats->p_prof;
	if (pc < prof->pr_off ||
	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
		return;			/* out of range; ignore */

	mutex_spin_exit(&p->p_stmutex);

	/* XXXSMP */
	prof->pr_addr = pc;
	prof->pr_ticks++;
	cpu_need_proftick(l);

	mutex_spin_enter(&p->p_stmutex);
}

/*
 * Much like before, but we can afford to take faults here.  If the
 * update fails, we simply turn off profiling.
 */
void
addupc_task(struct lwp *l, u_long pc, u_int ticks)
{
	struct uprof *prof;
	struct proc *p;
	void *addr;
	int error;
	u_int i;
	u_short v;

	p = l->l_proc;

	if (ticks == 0)
		return;

	mutex_spin_enter(&p->p_stmutex);
	prof = &p->p_stats->p_prof;

	/* Testing P_PROFIL may be unnecessary, but is certainly safe. */
	if ((p->p_stflag & PST_PROFIL) == 0 || pc < prof->pr_off ||
	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size) {
		mutex_spin_exit(&p->p_stmutex);
		return;
	}

	addr = prof->pr_base + i;
	mutex_spin_exit(&p->p_stmutex);
	if ((error = copyin(addr, (void *)&v, sizeof(v))) == 0) {
		v += ticks;
		error = copyout((void *)&v, addr, sizeof(v));
	}
	if (error != 0) {
		mutex_spin_enter(&p->p_stmutex);
		stopprofclock(p);
		mutex_spin_exit(&p->p_stmutex);
	}
}