/* $NetBSD: sha2.c,v 1.25 2021/10/28 15:08:05 christos Exp $ */
/* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */
/*
* sha2.c
*
* Version 1.0.0beta1
*
* Written by Aaron D. Gifford <me@aarongifford.com>
*
* Copyright 2000 Aaron D. Gifford. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif
#include <sys/cdefs.h>
#if defined(_KERNEL) || defined(_STANDALONE)
__KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.25 2021/10/28 15:08:05 christos Exp $");
#include <sys/param.h> /* XXX: to pull <machine/macros.h> for vax memset(9) */
#include <lib/libkern/libkern.h>
#else
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: sha2.c,v 1.25 2021/10/28 15:08:05 christos Exp $");
#endif /* LIBC_SCCS and not lint */
#include "namespace.h"
#include <string.h>
#endif
#include <sys/types.h>
#include <sys/sha2.h>
#if HAVE_SYS_ENDIAN_H
# include <sys/endian.h>
#endif
/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (uint64_t)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
static void SHA512_Last(SHA512_CTX *);
void SHA224_Transform(SHA224_CTX *, const uint32_t*);
void SHA256_Transform(SHA256_CTX *, const uint32_t*);
void SHA384_Transform(SHA384_CTX *, const uint64_t*);
void SHA512_Transform(SHA512_CTX *, const uint64_t*);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
static const uint32_t K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-224: */
static const uint32_t sha224_initial_hash_value[8] = {
0xc1059ed8UL,
0x367cd507UL,
0x3070dd17UL,
0xf70e5939UL,
0xffc00b31UL,
0x68581511UL,
0x64f98fa7UL,
0xbefa4fa4UL
};
/* Initial hash value H for SHA-256: */
static const uint32_t sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
static const uint64_t K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384 */
static const uint64_t sha384_initial_hash_value[8] = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512 */
static const uint64_t sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
#if !defined(_KERNEL) && !defined(_STANDALONE)
#if defined(__weak_alias)
__weak_alias(SHA224_Init,_SHA224_Init)
__weak_alias(SHA224_Update,_SHA224_Update)
__weak_alias(SHA224_Final,_SHA224_Final)
__weak_alias(SHA224_Transform,_SHA224_Transform)
__weak_alias(SHA256_Init,_SHA256_Init)
__weak_alias(SHA256_Update,_SHA256_Update)
__weak_alias(SHA256_Final,_SHA256_Final)
__weak_alias(SHA256_Transform,_SHA256_Transform)
__weak_alias(SHA384_Init,_SHA384_Init)
__weak_alias(SHA384_Update,_SHA384_Update)
__weak_alias(SHA384_Final,_SHA384_Final)
__weak_alias(SHA384_Transform,_SHA384_Transform)
__weak_alias(SHA512_Init,_SHA512_Init)
__weak_alias(SHA512_Update,_SHA512_Update)
__weak_alias(SHA512_Final,_SHA512_Final)
__weak_alias(SHA512_Transform,_SHA512_Transform)
#endif
#endif
/*** SHA-256: *********************************************************/
int
SHA256_Init(SHA256_CTX *context)
{
if (context == NULL)
return 1;
memcpy(context->state, sha256_initial_hash_value,
(size_t)(SHA256_DIGEST_LENGTH));
memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
context->bitcount = 0;
return 1;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
W256[j] = be32dec(data); \
++data; \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#define ROUND256(a,b,c,d,e,f,g,h) \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
void
SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
{
uint32_t a, b, c, d, e, f, g, h, s0, s1;
uint32_t T1, *W256;
int j;
W256 = (uint32_t *)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds to 64: */
do {
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void
SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
{
uint32_t a, b, c, d, e, f, g, h, s0, s1;
uint32_t T1, T2, *W256;
int j;
W256 = (uint32_t *)(void *)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
W256[j] = be32dec(data);
++data;
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
int
SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
{
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return 1;
}
usedspace = (unsigned int)((context->bitcount >> 3) %
SHA256_BLOCK_LENGTH);
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data,
(size_t)(freespace));
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
SHA256_Transform(context,
(uint32_t *)(void *)context->buffer);
} else {
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return 1;
}
}
/*
* Process as many complete blocks as possible.
*
* Check alignment of the data pointer. If it is 32bit aligned,
* SHA256_Transform can be called directly on the data stream,
* otherwise enforce the alignment by copy into the buffer.
*/
if ((uintptr_t)data % 4 == 0) {
while (len >= SHA256_BLOCK_LENGTH) {
SHA256_Transform(context,
(const uint32_t *)(const void *)data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
} else {
while (len >= SHA256_BLOCK_LENGTH) {
memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
SHA256_Transform(context,
(const uint32_t *)(const void *)context->buffer);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
}
if (len > 0) {
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
return 1;
}
static int
SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
{
unsigned int usedspace;
size_t i;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL) {
usedspace = (unsigned int)((context->bitcount >> 3) %
SHA256_BLOCK_LENGTH);
context->bitcount = htobe64(context->bitcount);
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0,
(size_t)(SHA256_SHORT_BLOCK_LENGTH -
usedspace));
} else {
if (usedspace < SHA256_BLOCK_LENGTH) {
memset(&context->buffer[usedspace], 0,
(size_t)(SHA256_BLOCK_LENGTH -
usedspace));
}
/* Do second-to-last transform: */
SHA256_Transform(context,
(uint32_t *)(void *)context->buffer);
/* And set-up for the last transform: */
memset(context->buffer, 0,
(size_t)(SHA256_SHORT_BLOCK_LENGTH));
}
} else {
/* Set-up for the last transform: */
memset(context->buffer, 0,
(size_t)(SHA256_SHORT_BLOCK_LENGTH));
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
&context->bitcount, sizeof(context->bitcount));
/* Final transform: */
SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
for (i = 0; i < len / 4; i++)
be32enc(digest + 4 * i, context->state[i]);
}
/* Clean up state data: */
memset(context, 0, sizeof(*context));
usedspace = 0;
return 1;
}
int
SHA256_Final(uint8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context)
{
return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
}
/*** SHA-224: *********************************************************/
int
SHA224_Init(SHA224_CTX *context)
{
if (context == NULL)
return 1;
/* The state and buffer size are driven by SHA256, not by SHA224. */
memcpy(context->state, sha224_initial_hash_value,
(size_t)(SHA256_DIGEST_LENGTH));
memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
context->bitcount = 0;
return 1;
}
int
SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
{
return SHA256_Update((SHA256_CTX *)context, data, len);
}
void
SHA224_Transform(SHA224_CTX *context, const uint32_t *data)
{
SHA256_Transform((SHA256_CTX *)context, data);
}
int
SHA224_Final(uint8_t digest[SHA224_DIGEST_LENGTH], SHA224_CTX *context)
{
return SHA224_256_Final(digest, (SHA256_CTX *)context,
SHA224_DIGEST_LENGTH);
}
/*** SHA-512: *********************************************************/
int
SHA512_Init(SHA512_CTX *context)
{
if (context == NULL)
return 1;
memcpy(context->state, sha512_initial_hash_value,
(size_t)(SHA512_DIGEST_LENGTH));
memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
context->bitcount[0] = context->bitcount[1] = 0;
return 1;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
W512[j] = be64dec(data); \
++data; \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + W512[j]; \
(d) += T1, \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
j++
#define ROUND512(a,b,c,d,e,f,g,h) \
s0 = W512[(j+1)&0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j+14)&0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
void
SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
{
uint64_t a, b, c, d, e, f, g, h, s0, s1;
uint64_t T1, *W512 = (uint64_t *)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds up to 79: */
do {
ROUND512(a,b,c,d,e,f,g,h);
ROUND512(h,a,b,c,d,e,f,g);
ROUND512(g,h,a,b,c,d,e,f);
ROUND512(f,g,h,a,b,c,d,e);
ROUND512(e,f,g,h,a,b,c,d);
ROUND512(d,e,f,g,h,a,b,c);
ROUND512(c,d,e,f,g,h,a,b);
ROUND512(b,c,d,e,f,g,h,a);
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void
SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
{
uint64_t a, b, c, d, e, f, g, h, s0, s1;
uint64_t T1, T2, *W512 = (void *)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
W512[j] = be64dec(data);
++data;
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W512[(j+1)&0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j+14)&0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
int
SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
{
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return 1;
}
usedspace = (unsigned int)((context->bitcount[0] >> 3) %
SHA512_BLOCK_LENGTH);
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data,
(size_t)(freespace));
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
SHA512_Transform(context,
(uint64_t *)(void *)context->buffer);
} else {
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return 1;
}
}
/*
* Process as many complete blocks as possible.
*
* Check alignment of the data pointer. If it is 64bit aligned,
* SHA512_Transform can be called directly on the data stream,
* otherwise enforce the alignment by copy into the buffer.
*/
if ((uintptr_t)data % 8 == 0) {
while (len >= SHA512_BLOCK_LENGTH) {
SHA512_Transform(context,
(const uint64_t*)(const void *)data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
} else {
while (len >= SHA512_BLOCK_LENGTH) {
memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
SHA512_Transform(context,
(const void *)context->buffer);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
}
if (len > 0) {
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
return 1;
}
static void
SHA512_Last(SHA512_CTX *context)
{
unsigned int usedspace;
usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
context->bitcount[0] = htobe64(context->bitcount[0]);
context->bitcount[1] = htobe64(context->bitcount[1]);
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0,
(size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
} else {
if (usedspace < SHA512_BLOCK_LENGTH) {
memset(&context->buffer[usedspace], 0,
(size_t)(SHA512_BLOCK_LENGTH - usedspace));
}
/* Do second-to-last transform: */
SHA512_Transform(context,
(uint64_t *)(void *)context->buffer);
/* And set-up for the last transform: */
memset(context->buffer, 0,
(size_t)(SHA512_BLOCK_LENGTH - 2));
}
} else {
/* Prepare for final transform: */
memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits): */
memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
&context->bitcount[1], sizeof(context->bitcount[1]));
memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
&context->bitcount[0], sizeof(context->bitcount[0]));
/* Final transform: */
SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
}
int
SHA512_Final(uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
{
size_t i;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL) {
SHA512_Last(context);
/* Save the hash data for output: */
for (i = 0; i < 8; ++i)
be64enc(digest + 8 * i, context->state[i]);
}
/* Zero out state data */
memset(context, 0, sizeof(*context));
return 1;
}
/*** SHA-384: *********************************************************/
int
SHA384_Init(SHA384_CTX *context)
{
if (context == NULL)
return 1;
memcpy(context->state, sha384_initial_hash_value,
(size_t)(SHA512_DIGEST_LENGTH));
memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
context->bitcount[0] = context->bitcount[1] = 0;
return 1;
}
int
SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
{
return SHA512_Update((SHA512_CTX *)context, data, len);
}
void
SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
{
SHA512_Transform((SHA512_CTX *)context, data);
}
int
SHA384_Final(uint8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context)
{
size_t i;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL) {
SHA512_Last((SHA512_CTX *)context);
/* Save the hash data for output: */
for (i = 0; i < 6; ++i)
be64enc(digest + 8 * i, context->state[i]);
}
/* Zero out state data */
memset(context, 0, sizeof(*context));
return 1;
}