Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
.\"	$NetBSD: EVP_PKEY_CTX_ctrl.3,v 1.22 2023/05/31 19:42:42 christos Exp $
.\"
.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
.    if \nF \{\
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{\
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
.    \" fudge factors for nroff and troff
.if n \{\
.    ds #H 0
.    ds #V .8m
.    ds #F .3m
.    ds #[ \f1
.    ds #] \fP
.\}
.if t \{\
.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
.    ds #V .6m
.    ds #F 0
.    ds #[ \&
.    ds #] \&
.\}
.    \" simple accents for nroff and troff
.if n \{\
.    ds ' \&
.    ds ` \&
.    ds ^ \&
.    ds , \&
.    ds ~ ~
.    ds /
.\}
.if t \{\
.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
.    \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.    \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
.    \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
.    ds : e
.    ds 8 ss
.    ds o a
.    ds d- d\h'-1'\(ga
.    ds D- D\h'-1'\(hy
.    ds th \o'bp'
.    ds Th \o'LP'
.    ds ae ae
.    ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "EVP_PKEY_CTX_ctrl 3"
.TH EVP_PKEY_CTX_ctrl 3 "2023-05-07" "3.0.9" "OpenSSL"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
EVP_PKEY_CTX_ctrl,
EVP_PKEY_CTX_ctrl_str,
EVP_PKEY_CTX_ctrl_uint64,
EVP_PKEY_CTX_md,
EVP_PKEY_CTX_set_signature_md,
EVP_PKEY_CTX_get_signature_md,
EVP_PKEY_CTX_set_mac_key,
EVP_PKEY_CTX_set_group_name,
EVP_PKEY_CTX_get_group_name,
EVP_PKEY_CTX_set_rsa_padding,
EVP_PKEY_CTX_get_rsa_padding,
EVP_PKEY_CTX_set_rsa_pss_saltlen,
EVP_PKEY_CTX_get_rsa_pss_saltlen,
EVP_PKEY_CTX_set_rsa_keygen_bits,
EVP_PKEY_CTX_set_rsa_keygen_pubexp,
EVP_PKEY_CTX_set1_rsa_keygen_pubexp,
EVP_PKEY_CTX_set_rsa_keygen_primes,
EVP_PKEY_CTX_set_rsa_mgf1_md_name,
EVP_PKEY_CTX_set_rsa_mgf1_md,
EVP_PKEY_CTX_get_rsa_mgf1_md,
EVP_PKEY_CTX_get_rsa_mgf1_md_name,
EVP_PKEY_CTX_set_rsa_oaep_md_name,
EVP_PKEY_CTX_set_rsa_oaep_md,
EVP_PKEY_CTX_get_rsa_oaep_md,
EVP_PKEY_CTX_get_rsa_oaep_md_name,
EVP_PKEY_CTX_set0_rsa_oaep_label,
EVP_PKEY_CTX_get0_rsa_oaep_label,
EVP_PKEY_CTX_set_dsa_paramgen_bits,
EVP_PKEY_CTX_set_dsa_paramgen_q_bits,
EVP_PKEY_CTX_set_dsa_paramgen_md,
EVP_PKEY_CTX_set_dsa_paramgen_md_props,
EVP_PKEY_CTX_set_dsa_paramgen_gindex,
EVP_PKEY_CTX_set_dsa_paramgen_type,
EVP_PKEY_CTX_set_dsa_paramgen_seed,
EVP_PKEY_CTX_set_dh_paramgen_prime_len,
EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
EVP_PKEY_CTX_set_dh_paramgen_generator,
EVP_PKEY_CTX_set_dh_paramgen_type,
EVP_PKEY_CTX_set_dh_paramgen_gindex,
EVP_PKEY_CTX_set_dh_paramgen_seed,
EVP_PKEY_CTX_set_dh_rfc5114,
EVP_PKEY_CTX_set_dhx_rfc5114,
EVP_PKEY_CTX_set_dh_pad,
EVP_PKEY_CTX_set_dh_nid,
EVP_PKEY_CTX_set_dh_kdf_type,
EVP_PKEY_CTX_get_dh_kdf_type,
EVP_PKEY_CTX_set0_dh_kdf_oid,
EVP_PKEY_CTX_get0_dh_kdf_oid,
EVP_PKEY_CTX_set_dh_kdf_md,
EVP_PKEY_CTX_get_dh_kdf_md,
EVP_PKEY_CTX_set_dh_kdf_outlen,
EVP_PKEY_CTX_get_dh_kdf_outlen,
EVP_PKEY_CTX_set0_dh_kdf_ukm,
EVP_PKEY_CTX_get0_dh_kdf_ukm,
EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
EVP_PKEY_CTX_set_ec_param_enc,
EVP_PKEY_CTX_set_ecdh_cofactor_mode,
EVP_PKEY_CTX_get_ecdh_cofactor_mode,
EVP_PKEY_CTX_set_ecdh_kdf_type,
EVP_PKEY_CTX_get_ecdh_kdf_type,
EVP_PKEY_CTX_set_ecdh_kdf_md,
EVP_PKEY_CTX_get_ecdh_kdf_md,
EVP_PKEY_CTX_set_ecdh_kdf_outlen,
EVP_PKEY_CTX_get_ecdh_kdf_outlen,
EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
EVP_PKEY_CTX_get0_ecdh_kdf_ukm,
EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len,
EVP_PKEY_CTX_set_kem_op
\&\- algorithm specific control operations
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/evp.h>
\&
\& int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
\&                       int cmd, int p1, void *p2);
\& int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype,
\&                              int cmd, uint64_t value);
\& int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
\&                           const char *value);
\&
\& int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);
\&
\& int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
\& int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);
\&
\& int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, const unsigned char *key,
\&                              int len);
\& int EVP_PKEY_CTX_set_group_name(EVP_PKEY_CTX *ctx, const char *name);
\& int EVP_PKEY_CTX_get_group_name(EVP_PKEY_CTX *ctx, char *name, size_t namelen);
\&
\& int EVP_PKEY_CTX_set_kem_op(EVP_PKEY_CTX *ctx, const char *op);
\&
\& #include <openssl/rsa.h>
\&
\& int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
\& int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad);
\& int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen);
\& int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen);
\& int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
\& int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
\& int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
\& int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
\&                                     const char *mdprops);
\& int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
\& int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
\& int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
\&                                       size_t namelen);
\& int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
\&                                       const char *mdprops);
\& int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
\& int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
\& int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
\&                                       size_t namelen);
\& int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label,
\&                                      int len);
\& int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label);
\&
\& #include <openssl/dsa.h>
\&
\& int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
\& int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int qbits);
\& int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
\& int EVP_PKEY_CTX_set_dsa_paramgen_md_props(EVP_PKEY_CTX *ctx,
\&                                            const char *md_name,
\&                                            const char *md_properties);
\& int EVP_PKEY_CTX_set_dsa_paramgen_type(EVP_PKEY_CTX *ctx, const char *name);
\& int EVP_PKEY_CTX_set_dsa_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
\& int EVP_PKEY_CTX_set_dsa_paramgen_seed(EVP_PKEY_CTX *ctx,
\&                                        const unsigned char *seed,
\&                                        size_t seedlen);
\&
\& #include <openssl/dh.h>
\&
\& int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
\& int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
\& int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);
\& int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
\& int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
\& int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
\& int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
\& int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
\& int EVP_PKEY_CTX_set_dh_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
\& int EVP_PKEY_CTX_set_dh_paramgen_seed(EVP_PKEY_CTX *ctx,
\&                                        const unsigned char *seed,
\&                                        size_t seedlen);
\& int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
\& int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
\& int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid);
\& int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid);
\& int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
\& int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
\& int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
\& int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
\& int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
\&
\& #include <openssl/ec.h>
\&
\& int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);
\& int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
\& int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
\& int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
\& int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
\& int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx);
\& int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
\& int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
\& int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
\& int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
\& int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
\&
\& int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
\& int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
\& int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len);
.Ve
.PP
The following functions have been deprecated since OpenSSL 3.0, and can be
hidden entirely by defining \fB\s-1OPENSSL_API_COMPAT\s0\fR with a suitable version value,
see \fBopenssl_user_macros\fR\|(7):
.PP
.Vb 1
\& #include <openssl/rsa.h>
\&
\& int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
\&
\& #include <openssl/dh.h>
\&
\& int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
\&
\& #include <openssl/ec.h>
\&
\& int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fBEVP_PKEY_CTX_ctrl()\fR sends a control operation to the context \fIctx\fR. The key
type used must match \fIkeytype\fR if it is not \-1. The parameter \fIoptype\fR is a
mask indicating which operations the control can be applied to.
The control command is indicated in \fIcmd\fR and any additional arguments in
\&\fIp1\fR and \fIp2\fR.
.PP
For \fIcmd\fR = \fB\s-1EVP_PKEY_CTRL_SET_MAC_KEY\s0\fR, \fIp1\fR is the length of the \s-1MAC\s0 key,
and \fIp2\fR is the \s-1MAC\s0 key. This is used by Poly1305, SipHash, \s-1HMAC\s0 and \s-1CMAC.\s0
.PP
Applications will not normally call \fBEVP_PKEY_CTX_ctrl()\fR directly but will
instead call one of the algorithm specific functions below.
.PP
\&\fBEVP_PKEY_CTX_ctrl_uint64()\fR is a wrapper that directly passes a
uint64 value as \fIp2\fR to \fBEVP_PKEY_CTX_ctrl()\fR.
.PP
\&\fBEVP_PKEY_CTX_ctrl_str()\fR allows an application to send an algorithm
specific control operation to a context \fIctx\fR in string form. This is
intended to be used for options specified on the command line or in text
files. The commands supported are documented in the openssl utility
command line pages for the option \fI\-pkeyopt\fR which is supported by the
\&\fIpkeyutl\fR, \fIgenpkey\fR and \fIreq\fR commands.
.PP
\&\fBEVP_PKEY_CTX_md()\fR sends a message digest control operation to the context
\&\fIctx\fR. The message digest is specified by its name \fImd\fR.
.PP
\&\fBEVP_PKEY_CTX_set_signature_md()\fR sets the message digest type used
in a signature. It can be used in the \s-1RSA, DSA\s0 and \s-1ECDSA\s0 algorithms.
.PP
\&\fBEVP_PKEY_CTX_get_signature_md()\fRgets the message digest type used
in a signature. It can be used in the \s-1RSA, DSA\s0 and \s-1ECDSA\s0 algorithms.
.PP
Key generation typically involves setting up parameters to be used and
generating the private and public key data. Some algorithm implementations
allow private key data to be set explicitly using \fBEVP_PKEY_CTX_set_mac_key()\fR.
In this case key generation is simply the process of setting up the
parameters for the key and then setting the raw key data to the value explicitly.
Normally applications would call \fBEVP_PKEY_new_raw_private_key\fR\|(3) or similar
functions instead.
.PP
\&\fBEVP_PKEY_CTX_set_mac_key()\fR can be used with any of the algorithms supported by
the \fBEVP_PKEY_new_raw_private_key\fR\|(3) function.
.PP
\&\fBEVP_PKEY_CTX_set_group_name()\fR sets the group name to \fIname\fR for parameter and
key generation. For example for \s-1EC\s0 keys this will set the curve name and for
\&\s-1DH\s0 keys it will set the name of the finite field group.
.PP
\&\fBEVP_PKEY_CTX_get_group_name()\fR finds the group name that's currently
set with \fIctx\fR, and writes it to the location that \fIname\fR points at, as long
as its size \fInamelen\fR is large enough to store that name, including a
terminating \s-1NUL\s0 byte.
.SS "\s-1RSA\s0 parameters"
.IX Subsection "RSA parameters"
\&\fBEVP_PKEY_CTX_set_rsa_padding()\fR sets the \s-1RSA\s0 padding mode for \fIctx\fR.
The \fIpad\fR parameter can take the value \fB\s-1RSA_PKCS1_PADDING\s0\fR for PKCS#1
padding, \fB\s-1RSA_NO_PADDING\s0\fR for
no padding, \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR for \s-1OAEP\s0 padding (encrypt and
decrypt only), \fB\s-1RSA_X931_PADDING\s0\fR for X9.31 padding (signature operations
only), \fB\s-1RSA_PKCS1_PSS_PADDING\s0\fR (sign and verify only) and
\&\fB\s-1RSA_PKCS1_WITH_TLS_PADDING\s0\fR for \s-1TLS RSA\s0 ClientKeyExchange message padding
(decryption only).
.PP
Two \s-1RSA\s0 padding modes behave differently if \fBEVP_PKEY_CTX_set_signature_md()\fR
is used. If this function is called for PKCS#1 padding the plaintext buffer is
an actual digest value and is encapsulated in a DigestInfo structure according
to PKCS#1 when signing and this structure is expected (and stripped off) when
verifying. If this control is not used with \s-1RSA\s0 and PKCS#1 padding then the
supplied data is used directly and not encapsulated. In the case of X9.31
padding for \s-1RSA\s0 the algorithm identifier byte is added or checked and removed
if this control is called. If it is not called then the first byte of the plaintext
buffer is expected to be the algorithm identifier byte.
.PP
\&\fBEVP_PKEY_CTX_get_rsa_padding()\fR gets the \s-1RSA\s0 padding mode for \fIctx\fR.
.PP
\&\fBEVP_PKEY_CTX_set_rsa_pss_saltlen()\fR sets the \s-1RSA PSS\s0 salt length to \fIsaltlen\fR.
As its name implies it is only supported for \s-1PSS\s0 padding. If this function is
not called then the maximum salt length is used when signing and auto detection
when verifying. Three special values are supported:
.IP "\fB\s-1RSA_PSS_SALTLEN_DIGEST\s0\fR" 4
.IX Item "RSA_PSS_SALTLEN_DIGEST"
sets the salt length to the digest length.
.IP "\fB\s-1RSA_PSS_SALTLEN_MAX\s0\fR" 4
.IX Item "RSA_PSS_SALTLEN_MAX"
sets the salt length to the maximum permissible value.
.IP "\fB\s-1RSA_PSS_SALTLEN_AUTO\s0\fR" 4
.IX Item "RSA_PSS_SALTLEN_AUTO"
causes the salt length to be automatically determined based on the
\&\fB\s-1PSS\s0\fR block structure when verifying.  When signing, it has the same
meaning as \fB\s-1RSA_PSS_SALTLEN_MAX\s0\fR.
.PP
\&\fBEVP_PKEY_CTX_get_rsa_pss_saltlen()\fR gets the \s-1RSA PSS\s0 salt length for \fIctx\fR.
The padding mode must already have been set to \fB\s-1RSA_PKCS1_PSS_PADDING\s0\fR.
.PP
\&\fBEVP_PKEY_CTX_set_rsa_keygen_bits()\fR sets the \s-1RSA\s0 key length for
\&\s-1RSA\s0 key generation to \fIbits\fR. If not specified 2048 bits is used.
.PP
\&\fBEVP_PKEY_CTX_set1_rsa_keygen_pubexp()\fR sets the public exponent value for \s-1RSA\s0 key
generation to the value stored in \fIpubexp\fR. Currently it should be an odd
integer. In accordance with the OpenSSL naming convention, the \fIpubexp\fR pointer
must be freed independently of the \s-1EVP_PKEY_CTX\s0 (ie, it is internally copied).
If not specified 65537 is used.
.PP
\&\fBEVP_PKEY_CTX_set_rsa_keygen_pubexp()\fR does the same as
\&\fBEVP_PKEY_CTX_set1_rsa_keygen_pubexp()\fR except that there is no internal copy and
therefore \fIpubexp\fR should not be modified or freed after the call.
.PP
\&\fBEVP_PKEY_CTX_set_rsa_keygen_primes()\fR sets the number of primes for
\&\s-1RSA\s0 key generation to \fIprimes\fR. If not specified 2 is used.
.PP
\&\fBEVP_PKEY_CTX_set_rsa_mgf1_md_name()\fR sets the \s-1MGF1\s0 digest for \s-1RSA\s0
padding schemes to the digest named \fImdname\fR. If the \s-1RSA\s0 algorithm
implementation for the selected provider supports it then the digest will be
fetched using the properties \fImdprops\fR. If not explicitly set the signing
digest is used. The padding mode must have been set to \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR
or \fB\s-1RSA_PKCS1_PSS_PADDING\s0\fR.
.PP
\&\fBEVP_PKEY_CTX_set_rsa_mgf1_md()\fR does the same as
\&\fBEVP_PKEY_CTX_set_rsa_mgf1_md_name()\fR except that the name of the digest is
inferred from the supplied \fImd\fR and it is not possible to specify any
properties.
.PP
\&\fBEVP_PKEY_CTX_get_rsa_mgf1_md_name()\fR gets the name of the \s-1MGF1\s0
digest algorithm for \fIctx\fR. If not explicitly set the signing digest is used.
The padding mode must have been set to \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR or
\&\fB\s-1RSA_PKCS1_PSS_PADDING\s0\fR.
.PP
\&\fBEVP_PKEY_CTX_get_rsa_mgf1_md()\fR does the same as
\&\fBEVP_PKEY_CTX_get_rsa_mgf1_md_name()\fR except that it returns a pointer to an
\&\s-1EVP_MD\s0 object instead. Note that only known, built-in \s-1EVP_MD\s0 objects will be
returned. The \s-1EVP_MD\s0 object may be \s-1NULL\s0 if the digest is not one of these (such
as a digest only implemented in a third party provider).
.PP
\&\fBEVP_PKEY_CTX_set_rsa_oaep_md_name()\fR sets the message digest type
used in \s-1RSA OAEP\s0 to the digest named \fImdname\fR.  If the \s-1RSA\s0 algorithm
implementation for the selected provider supports it then the digest will be
fetched using the properties \fImdprops\fR. The padding mode must have been set to
\&\fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR.
.PP
\&\fBEVP_PKEY_CTX_set_rsa_oaep_md()\fR does the same as
\&\fBEVP_PKEY_CTX_set_rsa_oaep_md_name()\fR except that the name of the digest is
inferred from the supplied \fImd\fR and it is not possible to specify any
properties.
.PP
\&\fBEVP_PKEY_CTX_get_rsa_oaep_md_name()\fR gets the message digest
algorithm name used in \s-1RSA OAEP\s0 and stores it in the buffer \fIname\fR which is of
size \fInamelen\fR. The padding mode must have been set to
\&\fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR. The buffer should be sufficiently large for any
expected digest algorithm names or the function will fail.
.PP
\&\fBEVP_PKEY_CTX_get_rsa_oaep_md()\fR does the same as
\&\fBEVP_PKEY_CTX_get_rsa_oaep_md_name()\fR except that it returns a pointer to an
\&\s-1EVP_MD\s0 object instead. Note that only known, built-in \s-1EVP_MD\s0 objects will be
returned. The \s-1EVP_MD\s0 object may be \s-1NULL\s0 if the digest is not one of these (such
as a digest only implemented in a third party provider).
.PP
\&\fBEVP_PKEY_CTX_set0_rsa_oaep_label()\fR sets the \s-1RSA OAEP\s0 label to binary data
\&\fIlabel\fR and its length in bytes to \fIlen\fR. If \fIlabel\fR is \s-1NULL\s0 or \fIlen\fR is 0,
the label is cleared. The library takes ownership of the label so the
caller should not free the original memory pointed to by \fIlabel\fR.
The padding mode must have been set to \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR.
.PP
\&\fBEVP_PKEY_CTX_get0_rsa_oaep_label()\fR gets the \s-1RSA OAEP\s0 label to
\&\fIlabel\fR. The return value is the label length. The padding mode
must have been set to \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR. The resulting pointer is owned
by the library and should not be freed by the caller.
.PP
\&\fB\s-1RSA_PKCS1_WITH_TLS_PADDING\s0\fR is used when decrypting an \s-1RSA\s0 encrypted \s-1TLS\s0
pre-master secret in a \s-1TLS\s0 ClientKeyExchange message. It is the same as
\&\s-1RSA_PKCS1_PADDING\s0 except that it additionally verifies that the result is the
correct length and the first two bytes are the protocol version initially
requested by the client. If the encrypted content is publicly invalid then the
decryption will fail. However, if the padding checks fail then decryption will
still appear to succeed but a random \s-1TLS\s0 premaster secret will be returned
instead. This padding mode accepts two parameters which can be set using the
\&\fBEVP_PKEY_CTX_set_params\fR\|(3) function. These are
\&\s-1OSSL_ASYM_CIPHER_PARAM_TLS_CLIENT_VERSION\s0 and
\&\s-1OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION,\s0 both of which are expected to be
unsigned integers. Normally only the first of these will be set and represents
the \s-1TLS\s0 protocol version that was first requested by the client (e.g. 0x0303 for
TLSv1.2, 0x0302 for TLSv1.1 etc). Historically some buggy clients would use the
negotiated protocol version instead of the protocol version first requested. If
this behaviour should be tolerated then
\&\s-1OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION\s0 should be set to the actual
negotiated protocol version. Otherwise it should be left unset.
.SS "\s-1DSA\s0 parameters"
.IX Subsection "DSA parameters"
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_bits()\fR sets the number of bits used for \s-1DSA\s0
parameter generation to \fBnbits\fR. If not specified, 2048 is used.
.PP
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_q_bits()\fR sets the number of bits in the subprime
parameter \fIq\fR for \s-1DSA\s0 parameter generation to \fIqbits\fR. If not specified, 224
is used. If a digest function is specified below, this parameter is ignored and
instead, the number of bits in \fIq\fR matches the size of the digest.
.PP
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_md()\fR sets the digest function used for \s-1DSA\s0
parameter generation to \fImd\fR. If not specified, one of \s-1SHA\-1, SHA\-224,\s0 or
\&\s-1SHA\-256\s0 is selected to match the bit length of \fIq\fR above.
.PP
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_md_props()\fR sets the digest function used for \s-1DSA\s0
parameter generation using \fImd_name\fR and \fImd_properties\fR to retrieve the
digest from a provider.
If not specified, \fImd_name\fR will be set to one of \s-1SHA\-1, SHA\-224,\s0 or
\&\s-1SHA\-256\s0 depending on the bit length of \fIq\fR above. \fImd_properties\fR is a
property query string that has a default value of '' if not specified.
.PP
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_gindex()\fR sets the \fIgindex\fR used by the generator
G. The default value is \-1 which uses unverifiable g, otherwise a positive value
uses verifiable g. This value must be saved if key validation of g is required,
since it is not part of a persisted key.
.PP
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_seed()\fR sets the \fIseed\fR to use for generation
rather than using a randomly generated value for the seed. This is useful for
testing purposes only and can fail if the seed does not produce primes for both
p & q on its first iteration. This value must be saved if key validation of
p, q, and verifiable g are required, since it is not part of a persisted key.
.PP
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_type()\fR sets the generation type to use \s-1FIPS186\-4\s0
generation if \fIname\fR is \*(L"fips186_4\*(R", or \s-1FIPS186\-2\s0 generation if \fIname\fR is
\&\*(L"fips186_2\*(R". The default value for the default provider is \*(L"fips186_2\*(R". The
default value for the \s-1FIPS\s0 provider is \*(L"fips186_4\*(R".
.SS "\s-1DH\s0 parameters"
.IX Subsection "DH parameters"
\&\fBEVP_PKEY_CTX_set_dh_paramgen_prime_len()\fR sets the length of the \s-1DH\s0 prime
parameter \fIp\fR for \s-1DH\s0 parameter generation. If this function is not called then
2048 is used. Only accepts lengths greater than or equal to 256.
.PP
\&\fBEVP_PKEY_CTX_set_dh_paramgen_subprime_len()\fR sets the length of the \s-1DH\s0
optional subprime parameter \fIq\fR for \s-1DH\s0 parameter generation. The default is
256 if the prime is at least 2048 bits long or 160 otherwise. The \s-1DH\s0 paramgen
type must have been set to \*(L"fips186_4\*(R".
.PP
\&\fBEVP_PKEY_CTX_set_dh_paramgen_generator()\fR sets \s-1DH\s0 generator to \fIgen\fR for \s-1DH\s0
parameter generation. If not specified 2 is used.
.PP
\&\fBEVP_PKEY_CTX_set_dh_paramgen_type()\fR sets the key type for \s-1DH\s0 parameter
generation. The supported parameters are:
.IP "\fB\s-1DH_PARAMGEN_TYPE_GROUP\s0\fR" 4
.IX Item "DH_PARAMGEN_TYPE_GROUP"
Use a named group. If only the safe prime parameter \fIp\fR is set this can be
used to select a ffdhe safe prime group of the correct size.
.IP "\fB\s-1DH_PARAMGEN_TYPE_FIPS_186_4\s0\fR" 4
.IX Item "DH_PARAMGEN_TYPE_FIPS_186_4"
\&\s-1FIPS186\-4 FFC\s0 parameter generator.
.IP "\fB\s-1DH_PARAMGEN_TYPE_FIPS_186_2\s0\fR" 4
.IX Item "DH_PARAMGEN_TYPE_FIPS_186_2"
\&\s-1FIPS186\-2 FFC\s0 parameter generator (X9.42 \s-1DH\s0).
.IP "\fB\s-1DH_PARAMGEN_TYPE_GENERATOR\s0\fR" 4
.IX Item "DH_PARAMGEN_TYPE_GENERATOR"
Uses a safe prime generator g (PKCS#3 format).
.PP
The default in the default provider is \fB\s-1DH_PARAMGEN_TYPE_GENERATOR\s0\fR for the
\&\*(L"\s-1DH\*(R"\s0 keytype, and \fB\s-1DH_PARAMGEN_TYPE_FIPS_186_2\s0\fR for the \*(L"\s-1DHX\*(R"\s0 keytype. In the
\&\s-1FIPS\s0 provider the default value is \fB\s-1DH_PARAMGEN_TYPE_GROUP\s0\fR for the \*(L"\s-1DH\*(R"\s0
keytype and <\fB\s-1DH_PARAMGEN_TYPE_FIPS_186_4\s0\fR for the \*(L"\s-1DHX\*(R"\s0 keytype.
.PP
\&\fBEVP_PKEY_CTX_set_dh_paramgen_gindex()\fR sets the \fIgindex\fR used by the generator G.
The default value is \-1 which uses unverifiable g, otherwise a positive value
uses verifiable g. This value must be saved if key validation of g is required,
since it is not part of a persisted key.
.PP
\&\fBEVP_PKEY_CTX_set_dh_paramgen_seed()\fR sets the \fIseed\fR to use for generation
rather than using a randomly generated value for the seed. This is useful for
testing purposes only and can fail if the seed does not produce primes for both
p & q on its first iteration. This value must be saved if key validation of p, q,
and verifiable g are required, since it is not part of a persisted key.
.PP
\&\fBEVP_PKEY_CTX_set_dh_pad()\fR sets the \s-1DH\s0 padding mode.
If \fIpad\fR is 1 the shared secret is padded with zeros up to the size of the \s-1DH\s0
prime \fIp\fR.
If \fIpad\fR is zero (the default) then no padding is performed.
.PP
\&\fBEVP_PKEY_CTX_set_dh_nid()\fR sets the \s-1DH\s0 parameters to values corresponding to
\&\fInid\fR as defined in \s-1RFC7919\s0 or \s-1RFC3526.\s0 The \fInid\fR parameter must be
\&\fBNID_ffdhe2048\fR, \fBNID_ffdhe3072\fR, \fBNID_ffdhe4096\fR, \fBNID_ffdhe6144\fR,
\&\fBNID_ffdhe8192\fR, \fBNID_modp_1536\fR, \fBNID_modp_2048\fR, \fBNID_modp_3072\fR,
\&\fBNID_modp_4096\fR, \fBNID_modp_6144\fR, \fBNID_modp_8192\fR or \fBNID_undef\fR to clear
the stored value. This function can be called during parameter or key generation.
The nid parameter and the rfc5114 parameter are mutually exclusive.
.PP
\&\fBEVP_PKEY_CTX_set_dh_rfc5114()\fR and \fBEVP_PKEY_CTX_set_dhx_rfc5114()\fR both set the
\&\s-1DH\s0 parameters to the values defined in \s-1RFC5114.\s0 The \fIrfc5114\fR parameter must
be 1, 2 or 3 corresponding to \s-1RFC5114\s0 sections 2.1, 2.2 and 2.3. or 0 to clear
the stored value. This macro can be called during parameter generation. The
\&\fIctx\fR must have a key type of \fB\s-1EVP_PKEY_DHX\s0\fR.
The rfc5114 parameter and the nid parameter are mutually exclusive.
.SS "\s-1DH\s0 key derivation function parameters"
.IX Subsection "DH key derivation function parameters"
Note that all of the following functions require that the \fIctx\fR parameter has
a private key type of \fB\s-1EVP_PKEY_DHX\s0\fR. When using key derivation, the output of
\&\fBEVP_PKEY_derive()\fR is the output of the \s-1KDF\s0 instead of the \s-1DH\s0 shared secret.
The \s-1KDF\s0 output is typically used as a Key Encryption Key (\s-1KEK\s0) that in turn
encrypts a Content Encryption Key (\s-1CEK\s0).
.PP
\&\fBEVP_PKEY_CTX_set_dh_kdf_type()\fR sets the key derivation function type to \fIkdf\fR
for \s-1DH\s0 key derivation. Possible values are \fB\s-1EVP_PKEY_DH_KDF_NONE\s0\fR and
\&\fB\s-1EVP_PKEY_DH_KDF_X9_42\s0\fR which uses the key derivation specified in \s-1RFC2631\s0
(based on the keying algorithm described in X9.42). When using key derivation,
the \fIkdf_oid\fR, \fIkdf_md\fR and \fIkdf_outlen\fR parameters must also be specified.
.PP
\&\fBEVP_PKEY_CTX_get_dh_kdf_type()\fR gets the key derivation function type for \fIctx\fR
used for \s-1DH\s0 key derivation. Possible values are \fB\s-1EVP_PKEY_DH_KDF_NONE\s0\fR and
\&\fB\s-1EVP_PKEY_DH_KDF_X9_42\s0\fR.
.PP
\&\fBEVP_PKEY_CTX_set0_dh_kdf_oid()\fR sets the key derivation function object
identifier to \fIoid\fR for \s-1DH\s0 key derivation. This \s-1OID\s0 should identify the
algorithm to be used with the Content Encryption Key.
The library takes ownership of the object identifier so the caller should not
free the original memory pointed to by \fIoid\fR.
.PP
\&\fBEVP_PKEY_CTX_get0_dh_kdf_oid()\fR gets the key derivation function oid for \fIctx\fR
used for \s-1DH\s0 key derivation. The resulting pointer is owned by the library and
should not be freed by the caller.
.PP
\&\fBEVP_PKEY_CTX_set_dh_kdf_md()\fR sets the key derivation function message digest to
\&\fImd\fR for \s-1DH\s0 key derivation. Note that \s-1RFC2631\s0 specifies that this digest should
be \s-1SHA1\s0 but OpenSSL tolerates other digests.
.PP
\&\fBEVP_PKEY_CTX_get_dh_kdf_md()\fR gets the key derivation function message digest for
\&\fIctx\fR used for \s-1DH\s0 key derivation.
.PP
\&\fBEVP_PKEY_CTX_set_dh_kdf_outlen()\fR sets the key derivation function output length
to \fIlen\fR for \s-1DH\s0 key derivation.
.PP
\&\fBEVP_PKEY_CTX_get_dh_kdf_outlen()\fR gets the key derivation function output length
for \fIctx\fR used for \s-1DH\s0 key derivation.
.PP
\&\fBEVP_PKEY_CTX_set0_dh_kdf_ukm()\fR sets the user key material to \fIukm\fR and its
length to \fIlen\fR for \s-1DH\s0 key derivation. This parameter is optional and
corresponds to the partyAInfo field in \s-1RFC2631\s0 terms. The specification
requires that it is 512 bits long but this is not enforced by OpenSSL.
The library takes ownership of the user key material so the caller should not
free the original memory pointed to by \fIukm\fR.
.PP
\&\fBEVP_PKEY_CTX_get0_dh_kdf_ukm()\fR gets the user key material for \fIctx\fR.
The return value is the user key material length. The resulting pointer is owned
by the library and should not be freed by the caller.
.SS "\s-1EC\s0 parameters"
.IX Subsection "EC parameters"
Use \fBEVP_PKEY_CTX_set_group_name()\fR (described above) to set the curve name to
\&\fIname\fR for parameter and key generation.
.PP
\&\fBEVP_PKEY_CTX_set_ec_paramgen_curve_nid()\fR does the same as
\&\fBEVP_PKEY_CTX_set_group_name()\fR, but is specific to \s-1EC\s0 and uses a \fInid\fR rather
than a name string.
.PP
For \s-1EC\s0 parameter generation, one of \fBEVP_PKEY_CTX_set_group_name()\fR
or \fBEVP_PKEY_CTX_set_ec_paramgen_curve_nid()\fR must be called or an error occurs
because there is no default curve.
These function can also be called to set the curve explicitly when
generating an \s-1EC\s0 key.
.PP
\&\fBEVP_PKEY_CTX_get_group_name()\fR (described above) can be used to obtain the curve
name that's currently set with \fIctx\fR.
.PP
\&\fBEVP_PKEY_CTX_set_ec_param_enc()\fR sets the \s-1EC\s0 parameter encoding to \fIparam_enc\fR
when generating \s-1EC\s0 parameters or an \s-1EC\s0 key. The encoding can be
\&\fB\s-1OPENSSL_EC_EXPLICIT_CURVE\s0\fR for explicit parameters (the default in versions
of OpenSSL before 1.1.0) or \fB\s-1OPENSSL_EC_NAMED_CURVE\s0\fR to use named curve form.
For maximum compatibility the named curve form should be used. Note: the
\&\fB\s-1OPENSSL_EC_NAMED_CURVE\s0\fR value was added in OpenSSL 1.1.0; previous
versions should use 0 instead.
.SS "\s-1ECDH\s0 parameters"
.IX Subsection "ECDH parameters"
\&\fBEVP_PKEY_CTX_set_ecdh_cofactor_mode()\fR sets the cofactor mode to \fIcofactor_mode\fR
for \s-1ECDH\s0 key derivation. Possible values are 1 to enable cofactor
key derivation, 0 to disable it and \-1 to clear the stored cofactor mode and
fallback to the private key cofactor mode.
.PP
\&\fBEVP_PKEY_CTX_get_ecdh_cofactor_mode()\fR returns the cofactor mode for \fIctx\fR used
for \s-1ECDH\s0 key derivation. Possible values are 1 when cofactor key derivation is
enabled and 0 otherwise.
.SS "\s-1ECDH\s0 key derivation function parameters"
.IX Subsection "ECDH key derivation function parameters"
\&\fBEVP_PKEY_CTX_set_ecdh_kdf_type()\fR sets the key derivation function type to
\&\fIkdf\fR for \s-1ECDH\s0 key derivation. Possible values are \fB\s-1EVP_PKEY_ECDH_KDF_NONE\s0\fR
and \fB\s-1EVP_PKEY_ECDH_KDF_X9_63\s0\fR which uses the key derivation specified in X9.63.
When using key derivation, the \fIkdf_md\fR and \fIkdf_outlen\fR parameters must
also be specified.
.PP
\&\fBEVP_PKEY_CTX_get_ecdh_kdf_type()\fR returns the key derivation function type for
\&\fIctx\fR used for \s-1ECDH\s0 key derivation. Possible values are
\&\fB\s-1EVP_PKEY_ECDH_KDF_NONE\s0\fR and \fB\s-1EVP_PKEY_ECDH_KDF_X9_63\s0\fR.
.PP
\&\fBEVP_PKEY_CTX_set_ecdh_kdf_md()\fR sets the key derivation function message digest
to \fImd\fR for \s-1ECDH\s0 key derivation. Note that X9.63 specifies that this digest
should be \s-1SHA1\s0 but OpenSSL tolerates other digests.
.PP
\&\fBEVP_PKEY_CTX_get_ecdh_kdf_md()\fR gets the key derivation function message digest
for \fIctx\fR used for \s-1ECDH\s0 key derivation.
.PP
\&\fBEVP_PKEY_CTX_set_ecdh_kdf_outlen()\fR sets the key derivation function output
length to \fIlen\fR for \s-1ECDH\s0 key derivation.
.PP
\&\fBEVP_PKEY_CTX_get_ecdh_kdf_outlen()\fR gets the key derivation function output
length for \fIctx\fR used for \s-1ECDH\s0 key derivation.
.PP
\&\fBEVP_PKEY_CTX_set0_ecdh_kdf_ukm()\fR sets the user key material to \fIukm\fR for \s-1ECDH\s0
key derivation. This parameter is optional and corresponds to the shared info in
X9.63 terms. The library takes ownership of the user key material so the caller
should not free the original memory pointed to by \fIukm\fR.
.PP
\&\fBEVP_PKEY_CTX_get0_ecdh_kdf_ukm()\fR gets the user key material for \fIctx\fR.
The return value is the user key material length. The resulting pointer is owned
by the library and should not be freed by the caller.
.SS "Other parameters"
.IX Subsection "Other parameters"
\&\fBEVP_PKEY_CTX_set1_id()\fR, \fBEVP_PKEY_CTX_get1_id()\fR and \fBEVP_PKEY_CTX_get1_id_len()\fR
are used to manipulate the special identifier field for specific signature
algorithms such as \s-1SM2.\s0 The \fBEVP_PKEY_CTX_set1_id()\fR sets an \s-1ID\s0 pointed by \fIid\fR with
the length \fIid_len\fR to the library. The library takes a copy of the id so that
the caller can safely free the original memory pointed to by \fIid\fR.
\&\fBEVP_PKEY_CTX_get1_id_len()\fR returns the length of the \s-1ID\s0 set via a previous call
to \fBEVP_PKEY_CTX_set1_id()\fR. The length is usually used to allocate adequate
memory for further calls to \fBEVP_PKEY_CTX_get1_id()\fR. \fBEVP_PKEY_CTX_get1_id()\fR
returns the previously set \s-1ID\s0 value to caller in \fIid\fR. The caller should
allocate adequate memory space for the \fIid\fR before calling \fBEVP_PKEY_CTX_get1_id()\fR.
.PP
\&\fBEVP_PKEY_CTX_set_kem_op()\fR sets the \s-1KEM\s0 operation to run. This can be set after
\&\fBEVP_PKEY_encapsulate_init()\fR or \fBEVP_PKEY_decapsulate_init()\fR to select the
kem operation. \s-1RSA\s0 is the only key type that supports encapsulation currently,
and as there is no default operation for the \s-1RSA\s0 type, this function must be
called before \fBEVP_PKEY_encapsulate()\fR or \fBEVP_PKEY_decapsulate()\fR.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
All other functions described on this page return a positive value for success
and 0 or a negative value for failure. In particular a return value of \-2
indicates the operation is not supported by the public key algorithm.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fBEVP_PKEY_CTX_set_params\fR\|(3),
\&\fBEVP_PKEY_CTX_new\fR\|(3),
\&\fBEVP_PKEY_encrypt\fR\|(3),
\&\fBEVP_PKEY_decrypt\fR\|(3),
\&\fBEVP_PKEY_sign\fR\|(3),
\&\fBEVP_PKEY_verify\fR\|(3),
\&\fBEVP_PKEY_verify_recover\fR\|(3),
\&\fBEVP_PKEY_derive\fR\|(3),
\&\fBEVP_PKEY_keygen\fR\|(3)
\&\fBEVP_PKEY_encapsulate\fR\|(3)
\&\fBEVP_PKEY_decapsulate\fR\|(3)
.SH "HISTORY"
.IX Header "HISTORY"
\&\fBEVP_PKEY_CTX_get_rsa_oaep_md_name()\fR, \fBEVP_PKEY_CTX_get_rsa_mgf1_md_name()\fR,
\&\fBEVP_PKEY_CTX_set_rsa_mgf1_md_name()\fR, \fBEVP_PKEY_CTX_set_rsa_oaep_md_name()\fR,
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_md_props()\fR, \fBEVP_PKEY_CTX_set_dsa_paramgen_gindex()\fR,
\&\fBEVP_PKEY_CTX_set_dsa_paramgen_type()\fR, \fBEVP_PKEY_CTX_set_dsa_paramgen_seed()\fR,
\&\fBEVP_PKEY_CTX_set_group_name()\fR and \fBEVP_PKEY_CTX_get_group_name()\fR
were added in OpenSSL 3.0.
.PP
The \fBEVP_PKEY_CTX_set1_id()\fR, \fBEVP_PKEY_CTX_get1_id()\fR and
\&\fBEVP_PKEY_CTX_get1_id_len()\fR macros were added in 1.1.1, other functions were
added in OpenSSL 1.0.0.
.PP
In OpenSSL 1.1.1 and below the functions were mostly macros.
From OpenSSL 3.0 they are all functions.
.PP
\&\fBEVP_PKEY_CTX_set_rsa_keygen_pubexp()\fR, \fBEVP_PKEY_CTX_get0_dh_kdf_ukm()\fR,
and \fBEVP_PKEY_CTX_get0_ecdh_kdf_ukm()\fR were deprecated in OpenSSL 3.0.
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2006\-2021 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the Apache License 2.0 (the \*(L"License\*(R").  You may not use
this file except in compliance with the License.  You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.