Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
//===---------- ExprMutationAnalyzer.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/ExprMutationAnalyzer.h"
#include "clang/AST/Expr.h"
#include "clang/AST/OperationKinds.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "llvm/ADT/STLExtras.h"

namespace clang {
using namespace ast_matchers;

namespace {

AST_MATCHER_P(LambdaExpr, hasCaptureInit, const Expr *, E) {
  return llvm::is_contained(Node.capture_inits(), E);
}

AST_MATCHER_P(CXXForRangeStmt, hasRangeStmt,
              ast_matchers::internal::Matcher<DeclStmt>, InnerMatcher) {
  const DeclStmt *const Range = Node.getRangeStmt();
  return InnerMatcher.matches(*Range, Finder, Builder);
}

AST_MATCHER_P(Expr, maybeEvalCommaExpr, ast_matchers::internal::Matcher<Expr>,
              InnerMatcher) {
  const Expr *Result = &Node;
  while (const auto *BOComma =
             dyn_cast_or_null<BinaryOperator>(Result->IgnoreParens())) {
    if (!BOComma->isCommaOp())
      break;
    Result = BOComma->getRHS();
  }
  return InnerMatcher.matches(*Result, Finder, Builder);
}

AST_MATCHER_P(Expr, canResolveToExpr, ast_matchers::internal::Matcher<Expr>,
              InnerMatcher) {
  auto DerivedToBase = [](const ast_matchers::internal::Matcher<Expr> &Inner) {
    return implicitCastExpr(anyOf(hasCastKind(CK_DerivedToBase),
                                  hasCastKind(CK_UncheckedDerivedToBase)),
                            hasSourceExpression(Inner));
  };
  auto IgnoreDerivedToBase =
      [&DerivedToBase](const ast_matchers::internal::Matcher<Expr> &Inner) {
        return ignoringParens(expr(anyOf(Inner, DerivedToBase(Inner))));
      };

  // The 'ConditionalOperator' matches on `<anything> ? <expr> : <expr>`.
  // This matching must be recursive because `<expr>` can be anything resolving
  // to the `InnerMatcher`, for example another conditional operator.
  // The edge-case `BaseClass &b = <cond> ? DerivedVar1 : DerivedVar2;`
  // is handled, too. The implicit cast happens outside of the conditional.
  // This is matched by `IgnoreDerivedToBase(canResolveToExpr(InnerMatcher))`
  // below.
  auto const ConditionalOperator = conditionalOperator(anyOf(
      hasTrueExpression(ignoringParens(canResolveToExpr(InnerMatcher))),
      hasFalseExpression(ignoringParens(canResolveToExpr(InnerMatcher)))));
  auto const ElvisOperator = binaryConditionalOperator(anyOf(
      hasTrueExpression(ignoringParens(canResolveToExpr(InnerMatcher))),
      hasFalseExpression(ignoringParens(canResolveToExpr(InnerMatcher)))));

  auto const ComplexMatcher = ignoringParens(
      expr(anyOf(IgnoreDerivedToBase(InnerMatcher),
                 maybeEvalCommaExpr(IgnoreDerivedToBase(InnerMatcher)),
                 IgnoreDerivedToBase(ConditionalOperator),
                 IgnoreDerivedToBase(ElvisOperator))));

  return ComplexMatcher.matches(Node, Finder, Builder);
}

// Similar to 'hasAnyArgument', but does not work because 'InitListExpr' does
// not have the 'arguments()' method.
AST_MATCHER_P(InitListExpr, hasAnyInit, ast_matchers::internal::Matcher<Expr>,
              InnerMatcher) {
  for (const Expr *Arg : Node.inits()) {
    ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
    if (InnerMatcher.matches(*Arg, Finder, &Result)) {
      *Builder = std::move(Result);
      return true;
    }
  }
  return false;
}

const ast_matchers::internal::VariadicDynCastAllOfMatcher<Stmt, CXXTypeidExpr>
    cxxTypeidExpr;

AST_MATCHER(CXXTypeidExpr, isPotentiallyEvaluated) {
  return Node.isPotentiallyEvaluated();
}

AST_MATCHER_P(GenericSelectionExpr, hasControllingExpr,
              ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
  return InnerMatcher.matches(*Node.getControllingExpr(), Finder, Builder);
}

const auto nonConstReferenceType = [] {
  return hasUnqualifiedDesugaredType(
      referenceType(pointee(unless(isConstQualified()))));
};

const auto nonConstPointerType = [] {
  return hasUnqualifiedDesugaredType(
      pointerType(pointee(unless(isConstQualified()))));
};

const auto isMoveOnly = [] {
  return cxxRecordDecl(
      hasMethod(cxxConstructorDecl(isMoveConstructor(), unless(isDeleted()))),
      hasMethod(cxxMethodDecl(isMoveAssignmentOperator(), unless(isDeleted()))),
      unless(anyOf(hasMethod(cxxConstructorDecl(isCopyConstructor(),
                                                unless(isDeleted()))),
                   hasMethod(cxxMethodDecl(isCopyAssignmentOperator(),
                                           unless(isDeleted()))))));
};

template <class T> struct NodeID;
template <> struct NodeID<Expr> { static constexpr StringRef value = "expr"; };
template <> struct NodeID<Decl> { static constexpr StringRef value = "decl"; };
constexpr StringRef NodeID<Expr>::value;
constexpr StringRef NodeID<Decl>::value;

template <class T, class F = const Stmt *(ExprMutationAnalyzer::*)(const T *)>
const Stmt *tryEachMatch(ArrayRef<ast_matchers::BoundNodes> Matches,
                         ExprMutationAnalyzer *Analyzer, F Finder) {
  const StringRef ID = NodeID<T>::value;
  for (const auto &Nodes : Matches) {
    if (const Stmt *S = (Analyzer->*Finder)(Nodes.getNodeAs<T>(ID)))
      return S;
  }
  return nullptr;
}

} // namespace

const Stmt *ExprMutationAnalyzer::findMutation(const Expr *Exp) {
  return findMutationMemoized(Exp,
                              {&ExprMutationAnalyzer::findDirectMutation,
                               &ExprMutationAnalyzer::findMemberMutation,
                               &ExprMutationAnalyzer::findArrayElementMutation,
                               &ExprMutationAnalyzer::findCastMutation,
                               &ExprMutationAnalyzer::findRangeLoopMutation,
                               &ExprMutationAnalyzer::findReferenceMutation,
                               &ExprMutationAnalyzer::findFunctionArgMutation},
                              Results);
}

const Stmt *ExprMutationAnalyzer::findMutation(const Decl *Dec) {
  return tryEachDeclRef(Dec, &ExprMutationAnalyzer::findMutation);
}

const Stmt *ExprMutationAnalyzer::findPointeeMutation(const Expr *Exp) {
  return findMutationMemoized(Exp, {/*TODO*/}, PointeeResults);
}

const Stmt *ExprMutationAnalyzer::findPointeeMutation(const Decl *Dec) {
  return tryEachDeclRef(Dec, &ExprMutationAnalyzer::findPointeeMutation);
}

const Stmt *ExprMutationAnalyzer::findMutationMemoized(
    const Expr *Exp, llvm::ArrayRef<MutationFinder> Finders,
    ResultMap &MemoizedResults) {
  const auto Memoized = MemoizedResults.find(Exp);
  if (Memoized != MemoizedResults.end())
    return Memoized->second;

  if (isUnevaluated(Exp))
    return MemoizedResults[Exp] = nullptr;

  for (const auto &Finder : Finders) {
    if (const Stmt *S = (this->*Finder)(Exp))
      return MemoizedResults[Exp] = S;
  }

  return MemoizedResults[Exp] = nullptr;
}

const Stmt *ExprMutationAnalyzer::tryEachDeclRef(const Decl *Dec,
                                                 MutationFinder Finder) {
  const auto Refs =
      match(findAll(declRefExpr(to(equalsNode(Dec))).bind(NodeID<Expr>::value)),
            Stm, Context);
  for (const auto &RefNodes : Refs) {
    const auto *E = RefNodes.getNodeAs<Expr>(NodeID<Expr>::value);
    if ((this->*Finder)(E))
      return E;
  }
  return nullptr;
}

bool ExprMutationAnalyzer::isUnevaluated(const Expr *Exp) {
  return selectFirst<Expr>(
             NodeID<Expr>::value,
             match(
                 findAll(
                     expr(canResolveToExpr(equalsNode(Exp)),
                          anyOf(
                              // `Exp` is part of the underlying expression of
                              // decltype/typeof if it has an ancestor of
                              // typeLoc.
                              hasAncestor(typeLoc(unless(
                                  hasAncestor(unaryExprOrTypeTraitExpr())))),
                              hasAncestor(expr(anyOf(
                                  // `UnaryExprOrTypeTraitExpr` is unevaluated
                                  // unless it's sizeof on VLA.
                                  unaryExprOrTypeTraitExpr(unless(sizeOfExpr(
                                      hasArgumentOfType(variableArrayType())))),
                                  // `CXXTypeidExpr` is unevaluated unless it's
                                  // applied to an expression of glvalue of
                                  // polymorphic class type.
                                  cxxTypeidExpr(
                                      unless(isPotentiallyEvaluated())),
                                  // The controlling expression of
                                  // `GenericSelectionExpr` is unevaluated.
                                  genericSelectionExpr(hasControllingExpr(
                                      hasDescendant(equalsNode(Exp)))),
                                  cxxNoexceptExpr())))))
                         .bind(NodeID<Expr>::value)),
                 Stm, Context)) != nullptr;
}

const Stmt *
ExprMutationAnalyzer::findExprMutation(ArrayRef<BoundNodes> Matches) {
  return tryEachMatch<Expr>(Matches, this, &ExprMutationAnalyzer::findMutation);
}

const Stmt *
ExprMutationAnalyzer::findDeclMutation(ArrayRef<BoundNodes> Matches) {
  return tryEachMatch<Decl>(Matches, this, &ExprMutationAnalyzer::findMutation);
}

const Stmt *ExprMutationAnalyzer::findExprPointeeMutation(
    ArrayRef<ast_matchers::BoundNodes> Matches) {
  return tryEachMatch<Expr>(Matches, this,
                            &ExprMutationAnalyzer::findPointeeMutation);
}

const Stmt *ExprMutationAnalyzer::findDeclPointeeMutation(
    ArrayRef<ast_matchers::BoundNodes> Matches) {
  return tryEachMatch<Decl>(Matches, this,
                            &ExprMutationAnalyzer::findPointeeMutation);
}

const Stmt *ExprMutationAnalyzer::findDirectMutation(const Expr *Exp) {
  // LHS of any assignment operators.
  const auto AsAssignmentLhs = binaryOperator(
      isAssignmentOperator(), hasLHS(canResolveToExpr(equalsNode(Exp))));

  // Operand of increment/decrement operators.
  const auto AsIncDecOperand =
      unaryOperator(anyOf(hasOperatorName("++"), hasOperatorName("--")),
                    hasUnaryOperand(canResolveToExpr(equalsNode(Exp))));

  // Invoking non-const member function.
  // A member function is assumed to be non-const when it is unresolved.
  const auto NonConstMethod = cxxMethodDecl(unless(isConst()));

  const auto AsNonConstThis = expr(anyOf(
      cxxMemberCallExpr(callee(NonConstMethod),
                        on(canResolveToExpr(equalsNode(Exp)))),
      cxxOperatorCallExpr(callee(NonConstMethod),
                          hasArgument(0, canResolveToExpr(equalsNode(Exp)))),
      // In case of a templated type, calling overloaded operators is not
      // resolved and modelled as `binaryOperator` on a dependent type.
      // Such instances are considered a modification, because they can modify
      // in different instantiations of the template.
      binaryOperator(hasEitherOperand(
          allOf(ignoringImpCasts(canResolveToExpr(equalsNode(Exp))),
                isTypeDependent()))),
      // Within class templates and member functions the member expression might
      // not be resolved. In that case, the `callExpr` is considered to be a
      // modification.
      callExpr(
          callee(expr(anyOf(unresolvedMemberExpr(hasObjectExpression(
                                canResolveToExpr(equalsNode(Exp)))),
                            cxxDependentScopeMemberExpr(hasObjectExpression(
                                canResolveToExpr(equalsNode(Exp)))))))),
      // Match on a call to a known method, but the call itself is type
      // dependent (e.g. `vector<T> v; v.push(T{});` in a templated function).
      callExpr(allOf(isTypeDependent(),
                     callee(memberExpr(hasDeclaration(NonConstMethod),
                                       hasObjectExpression(canResolveToExpr(
                                           equalsNode(Exp)))))))));

  // Taking address of 'Exp'.
  // We're assuming 'Exp' is mutated as soon as its address is taken, though in
  // theory we can follow the pointer and see whether it escaped `Stm` or is
  // dereferenced and then mutated. This is left for future improvements.
  const auto AsAmpersandOperand =
      unaryOperator(hasOperatorName("&"),
                    // A NoOp implicit cast is adding const.
                    unless(hasParent(implicitCastExpr(hasCastKind(CK_NoOp)))),
                    hasUnaryOperand(canResolveToExpr(equalsNode(Exp))));
  const auto AsPointerFromArrayDecay =
      castExpr(hasCastKind(CK_ArrayToPointerDecay),
               unless(hasParent(arraySubscriptExpr())),
               has(canResolveToExpr(equalsNode(Exp))));
  // Treat calling `operator->()` of move-only classes as taking address.
  // These are typically smart pointers with unique ownership so we treat
  // mutation of pointee as mutation of the smart pointer itself.
  const auto AsOperatorArrowThis = cxxOperatorCallExpr(
      hasOverloadedOperatorName("->"),
      callee(
          cxxMethodDecl(ofClass(isMoveOnly()), returns(nonConstPointerType()))),
      argumentCountIs(1), hasArgument(0, canResolveToExpr(equalsNode(Exp))));

  // Used as non-const-ref argument when calling a function.
  // An argument is assumed to be non-const-ref when the function is unresolved.
  // Instantiated template functions are not handled here but in
  // findFunctionArgMutation which has additional smarts for handling forwarding
  // references.
  const auto NonConstRefParam = forEachArgumentWithParamType(
      anyOf(canResolveToExpr(equalsNode(Exp)),
            memberExpr(hasObjectExpression(canResolveToExpr(equalsNode(Exp))))),
      nonConstReferenceType());
  const auto NotInstantiated = unless(hasDeclaration(isInstantiated()));
  const auto TypeDependentCallee =
      callee(expr(anyOf(unresolvedLookupExpr(), unresolvedMemberExpr(),
                        cxxDependentScopeMemberExpr(),
                        hasType(templateTypeParmType()), isTypeDependent())));

  const auto AsNonConstRefArg = anyOf(
      callExpr(NonConstRefParam, NotInstantiated),
      cxxConstructExpr(NonConstRefParam, NotInstantiated),
      callExpr(TypeDependentCallee,
               hasAnyArgument(canResolveToExpr(equalsNode(Exp)))),
      cxxUnresolvedConstructExpr(
          hasAnyArgument(canResolveToExpr(equalsNode(Exp)))),
      // Previous False Positive in the following Code:
      // `template <typename T> void f() { int i = 42; new Type<T>(i); }`
      // Where the constructor of `Type` takes its argument as reference.
      // The AST does not resolve in a `cxxConstructExpr` because it is
      // type-dependent.
      parenListExpr(hasDescendant(expr(canResolveToExpr(equalsNode(Exp))))),
      // If the initializer is for a reference type, there is no cast for
      // the variable. Values are cast to RValue first.
      initListExpr(hasAnyInit(expr(canResolveToExpr(equalsNode(Exp))))));

  // Captured by a lambda by reference.
  // If we're initializing a capture with 'Exp' directly then we're initializing
  // a reference capture.
  // For value captures there will be an ImplicitCastExpr <LValueToRValue>.
  const auto AsLambdaRefCaptureInit = lambdaExpr(hasCaptureInit(Exp));

  // Returned as non-const-ref.
  // If we're returning 'Exp' directly then it's returned as non-const-ref.
  // For returning by value there will be an ImplicitCastExpr <LValueToRValue>.
  // For returning by const-ref there will be an ImplicitCastExpr <NoOp> (for
  // adding const.)
  const auto AsNonConstRefReturn =
      returnStmt(hasReturnValue(canResolveToExpr(equalsNode(Exp))));

  // It is used as a non-const-reference for initalizing a range-for loop.
  const auto AsNonConstRefRangeInit = cxxForRangeStmt(
      hasRangeInit(declRefExpr(allOf(canResolveToExpr(equalsNode(Exp)),
                                     hasType(nonConstReferenceType())))));

  const auto Matches = match(
      traverse(TK_AsIs,
               findAll(stmt(anyOf(AsAssignmentLhs, AsIncDecOperand,
                                  AsNonConstThis, AsAmpersandOperand,
                                  AsPointerFromArrayDecay, AsOperatorArrowThis,
                                  AsNonConstRefArg, AsLambdaRefCaptureInit,
                                  AsNonConstRefReturn, AsNonConstRefRangeInit))
                           .bind("stmt"))),
      Stm, Context);
  return selectFirst<Stmt>("stmt", Matches);
}

const Stmt *ExprMutationAnalyzer::findMemberMutation(const Expr *Exp) {
  // Check whether any member of 'Exp' is mutated.
  const auto MemberExprs =
      match(findAll(expr(anyOf(memberExpr(hasObjectExpression(
                                   canResolveToExpr(equalsNode(Exp)))),
                               cxxDependentScopeMemberExpr(hasObjectExpression(
                                   canResolveToExpr(equalsNode(Exp))))))
                        .bind(NodeID<Expr>::value)),
            Stm, Context);
  return findExprMutation(MemberExprs);
}

const Stmt *ExprMutationAnalyzer::findArrayElementMutation(const Expr *Exp) {
  // Check whether any element of an array is mutated.
  const auto SubscriptExprs =
      match(findAll(arraySubscriptExpr(
                        anyOf(hasBase(canResolveToExpr(equalsNode(Exp))),
                              hasBase(implicitCastExpr(
                                  allOf(hasCastKind(CK_ArrayToPointerDecay),
                                        hasSourceExpression(canResolveToExpr(
                                            equalsNode(Exp))))))))
                        .bind(NodeID<Expr>::value)),
            Stm, Context);
  return findExprMutation(SubscriptExprs);
}

const Stmt *ExprMutationAnalyzer::findCastMutation(const Expr *Exp) {
  // If the 'Exp' is explicitly casted to a non-const reference type the
  // 'Exp' is considered to be modified.
  const auto ExplicitCast = match(
      findAll(
          stmt(castExpr(hasSourceExpression(canResolveToExpr(equalsNode(Exp))),
                        explicitCastExpr(
                            hasDestinationType(nonConstReferenceType()))))
              .bind("stmt")),
      Stm, Context);

  if (const auto *CastStmt = selectFirst<Stmt>("stmt", ExplicitCast))
    return CastStmt;

  // If 'Exp' is casted to any non-const reference type, check the castExpr.
  const auto Casts = match(
      findAll(
          expr(castExpr(hasSourceExpression(canResolveToExpr(equalsNode(Exp))),
                        anyOf(explicitCastExpr(
                                  hasDestinationType(nonConstReferenceType())),
                              implicitCastExpr(hasImplicitDestinationType(
                                  nonConstReferenceType())))))
              .bind(NodeID<Expr>::value)),
      Stm, Context);

  if (const Stmt *S = findExprMutation(Casts))
    return S;
  // Treat std::{move,forward} as cast.
  const auto Calls =
      match(findAll(callExpr(callee(namedDecl(
                                 hasAnyName("::std::move", "::std::forward"))),
                             hasArgument(0, canResolveToExpr(equalsNode(Exp))))
                        .bind("expr")),
            Stm, Context);
  return findExprMutation(Calls);
}

const Stmt *ExprMutationAnalyzer::findRangeLoopMutation(const Expr *Exp) {
  // Keep the ordering for the specific initialization matches to happen first,
  // because it is cheaper to match all potential modifications of the loop
  // variable.

  // The range variable is a reference to a builtin array. In that case the
  // array is considered modified if the loop-variable is a non-const reference.
  const auto DeclStmtToNonRefToArray = declStmt(hasSingleDecl(varDecl(hasType(
      hasUnqualifiedDesugaredType(referenceType(pointee(arrayType())))))));
  const auto RefToArrayRefToElements = match(
      findAll(stmt(cxxForRangeStmt(
                       hasLoopVariable(varDecl(hasType(nonConstReferenceType()))
                                           .bind(NodeID<Decl>::value)),
                       hasRangeStmt(DeclStmtToNonRefToArray),
                       hasRangeInit(canResolveToExpr(equalsNode(Exp)))))
                  .bind("stmt")),
      Stm, Context);

  if (const auto *BadRangeInitFromArray =
          selectFirst<Stmt>("stmt", RefToArrayRefToElements))
    return BadRangeInitFromArray;

  // Small helper to match special cases in range-for loops.
  //
  // It is possible that containers do not provide a const-overload for their
  // iterator accessors. If this is the case, the variable is used non-const
  // no matter what happens in the loop. This requires special detection as it
  // is then faster to find all mutations of the loop variable.
  // It aims at a different modification as well.
  const auto HasAnyNonConstIterator =
      anyOf(allOf(hasMethod(allOf(hasName("begin"), unless(isConst()))),
                  unless(hasMethod(allOf(hasName("begin"), isConst())))),
            allOf(hasMethod(allOf(hasName("end"), unless(isConst()))),
                  unless(hasMethod(allOf(hasName("end"), isConst())))));

  const auto DeclStmtToNonConstIteratorContainer = declStmt(
      hasSingleDecl(varDecl(hasType(hasUnqualifiedDesugaredType(referenceType(
          pointee(hasDeclaration(cxxRecordDecl(HasAnyNonConstIterator)))))))));

  const auto RefToContainerBadIterators =
      match(findAll(stmt(cxxForRangeStmt(allOf(
                             hasRangeStmt(DeclStmtToNonConstIteratorContainer),
                             hasRangeInit(canResolveToExpr(equalsNode(Exp))))))
                        .bind("stmt")),
            Stm, Context);

  if (const auto *BadIteratorsContainer =
          selectFirst<Stmt>("stmt", RefToContainerBadIterators))
    return BadIteratorsContainer;

  // If range for looping over 'Exp' with a non-const reference loop variable,
  // check all declRefExpr of the loop variable.
  const auto LoopVars =
      match(findAll(cxxForRangeStmt(
                hasLoopVariable(varDecl(hasType(nonConstReferenceType()))
                                    .bind(NodeID<Decl>::value)),
                hasRangeInit(canResolveToExpr(equalsNode(Exp))))),
            Stm, Context);
  return findDeclMutation(LoopVars);
}

const Stmt *ExprMutationAnalyzer::findReferenceMutation(const Expr *Exp) {
  // Follow non-const reference returned by `operator*()` of move-only classes.
  // These are typically smart pointers with unique ownership so we treat
  // mutation of pointee as mutation of the smart pointer itself.
  const auto Ref =
      match(findAll(cxxOperatorCallExpr(
                        hasOverloadedOperatorName("*"),
                        callee(cxxMethodDecl(ofClass(isMoveOnly()),
                                             returns(nonConstReferenceType()))),
                        argumentCountIs(1),
                        hasArgument(0, canResolveToExpr(equalsNode(Exp))))
                        .bind(NodeID<Expr>::value)),
            Stm, Context);
  if (const Stmt *S = findExprMutation(Ref))
    return S;

  // If 'Exp' is bound to a non-const reference, check all declRefExpr to that.
  const auto Refs = match(
      stmt(forEachDescendant(
          varDecl(
              hasType(nonConstReferenceType()),
              hasInitializer(anyOf(canResolveToExpr(equalsNode(Exp)),
                                   memberExpr(hasObjectExpression(
                                       canResolveToExpr(equalsNode(Exp)))))),
              hasParent(declStmt().bind("stmt")),
              // Don't follow the reference in range statement, we've
              // handled that separately.
              unless(hasParent(declStmt(hasParent(
                  cxxForRangeStmt(hasRangeStmt(equalsBoundNode("stmt"))))))))
              .bind(NodeID<Decl>::value))),
      Stm, Context);
  return findDeclMutation(Refs);
}

const Stmt *ExprMutationAnalyzer::findFunctionArgMutation(const Expr *Exp) {
  const auto NonConstRefParam = forEachArgumentWithParam(
      canResolveToExpr(equalsNode(Exp)),
      parmVarDecl(hasType(nonConstReferenceType())).bind("parm"));
  const auto IsInstantiated = hasDeclaration(isInstantiated());
  const auto FuncDecl = hasDeclaration(functionDecl().bind("func"));
  const auto Matches = match(
      traverse(
          TK_AsIs,
          findAll(
              expr(anyOf(callExpr(NonConstRefParam, IsInstantiated, FuncDecl,
                                  unless(callee(namedDecl(hasAnyName(
                                      "::std::move", "::std::forward"))))),
                         cxxConstructExpr(NonConstRefParam, IsInstantiated,
                                          FuncDecl)))
                  .bind(NodeID<Expr>::value))),
      Stm, Context);
  for (const auto &Nodes : Matches) {
    const auto *Exp = Nodes.getNodeAs<Expr>(NodeID<Expr>::value);
    const auto *Func = Nodes.getNodeAs<FunctionDecl>("func");
    if (!Func->getBody() || !Func->getPrimaryTemplate())
      return Exp;

    const auto *Parm = Nodes.getNodeAs<ParmVarDecl>("parm");
    const ArrayRef<ParmVarDecl *> AllParams =
        Func->getPrimaryTemplate()->getTemplatedDecl()->parameters();
    QualType ParmType =
        AllParams[std::min<size_t>(Parm->getFunctionScopeIndex(),
                                   AllParams.size() - 1)]
            ->getType();
    if (const auto *T = ParmType->getAs<PackExpansionType>())
      ParmType = T->getPattern();

    // If param type is forwarding reference, follow into the function
    // definition and see whether the param is mutated inside.
    if (const auto *RefType = ParmType->getAs<RValueReferenceType>()) {
      if (!RefType->getPointeeType().getQualifiers() &&
          RefType->getPointeeType()->getAs<TemplateTypeParmType>()) {
        std::unique_ptr<FunctionParmMutationAnalyzer> &Analyzer =
            FuncParmAnalyzer[Func];
        if (!Analyzer)
          Analyzer.reset(new FunctionParmMutationAnalyzer(*Func, Context));
        if (Analyzer->findMutation(Parm))
          return Exp;
        continue;
      }
    }
    // Not forwarding reference.
    return Exp;
  }
  return nullptr;
}

FunctionParmMutationAnalyzer::FunctionParmMutationAnalyzer(
    const FunctionDecl &Func, ASTContext &Context)
    : BodyAnalyzer(*Func.getBody(), Context) {
  if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(&Func)) {
    // CXXCtorInitializer might also mutate Param but they're not part of
    // function body, check them eagerly here since they're typically trivial.
    for (const CXXCtorInitializer *Init : Ctor->inits()) {
      ExprMutationAnalyzer InitAnalyzer(*Init->getInit(), Context);
      for (const ParmVarDecl *Parm : Ctor->parameters()) {
        if (Results.find(Parm) != Results.end())
          continue;
        if (const Stmt *S = InitAnalyzer.findMutation(Parm))
          Results[Parm] = S;
      }
    }
  }
}

const Stmt *
FunctionParmMutationAnalyzer::findMutation(const ParmVarDecl *Parm) {
  const auto Memoized = Results.find(Parm);
  if (Memoized != Results.end())
    return Memoized->second;

  if (const Stmt *S = BodyAnalyzer.findMutation(Parm))
    return Results[Parm] = S;

  return Results[Parm] = nullptr;
}

} // namespace clang