Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Stmt nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGDebugInfo.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/SaveAndRestore.h"

using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                              Statement Emission
//===----------------------------------------------------------------------===//

void CodeGenFunction::EmitStopPoint(const Stmt *S) {
  if (CGDebugInfo *DI = getDebugInfo()) {
    SourceLocation Loc;
    Loc = S->getBeginLoc();
    DI->EmitLocation(Builder, Loc);

    LastStopPoint = Loc;
  }
}

void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
  assert(S && "Null statement?");
  PGO.setCurrentStmt(S);

  // These statements have their own debug info handling.
  if (EmitSimpleStmt(S, Attrs))
    return;

  // Check if we are generating unreachable code.
  if (!HaveInsertPoint()) {
    // If so, and the statement doesn't contain a label, then we do not need to
    // generate actual code. This is safe because (1) the current point is
    // unreachable, so we don't need to execute the code, and (2) we've already
    // handled the statements which update internal data structures (like the
    // local variable map) which could be used by subsequent statements.
    if (!ContainsLabel(S)) {
      // Verify that any decl statements were handled as simple, they may be in
      // scope of subsequent reachable statements.
      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
      return;
    }

    // Otherwise, make a new block to hold the code.
    EnsureInsertPoint();
  }

  // Generate a stoppoint if we are emitting debug info.
  EmitStopPoint(S);

  // Ignore all OpenMP directives except for simd if OpenMP with Simd is
  // enabled.
  if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
    if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
      EmitSimpleOMPExecutableDirective(*D);
      return;
    }
  }

  switch (S->getStmtClass()) {
  case Stmt::NoStmtClass:
  case Stmt::CXXCatchStmtClass:
  case Stmt::SEHExceptStmtClass:
  case Stmt::SEHFinallyStmtClass:
  case Stmt::MSDependentExistsStmtClass:
    llvm_unreachable("invalid statement class to emit generically");
  case Stmt::NullStmtClass:
  case Stmt::CompoundStmtClass:
  case Stmt::DeclStmtClass:
  case Stmt::LabelStmtClass:
  case Stmt::AttributedStmtClass:
  case Stmt::GotoStmtClass:
  case Stmt::BreakStmtClass:
  case Stmt::ContinueStmtClass:
  case Stmt::DefaultStmtClass:
  case Stmt::CaseStmtClass:
  case Stmt::SEHLeaveStmtClass:
    llvm_unreachable("should have emitted these statements as simple");

#define STMT(Type, Base)
#define ABSTRACT_STMT(Op)
#define EXPR(Type, Base) \
  case Stmt::Type##Class:
#include "clang/AST/StmtNodes.inc"
  {
    // Remember the block we came in on.
    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
    assert(incoming && "expression emission must have an insertion point");

    EmitIgnoredExpr(cast<Expr>(S));

    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
    assert(outgoing && "expression emission cleared block!");

    // The expression emitters assume (reasonably!) that the insertion
    // point is always set.  To maintain that, the call-emission code
    // for noreturn functions has to enter a new block with no
    // predecessors.  We want to kill that block and mark the current
    // insertion point unreachable in the common case of a call like
    // "exit();".  Since expression emission doesn't otherwise create
    // blocks with no predecessors, we can just test for that.
    // However, we must be careful not to do this to our incoming
    // block, because *statement* emission does sometimes create
    // reachable blocks which will have no predecessors until later in
    // the function.  This occurs with, e.g., labels that are not
    // reachable by fallthrough.
    if (incoming != outgoing && outgoing->use_empty()) {
      outgoing->eraseFromParent();
      Builder.ClearInsertionPoint();
    }
    break;
  }

  case Stmt::IndirectGotoStmtClass:
    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;

  case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
  case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
  case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
  case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;

  case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;

  case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
  case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
  case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
  case Stmt::CoroutineBodyStmtClass:
    EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
    break;
  case Stmt::CoreturnStmtClass:
    EmitCoreturnStmt(cast<CoreturnStmt>(*S));
    break;
  case Stmt::CapturedStmtClass: {
    const CapturedStmt *CS = cast<CapturedStmt>(S);
    EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
    }
    break;
  case Stmt::ObjCAtTryStmtClass:
    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    break;
  case Stmt::ObjCAtCatchStmtClass:
    llvm_unreachable(
                    "@catch statements should be handled by EmitObjCAtTryStmt");
  case Stmt::ObjCAtFinallyStmtClass:
    llvm_unreachable(
                  "@finally statements should be handled by EmitObjCAtTryStmt");
  case Stmt::ObjCAtThrowStmtClass:
    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    break;
  case Stmt::ObjCAtSynchronizedStmtClass:
    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    break;
  case Stmt::ObjCForCollectionStmtClass:
    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    break;
  case Stmt::ObjCAutoreleasePoolStmtClass:
    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
    break;

  case Stmt::CXXTryStmtClass:
    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    break;
  case Stmt::CXXForRangeStmtClass:
    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
    break;
  case Stmt::SEHTryStmtClass:
    EmitSEHTryStmt(cast<SEHTryStmt>(*S));
    break;
  case Stmt::OMPCanonicalLoopClass:
    EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
    break;
  case Stmt::OMPParallelDirectiveClass:
    EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
    break;
  case Stmt::OMPSimdDirectiveClass:
    EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
    break;
  case Stmt::OMPTileDirectiveClass:
    EmitOMPTileDirective(cast<OMPTileDirective>(*S));
    break;
  case Stmt::OMPForDirectiveClass:
    EmitOMPForDirective(cast<OMPForDirective>(*S));
    break;
  case Stmt::OMPForSimdDirectiveClass:
    EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
    break;
  case Stmt::OMPSectionsDirectiveClass:
    EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
    break;
  case Stmt::OMPSectionDirectiveClass:
    EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
    break;
  case Stmt::OMPSingleDirectiveClass:
    EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
    break;
  case Stmt::OMPMasterDirectiveClass:
    EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
    break;
  case Stmt::OMPCriticalDirectiveClass:
    EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
    break;
  case Stmt::OMPParallelForDirectiveClass:
    EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
    break;
  case Stmt::OMPParallelForSimdDirectiveClass:
    EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPParallelMasterDirectiveClass:
    EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
    break;
  case Stmt::OMPParallelSectionsDirectiveClass:
    EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
    break;
  case Stmt::OMPTaskDirectiveClass:
    EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
    break;
  case Stmt::OMPTaskyieldDirectiveClass:
    EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
    break;
  case Stmt::OMPBarrierDirectiveClass:
    EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
    break;
  case Stmt::OMPTaskwaitDirectiveClass:
    EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
    break;
  case Stmt::OMPTaskgroupDirectiveClass:
    EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
    break;
  case Stmt::OMPFlushDirectiveClass:
    EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
    break;
  case Stmt::OMPDepobjDirectiveClass:
    EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
    break;
  case Stmt::OMPScanDirectiveClass:
    EmitOMPScanDirective(cast<OMPScanDirective>(*S));
    break;
  case Stmt::OMPOrderedDirectiveClass:
    EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
    break;
  case Stmt::OMPAtomicDirectiveClass:
    EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
    break;
  case Stmt::OMPTargetDirectiveClass:
    EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
    break;
  case Stmt::OMPTeamsDirectiveClass:
    EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
    break;
  case Stmt::OMPCancellationPointDirectiveClass:
    EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
    break;
  case Stmt::OMPCancelDirectiveClass:
    EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
    break;
  case Stmt::OMPTargetDataDirectiveClass:
    EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
    break;
  case Stmt::OMPTargetEnterDataDirectiveClass:
    EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
    break;
  case Stmt::OMPTargetExitDataDirectiveClass:
    EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
    break;
  case Stmt::OMPTargetParallelDirectiveClass:
    EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
    break;
  case Stmt::OMPTargetParallelForDirectiveClass:
    EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
    break;
  case Stmt::OMPTaskLoopDirectiveClass:
    EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
    break;
  case Stmt::OMPTaskLoopSimdDirectiveClass:
    EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
    break;
  case Stmt::OMPMasterTaskLoopDirectiveClass:
    EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
    break;
  case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
    EmitOMPMasterTaskLoopSimdDirective(
        cast<OMPMasterTaskLoopSimdDirective>(*S));
    break;
  case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
    EmitOMPParallelMasterTaskLoopDirective(
        cast<OMPParallelMasterTaskLoopDirective>(*S));
    break;
  case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
    EmitOMPParallelMasterTaskLoopSimdDirective(
        cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
    break;
  case Stmt::OMPDistributeDirectiveClass:
    EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
    break;
  case Stmt::OMPTargetUpdateDirectiveClass:
    EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
    break;
  case Stmt::OMPDistributeParallelForDirectiveClass:
    EmitOMPDistributeParallelForDirective(
        cast<OMPDistributeParallelForDirective>(*S));
    break;
  case Stmt::OMPDistributeParallelForSimdDirectiveClass:
    EmitOMPDistributeParallelForSimdDirective(
        cast<OMPDistributeParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPDistributeSimdDirectiveClass:
    EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
    break;
  case Stmt::OMPTargetParallelForSimdDirectiveClass:
    EmitOMPTargetParallelForSimdDirective(
        cast<OMPTargetParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPTargetSimdDirectiveClass:
    EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
    break;
  case Stmt::OMPTeamsDistributeDirectiveClass:
    EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
    break;
  case Stmt::OMPTeamsDistributeSimdDirectiveClass:
    EmitOMPTeamsDistributeSimdDirective(
        cast<OMPTeamsDistributeSimdDirective>(*S));
    break;
  case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
    EmitOMPTeamsDistributeParallelForSimdDirective(
        cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
    EmitOMPTeamsDistributeParallelForDirective(
        cast<OMPTeamsDistributeParallelForDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDirectiveClass:
    EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDistributeDirectiveClass:
    EmitOMPTargetTeamsDistributeDirective(
        cast<OMPTargetTeamsDistributeDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
    EmitOMPTargetTeamsDistributeParallelForDirective(
        cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
    EmitOMPTargetTeamsDistributeParallelForSimdDirective(
        cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
    EmitOMPTargetTeamsDistributeSimdDirective(
        cast<OMPTargetTeamsDistributeSimdDirective>(*S));
    break;
  case Stmt::OMPInteropDirectiveClass:
    llvm_unreachable("Interop directive not supported yet.");
    break;
  case Stmt::OMPDispatchDirectiveClass:
    llvm_unreachable("Dispatch directive not supported yet.");
    break;
  case Stmt::OMPMaskedDirectiveClass:
    EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
    break;
  }
}

bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
                                     ArrayRef<const Attr *> Attrs) {
  switch (S->getStmtClass()) {
  default:
    return false;
  case Stmt::NullStmtClass:
    break;
  case Stmt::CompoundStmtClass:
    EmitCompoundStmt(cast<CompoundStmt>(*S));
    break;
  case Stmt::DeclStmtClass:
    EmitDeclStmt(cast<DeclStmt>(*S));
    break;
  case Stmt::LabelStmtClass:
    EmitLabelStmt(cast<LabelStmt>(*S));
    break;
  case Stmt::AttributedStmtClass:
    EmitAttributedStmt(cast<AttributedStmt>(*S));
    break;
  case Stmt::GotoStmtClass:
    EmitGotoStmt(cast<GotoStmt>(*S));
    break;
  case Stmt::BreakStmtClass:
    EmitBreakStmt(cast<BreakStmt>(*S));
    break;
  case Stmt::ContinueStmtClass:
    EmitContinueStmt(cast<ContinueStmt>(*S));
    break;
  case Stmt::DefaultStmtClass:
    EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
    break;
  case Stmt::CaseStmtClass:
    EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
    break;
  case Stmt::SEHLeaveStmtClass:
    EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
    break;
  }
  return true;
}

/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
/// this captures the expression result of the last sub-statement and returns it
/// (for use by the statement expression extension).
Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
                                          AggValueSlot AggSlot) {
  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
                             "LLVM IR generation of compound statement ('{}')");

  // Keep track of the current cleanup stack depth, including debug scopes.
  LexicalScope Scope(*this, S.getSourceRange());

  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
}

Address
CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
                                              bool GetLast,
                                              AggValueSlot AggSlot) {

  const Stmt *ExprResult = S.getStmtExprResult();
  assert((!GetLast || (GetLast && ExprResult)) &&
         "If GetLast is true then the CompoundStmt must have a StmtExprResult");

  Address RetAlloca = Address::invalid();

  for (auto *CurStmt : S.body()) {
    if (GetLast && ExprResult == CurStmt) {
      // We have to special case labels here.  They are statements, but when put
      // at the end of a statement expression, they yield the value of their
      // subexpression.  Handle this by walking through all labels we encounter,
      // emitting them before we evaluate the subexpr.
      // Similar issues arise for attributed statements.
      while (!isa<Expr>(ExprResult)) {
        if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
          EmitLabel(LS->getDecl());
          ExprResult = LS->getSubStmt();
        } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
          // FIXME: Update this if we ever have attributes that affect the
          // semantics of an expression.
          ExprResult = AS->getSubStmt();
        } else {
          llvm_unreachable("unknown value statement");
        }
      }

      EnsureInsertPoint();

      const Expr *E = cast<Expr>(ExprResult);
      QualType ExprTy = E->getType();
      if (hasAggregateEvaluationKind(ExprTy)) {
        EmitAggExpr(E, AggSlot);
      } else {
        // We can't return an RValue here because there might be cleanups at
        // the end of the StmtExpr.  Because of that, we have to emit the result
        // here into a temporary alloca.
        RetAlloca = CreateMemTemp(ExprTy);
        EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
                         /*IsInit*/ false);
      }
    } else {
      EmitStmt(CurStmt);
    }
  }

  return RetAlloca;
}

void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());

  // If there is a cleanup stack, then we it isn't worth trying to
  // simplify this block (we would need to remove it from the scope map
  // and cleanup entry).
  if (!EHStack.empty())
    return;

  // Can only simplify direct branches.
  if (!BI || !BI->isUnconditional())
    return;

  // Can only simplify empty blocks.
  if (BI->getIterator() != BB->begin())
    return;

  BB->replaceAllUsesWith(BI->getSuccessor(0));
  BI->eraseFromParent();
  BB->eraseFromParent();
}

void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  // Fall out of the current block (if necessary).
  EmitBranch(BB);

  if (IsFinished && BB->use_empty()) {
    delete BB;
    return;
  }

  // Place the block after the current block, if possible, or else at
  // the end of the function.
  if (CurBB && CurBB->getParent())
    CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
  else
    CurFn->getBasicBlockList().push_back(BB);
  Builder.SetInsertPoint(BB);
}

void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
  // Emit a branch from the current block to the target one if this
  // was a real block.  If this was just a fall-through block after a
  // terminator, don't emit it.
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  if (!CurBB || CurBB->getTerminator()) {
    // If there is no insert point or the previous block is already
    // terminated, don't touch it.
  } else {
    // Otherwise, create a fall-through branch.
    Builder.CreateBr(Target);
  }

  Builder.ClearInsertionPoint();
}

void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
  bool inserted = false;
  for (llvm::User *u : block->users()) {
    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
      CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
                                             block);
      inserted = true;
      break;
    }
  }

  if (!inserted)
    CurFn->getBasicBlockList().push_back(block);

  Builder.SetInsertPoint(block);
}

CodeGenFunction::JumpDest
CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
  JumpDest &Dest = LabelMap[D];
  if (Dest.isValid()) return Dest;

  // Create, but don't insert, the new block.
  Dest = JumpDest(createBasicBlock(D->getName()),
                  EHScopeStack::stable_iterator::invalid(),
                  NextCleanupDestIndex++);
  return Dest;
}

void CodeGenFunction::EmitLabel(const LabelDecl *D) {
  // Add this label to the current lexical scope if we're within any
  // normal cleanups.  Jumps "in" to this label --- when permitted by
  // the language --- may need to be routed around such cleanups.
  if (EHStack.hasNormalCleanups() && CurLexicalScope)
    CurLexicalScope->addLabel(D);

  JumpDest &Dest = LabelMap[D];

  // If we didn't need a forward reference to this label, just go
  // ahead and create a destination at the current scope.
  if (!Dest.isValid()) {
    Dest = getJumpDestInCurrentScope(D->getName());

  // Otherwise, we need to give this label a target depth and remove
  // it from the branch-fixups list.
  } else {
    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
    Dest.setScopeDepth(EHStack.stable_begin());
    ResolveBranchFixups(Dest.getBlock());
  }

  EmitBlock(Dest.getBlock());

  // Emit debug info for labels.
  if (CGDebugInfo *DI = getDebugInfo()) {
    if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
      DI->setLocation(D->getLocation());
      DI->EmitLabel(D, Builder);
    }
  }

  incrementProfileCounter(D->getStmt());
}

/// Change the cleanup scope of the labels in this lexical scope to
/// match the scope of the enclosing context.
void CodeGenFunction::LexicalScope::rescopeLabels() {
  assert(!Labels.empty());
  EHScopeStack::stable_iterator innermostScope
    = CGF.EHStack.getInnermostNormalCleanup();

  // Change the scope depth of all the labels.
  for (SmallVectorImpl<const LabelDecl*>::const_iterator
         i = Labels.begin(), e = Labels.end(); i != e; ++i) {
    assert(CGF.LabelMap.count(*i));
    JumpDest &dest = CGF.LabelMap.find(*i)->second;
    assert(dest.getScopeDepth().isValid());
    assert(innermostScope.encloses(dest.getScopeDepth()));
    dest.setScopeDepth(innermostScope);
  }

  // Reparent the labels if the new scope also has cleanups.
  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
    ParentScope->Labels.append(Labels.begin(), Labels.end());
  }
}


void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
  EmitLabel(S.getDecl());

  // IsEHa - emit eha.scope.begin if it's a side entry of a scope
  if (getLangOpts().EHAsynch && S.isSideEntry())
    EmitSehCppScopeBegin();

  EmitStmt(S.getSubStmt());
}

void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
  bool nomerge = false;
  const CallExpr *musttail = nullptr;

  for (const auto *A : S.getAttrs()) {
    if (A->getKind() == attr::NoMerge) {
      nomerge = true;
    }
    if (A->getKind() == attr::MustTail) {
      const Stmt *Sub = S.getSubStmt();
      const ReturnStmt *R = cast<ReturnStmt>(Sub);
      musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
    }
  }
  SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
  SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
  EmitStmt(S.getSubStmt(), S.getAttrs());
}

void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
}


void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
  if (const LabelDecl *Target = S.getConstantTarget()) {
    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
    return;
  }

  // Ensure that we have an i8* for our PHI node.
  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
                                         Int8PtrTy, "addr");
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  // Get the basic block for the indirect goto.
  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();

  // The first instruction in the block has to be the PHI for the switch dest,
  // add an entry for this branch.
  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);

  EmitBranch(IndGotoBB);
}

void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
  // C99 6.8.4.1: The first substatement is executed if the expression compares
  // unequal to 0.  The condition must be a scalar type.
  LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());

  if (S.getInit())
    EmitStmt(S.getInit());

  if (S.getConditionVariable())
    EmitDecl(*S.getConditionVariable());

  // If the condition constant folds and can be elided, try to avoid emitting
  // the condition and the dead arm of the if/else.
  bool CondConstant;
  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
                                   S.isConstexpr())) {
    // Figure out which block (then or else) is executed.
    const Stmt *Executed = S.getThen();
    const Stmt *Skipped  = S.getElse();
    if (!CondConstant)  // Condition false?
      std::swap(Executed, Skipped);

    // If the skipped block has no labels in it, just emit the executed block.
    // This avoids emitting dead code and simplifies the CFG substantially.
    if (S.isConstexpr() || !ContainsLabel(Skipped)) {
      if (CondConstant)
        incrementProfileCounter(&S);
      if (Executed) {
        RunCleanupsScope ExecutedScope(*this);
        EmitStmt(Executed);
      }
      return;
    }
  }

  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
  // the conditional branch.
  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
  llvm::BasicBlock *ElseBlock = ContBlock;
  if (S.getElse())
    ElseBlock = createBasicBlock("if.else");

  // Prefer the PGO based weights over the likelihood attribute.
  // When the build isn't optimized the metadata isn't used, so don't generate
  // it.
  Stmt::Likelihood LH = Stmt::LH_None;
  uint64_t Count = getProfileCount(S.getThen());
  if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
    LH = Stmt::getLikelihood(S.getThen(), S.getElse());
  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);

  // Emit the 'then' code.
  EmitBlock(ThenBlock);
  incrementProfileCounter(&S);
  {
    RunCleanupsScope ThenScope(*this);
    EmitStmt(S.getThen());
  }
  EmitBranch(ContBlock);

  // Emit the 'else' code if present.
  if (const Stmt *Else = S.getElse()) {
    {
      // There is no need to emit line number for an unconditional branch.
      auto NL = ApplyDebugLocation::CreateEmpty(*this);
      EmitBlock(ElseBlock);
    }
    {
      RunCleanupsScope ElseScope(*this);
      EmitStmt(Else);
    }
    {
      // There is no need to emit line number for an unconditional branch.
      auto NL = ApplyDebugLocation::CreateEmpty(*this);
      EmitBranch(ContBlock);
    }
  }

  // Emit the continuation block for code after the if.
  EmitBlock(ContBlock, true);
}

void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
                                    ArrayRef<const Attr *> WhileAttrs) {
  // Emit the header for the loop, which will also become
  // the continue target.
  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
  EmitBlock(LoopHeader.getBlock());

  // Create an exit block for when the condition fails, which will
  // also become the break target.
  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));

  // C++ [stmt.while]p2:
  //   When the condition of a while statement is a declaration, the
  //   scope of the variable that is declared extends from its point
  //   of declaration (3.3.2) to the end of the while statement.
  //   [...]
  //   The object created in a condition is destroyed and created
  //   with each iteration of the loop.
  RunCleanupsScope ConditionScope(*this);

  if (S.getConditionVariable())
    EmitDecl(*S.getConditionVariable());

  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
  // evaluation of the controlling expression takes place before each
  // execution of the loop body.
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());

  // while(1) is common, avoid extra exit blocks.  Be sure
  // to correctly handle break/continue though.
  llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
  bool CondIsConstInt = C != nullptr;
  bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
  const SourceRange &R = S.getSourceRange();
  LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
                 WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
                 SourceLocToDebugLoc(R.getEnd()),
                 checkIfLoopMustProgress(CondIsConstInt));

  // As long as the condition is true, go to the loop body.
  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
  if (EmitBoolCondBranch) {
    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    if (ConditionScope.requiresCleanups())
      ExitBlock = createBasicBlock("while.exit");
    llvm::MDNode *Weights =
        createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
    if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
      BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
          BoolCondVal, Stmt::getLikelihood(S.getBody()));
    Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);

    if (ExitBlock != LoopExit.getBlock()) {
      EmitBlock(ExitBlock);
      EmitBranchThroughCleanup(LoopExit);
    }
  } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
    CGM.getDiags().Report(A->getLocation(),
                          diag::warn_attribute_has_no_effect_on_infinite_loop)
        << A << A->getRange();
    CGM.getDiags().Report(
        S.getWhileLoc(),
        diag::note_attribute_has_no_effect_on_infinite_loop_here)
        << SourceRange(S.getWhileLoc(), S.getRParenLoc());
  }

  // Emit the loop body.  We have to emit this in a cleanup scope
  // because it might be a singleton DeclStmt.
  {
    RunCleanupsScope BodyScope(*this);
    EmitBlock(LoopBody);
    incrementProfileCounter(&S);
    EmitStmt(S.getBody());
  }

  BreakContinueStack.pop_back();

  // Immediately force cleanup.
  ConditionScope.ForceCleanup();

  EmitStopPoint(&S);
  // Branch to the loop header again.
  EmitBranch(LoopHeader.getBlock());

  LoopStack.pop();

  // Emit the exit block.
  EmitBlock(LoopExit.getBlock(), true);

  // The LoopHeader typically is just a branch if we skipped emitting
  // a branch, try to erase it.
  if (!EmitBoolCondBranch)
    SimplifyForwardingBlocks(LoopHeader.getBlock());
}

void CodeGenFunction::EmitDoStmt(const DoStmt &S,
                                 ArrayRef<const Attr *> DoAttrs) {
  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");

  uint64_t ParentCount = getCurrentProfileCount();

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));

  // Emit the body of the loop.
  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");

  EmitBlockWithFallThrough(LoopBody, &S);
  {
    RunCleanupsScope BodyScope(*this);
    EmitStmt(S.getBody());
  }

  EmitBlock(LoopCond.getBlock());

  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
  // after each execution of the loop body."

  // Evaluate the conditional in the while header.
  // C99 6.8.5p2/p4: The first substatement is executed if the expression
  // compares unequal to 0.  The condition must be a scalar type.
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());

  BreakContinueStack.pop_back();

  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
  // to correctly handle break/continue though.
  llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
  bool CondIsConstInt = C;
  bool EmitBoolCondBranch = !C || !C->isZero();

  const SourceRange &R = S.getSourceRange();
  LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
                 SourceLocToDebugLoc(R.getBegin()),
                 SourceLocToDebugLoc(R.getEnd()),
                 checkIfLoopMustProgress(CondIsConstInt));

  // As long as the condition is true, iterate the loop.
  if (EmitBoolCondBranch) {
    uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
    Builder.CreateCondBr(
        BoolCondVal, LoopBody, LoopExit.getBlock(),
        createProfileWeightsForLoop(S.getCond(), BackedgeCount));
  }

  LoopStack.pop();

  // Emit the exit block.
  EmitBlock(LoopExit.getBlock());

  // The DoCond block typically is just a branch if we skipped
  // emitting a branch, try to erase it.
  if (!EmitBoolCondBranch)
    SimplifyForwardingBlocks(LoopCond.getBlock());
}

void CodeGenFunction::EmitForStmt(const ForStmt &S,
                                  ArrayRef<const Attr *> ForAttrs) {
  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");

  LexicalScope ForScope(*this, S.getSourceRange());

  // Evaluate the first part before the loop.
  if (S.getInit())
    EmitStmt(S.getInit());

  // Start the loop with a block that tests the condition.
  // If there's an increment, the continue scope will be overwritten
  // later.
  JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
  llvm::BasicBlock *CondBlock = CondDest.getBlock();
  EmitBlock(CondBlock);

  Expr::EvalResult Result;
  bool CondIsConstInt =
      !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());

  const SourceRange &R = S.getSourceRange();
  LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
                 SourceLocToDebugLoc(R.getBegin()),
                 SourceLocToDebugLoc(R.getEnd()),
                 checkIfLoopMustProgress(CondIsConstInt));

  // Create a cleanup scope for the condition variable cleanups.
  LexicalScope ConditionScope(*this, S.getSourceRange());

  // If the for loop doesn't have an increment we can just use the condition as
  // the continue block. Otherwise, if there is no condition variable, we can
  // form the continue block now. If there is a condition variable, we can't
  // form the continue block until after we've emitted the condition, because
  // the condition is in scope in the increment, but Sema's jump diagnostics
  // ensure that there are no continues from the condition variable that jump
  // to the loop increment.
  JumpDest Continue;
  if (!S.getInc())
    Continue = CondDest;
  else if (!S.getConditionVariable())
    Continue = getJumpDestInCurrentScope("for.inc");
  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));

  if (S.getCond()) {
    // If the for statement has a condition scope, emit the local variable
    // declaration.
    if (S.getConditionVariable()) {
      EmitDecl(*S.getConditionVariable());

      // We have entered the condition variable's scope, so we're now able to
      // jump to the continue block.
      Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
      BreakContinueStack.back().ContinueBlock = Continue;
    }

    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    // If there are any cleanups between here and the loop-exit scope,
    // create a block to stage a loop exit along.
    if (ForScope.requiresCleanups())
      ExitBlock = createBasicBlock("for.cond.cleanup");

    // As long as the condition is true, iterate the loop.
    llvm::BasicBlock *ForBody = createBasicBlock("for.body");

    // C99 6.8.5p2/p4: The first substatement is executed if the expression
    // compares unequal to 0.  The condition must be a scalar type.
    llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    llvm::MDNode *Weights =
        createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
    if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
      BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
          BoolCondVal, Stmt::getLikelihood(S.getBody()));

    Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);

    if (ExitBlock != LoopExit.getBlock()) {
      EmitBlock(ExitBlock);
      EmitBranchThroughCleanup(LoopExit);
    }

    EmitBlock(ForBody);
  } else {
    // Treat it as a non-zero constant.  Don't even create a new block for the
    // body, just fall into it.
  }
  incrementProfileCounter(&S);

  {
    // Create a separate cleanup scope for the body, in case it is not
    // a compound statement.
    RunCleanupsScope BodyScope(*this);
    EmitStmt(S.getBody());
  }

  // If there is an increment, emit it next.
  if (S.getInc()) {
    EmitBlock(Continue.getBlock());
    EmitStmt(S.getInc());
  }

  BreakContinueStack.pop_back();

  ConditionScope.ForceCleanup();

  EmitStopPoint(&S);
  EmitBranch(CondBlock);

  ForScope.ForceCleanup();

  LoopStack.pop();

  // Emit the fall-through block.
  EmitBlock(LoopExit.getBlock(), true);
}

void
CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
                                     ArrayRef<const Attr *> ForAttrs) {
  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");

  LexicalScope ForScope(*this, S.getSourceRange());

  // Evaluate the first pieces before the loop.
  if (S.getInit())
    EmitStmt(S.getInit());
  EmitStmt(S.getRangeStmt());
  EmitStmt(S.getBeginStmt());
  EmitStmt(S.getEndStmt());

  // Start the loop with a block that tests the condition.
  // If there's an increment, the continue scope will be overwritten
  // later.
  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
  EmitBlock(CondBlock);

  const SourceRange &R = S.getSourceRange();
  LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
                 SourceLocToDebugLoc(R.getBegin()),
                 SourceLocToDebugLoc(R.getEnd()));

  // If there are any cleanups between here and the loop-exit scope,
  // create a block to stage a loop exit along.
  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
  if (ForScope.requiresCleanups())
    ExitBlock = createBasicBlock("for.cond.cleanup");

  // The loop body, consisting of the specified body and the loop variable.
  llvm::BasicBlock *ForBody = createBasicBlock("for.body");

  // The body is executed if the expression, contextually converted
  // to bool, is true.
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
  llvm::MDNode *Weights =
      createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
  if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
    BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
        BoolCondVal, Stmt::getLikelihood(S.getBody()));
  Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);

  if (ExitBlock != LoopExit.getBlock()) {
    EmitBlock(ExitBlock);
    EmitBranchThroughCleanup(LoopExit);
  }

  EmitBlock(ForBody);
  incrementProfileCounter(&S);

  // Create a block for the increment. In case of a 'continue', we jump there.
  JumpDest Continue = getJumpDestInCurrentScope("for.inc");

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));

  {
    // Create a separate cleanup scope for the loop variable and body.
    LexicalScope BodyScope(*this, S.getSourceRange());
    EmitStmt(S.getLoopVarStmt());
    EmitStmt(S.getBody());
  }

  EmitStopPoint(&S);
  // If there is an increment, emit it next.
  EmitBlock(Continue.getBlock());
  EmitStmt(S.getInc());

  BreakContinueStack.pop_back();

  EmitBranch(CondBlock);

  ForScope.ForceCleanup();

  LoopStack.pop();

  // Emit the fall-through block.
  EmitBlock(LoopExit.getBlock(), true);
}

void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
  if (RV.isScalar()) {
    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
  } else if (RV.isAggregate()) {
    LValue Dest = MakeAddrLValue(ReturnValue, Ty);
    LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
    EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
  } else {
    EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
                       /*init*/ true);
  }
  EmitBranchThroughCleanup(ReturnBlock);
}

namespace {
// RAII struct used to save and restore a return statment's result expression.
struct SaveRetExprRAII {
  SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
      : OldRetExpr(CGF.RetExpr), CGF(CGF) {
    CGF.RetExpr = RetExpr;
  }
  ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
  const Expr *OldRetExpr;
  CodeGenFunction &CGF;
};
} // namespace

/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
/// if the function returns void, or may be missing one if the function returns
/// non-void.  Fun stuff :).
void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
  if (requiresReturnValueCheck()) {
    llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
    auto *SLocPtr =
        new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
                                 llvm::GlobalVariable::PrivateLinkage, SLoc);
    SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
    assert(ReturnLocation.isValid() && "No valid return location");
    Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
                        ReturnLocation);
  }

  // Returning from an outlined SEH helper is UB, and we already warn on it.
  if (IsOutlinedSEHHelper) {
    Builder.CreateUnreachable();
    Builder.ClearInsertionPoint();
  }

  // Emit the result value, even if unused, to evaluate the side effects.
  const Expr *RV = S.getRetValue();

  // Record the result expression of the return statement. The recorded
  // expression is used to determine whether a block capture's lifetime should
  // end at the end of the full expression as opposed to the end of the scope
  // enclosing the block expression.
  //
  // This permits a small, easily-implemented exception to our over-conservative
  // rules about not jumping to statements following block literals with
  // non-trivial cleanups.
  SaveRetExprRAII SaveRetExpr(RV, *this);

  RunCleanupsScope cleanupScope(*this);
  if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
    RV = EWC->getSubExpr();
  // FIXME: Clean this up by using an LValue for ReturnTemp,
  // EmitStoreThroughLValue, and EmitAnyExpr.
  // Check if the NRVO candidate was not globalized in OpenMP mode.
  if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
      S.getNRVOCandidate()->isNRVOVariable() &&
      (!getLangOpts().OpenMP ||
       !CGM.getOpenMPRuntime()
            .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
            .isValid())) {
    // Apply the named return value optimization for this return statement,
    // which means doing nothing: the appropriate result has already been
    // constructed into the NRVO variable.

    // If there is an NRVO flag for this variable, set it to 1 into indicate
    // that the cleanup code should not destroy the variable.
    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
      Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
  } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
    // Make sure not to return anything, but evaluate the expression
    // for side effects.
    if (RV)
      EmitAnyExpr(RV);
  } else if (!RV) {
    // Do nothing (return value is left uninitialized)
  } else if (FnRetTy->isReferenceType()) {
    // If this function returns a reference, take the address of the expression
    // rather than the value.
    RValue Result = EmitReferenceBindingToExpr(RV);
    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
  } else {
    switch (getEvaluationKind(RV->getType())) {
    case TEK_Scalar:
      Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
      break;
    case TEK_Complex:
      EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
                                /*isInit*/ true);
      break;
    case TEK_Aggregate:
      EmitAggExpr(RV, AggValueSlot::forAddr(
                          ReturnValue, Qualifiers(),
                          AggValueSlot::IsDestructed,
                          AggValueSlot::DoesNotNeedGCBarriers,
                          AggValueSlot::IsNotAliased,
                          getOverlapForReturnValue()));
      break;
    }
  }

  ++NumReturnExprs;
  if (!RV || RV->isEvaluatable(getContext()))
    ++NumSimpleReturnExprs;

  cleanupScope.ForceCleanup();
  EmitBranchThroughCleanup(ReturnBlock);
}

void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
  // As long as debug info is modeled with instructions, we have to ensure we
  // have a place to insert here and write the stop point here.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  for (const auto *I : S.decls())
    EmitDecl(*I);
}

void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");

  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
}

void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");

  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
}

/// EmitCaseStmtRange - If case statement range is not too big then
/// add multiple cases to switch instruction, one for each value within
/// the range. If range is too big then emit "if" condition check.
void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
                                        ArrayRef<const Attr *> Attrs) {
  assert(S.getRHS() && "Expected RHS value in CaseStmt");

  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());

  // Emit the code for this case. We do this first to make sure it is
  // properly chained from our predecessor before generating the
  // switch machinery to enter this block.
  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
  EmitBlockWithFallThrough(CaseDest, &S);
  EmitStmt(S.getSubStmt());

  // If range is empty, do nothing.
  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
    return;

  Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
  llvm::APInt Range = RHS - LHS;
  // FIXME: parameters such as this should not be hardcoded.
  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
    // Range is small enough to add multiple switch instruction cases.
    uint64_t Total = getProfileCount(&S);
    unsigned NCases = Range.getZExtValue() + 1;
    // We only have one region counter for the entire set of cases here, so we
    // need to divide the weights evenly between the generated cases, ensuring
    // that the total weight is preserved. E.g., a weight of 5 over three cases
    // will be distributed as weights of 2, 2, and 1.
    uint64_t Weight = Total / NCases, Rem = Total % NCases;
    for (unsigned I = 0; I != NCases; ++I) {
      if (SwitchWeights)
        SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
      else if (SwitchLikelihood)
        SwitchLikelihood->push_back(LH);

      if (Rem)
        Rem--;
      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
      ++LHS;
    }
    return;
  }

  // The range is too big. Emit "if" condition into a new block,
  // making sure to save and restore the current insertion point.
  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();

  // Push this test onto the chain of range checks (which terminates
  // in the default basic block). The switch's default will be changed
  // to the top of this chain after switch emission is complete.
  llvm::BasicBlock *FalseDest = CaseRangeBlock;
  CaseRangeBlock = createBasicBlock("sw.caserange");

  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
  Builder.SetInsertPoint(CaseRangeBlock);

  // Emit range check.
  llvm::Value *Diff =
    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
  llvm::Value *Cond =
    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");

  llvm::MDNode *Weights = nullptr;
  if (SwitchWeights) {
    uint64_t ThisCount = getProfileCount(&S);
    uint64_t DefaultCount = (*SwitchWeights)[0];
    Weights = createProfileWeights(ThisCount, DefaultCount);

    // Since we're chaining the switch default through each large case range, we
    // need to update the weight for the default, ie, the first case, to include
    // this case.
    (*SwitchWeights)[0] += ThisCount;
  } else if (SwitchLikelihood)
    Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);

  Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);

  // Restore the appropriate insertion point.
  if (RestoreBB)
    Builder.SetInsertPoint(RestoreBB);
  else
    Builder.ClearInsertionPoint();
}

void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
                                   ArrayRef<const Attr *> Attrs) {
  // If there is no enclosing switch instance that we're aware of, then this
  // case statement and its block can be elided.  This situation only happens
  // when we've constant-folded the switch, are emitting the constant case,
  // and part of the constant case includes another case statement.  For
  // instance: switch (4) { case 4: do { case 5: } while (1); }
  if (!SwitchInsn) {
    EmitStmt(S.getSubStmt());
    return;
  }

  // Handle case ranges.
  if (S.getRHS()) {
    EmitCaseStmtRange(S, Attrs);
    return;
  }

  llvm::ConstantInt *CaseVal =
    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
  if (SwitchLikelihood)
    SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));

  // If the body of the case is just a 'break', try to not emit an empty block.
  // If we're profiling or we're not optimizing, leave the block in for better
  // debug and coverage analysis.
  if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
      CGM.getCodeGenOpts().OptimizationLevel > 0 &&
      isa<BreakStmt>(S.getSubStmt())) {
    JumpDest Block = BreakContinueStack.back().BreakBlock;

    // Only do this optimization if there are no cleanups that need emitting.
    if (isObviouslyBranchWithoutCleanups(Block)) {
      if (SwitchWeights)
        SwitchWeights->push_back(getProfileCount(&S));
      SwitchInsn->addCase(CaseVal, Block.getBlock());

      // If there was a fallthrough into this case, make sure to redirect it to
      // the end of the switch as well.
      if (Builder.GetInsertBlock()) {
        Builder.CreateBr(Block.getBlock());
        Builder.ClearInsertionPoint();
      }
      return;
    }
  }

  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
  EmitBlockWithFallThrough(CaseDest, &S);
  if (SwitchWeights)
    SwitchWeights->push_back(getProfileCount(&S));
  SwitchInsn->addCase(CaseVal, CaseDest);

  // Recursively emitting the statement is acceptable, but is not wonderful for
  // code where we have many case statements nested together, i.e.:
  //  case 1:
  //    case 2:
  //      case 3: etc.
  // Handling this recursively will create a new block for each case statement
  // that falls through to the next case which is IR intensive.  It also causes
  // deep recursion which can run into stack depth limitations.  Handle
  // sequential non-range case statements specially.
  //
  // TODO When the next case has a likelihood attribute the code returns to the
  // recursive algorithm. Maybe improve this case if it becomes common practice
  // to use a lot of attributes.
  const CaseStmt *CurCase = &S;
  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());

  // Otherwise, iteratively add consecutive cases to this switch stmt.
  while (NextCase && NextCase->getRHS() == nullptr) {
    CurCase = NextCase;
    llvm::ConstantInt *CaseVal =
      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));

    if (SwitchWeights)
      SwitchWeights->push_back(getProfileCount(NextCase));
    if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
      CaseDest = createBasicBlock("sw.bb");
      EmitBlockWithFallThrough(CaseDest, CurCase);
    }
    // Since this loop is only executed when the CaseStmt has no attributes
    // use a hard-coded value.
    if (SwitchLikelihood)
      SwitchLikelihood->push_back(Stmt::LH_None);

    SwitchInsn->addCase(CaseVal, CaseDest);
    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
  }

  // Normal default recursion for non-cases.
  EmitStmt(CurCase->getSubStmt());
}

void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
                                      ArrayRef<const Attr *> Attrs) {
  // If there is no enclosing switch instance that we're aware of, then this
  // default statement can be elided. This situation only happens when we've
  // constant-folded the switch.
  if (!SwitchInsn) {
    EmitStmt(S.getSubStmt());
    return;
  }

  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
  assert(DefaultBlock->empty() &&
         "EmitDefaultStmt: Default block already defined?");

  if (SwitchLikelihood)
    SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);

  EmitBlockWithFallThrough(DefaultBlock, &S);

  EmitStmt(S.getSubStmt());
}

/// CollectStatementsForCase - Given the body of a 'switch' statement and a
/// constant value that is being switched on, see if we can dead code eliminate
/// the body of the switch to a simple series of statements to emit.  Basically,
/// on a switch (5) we want to find these statements:
///    case 5:
///      printf(...);    <--
///      ++i;            <--
///      break;
///
/// and add them to the ResultStmts vector.  If it is unsafe to do this
/// transformation (for example, one of the elided statements contains a label
/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
/// should include statements after it (e.g. the printf() line is a substmt of
/// the case) then return CSFC_FallThrough.  If we handled it and found a break
/// statement, then return CSFC_Success.
///
/// If Case is non-null, then we are looking for the specified case, checking
/// that nothing we jump over contains labels.  If Case is null, then we found
/// the case and are looking for the break.
///
/// If the recursive walk actually finds our Case, then we set FoundCase to
/// true.
///
enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
static CSFC_Result CollectStatementsForCase(const Stmt *S,
                                            const SwitchCase *Case,
                                            bool &FoundCase,
                              SmallVectorImpl<const Stmt*> &ResultStmts) {
  // If this is a null statement, just succeed.
  if (!S)
    return Case ? CSFC_Success : CSFC_FallThrough;

  // If this is the switchcase (case 4: or default) that we're looking for, then
  // we're in business.  Just add the substatement.
  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
    if (S == Case) {
      FoundCase = true;
      return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
                                      ResultStmts);
    }

    // Otherwise, this is some other case or default statement, just ignore it.
    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
                                    ResultStmts);
  }

  // If we are in the live part of the code and we found our break statement,
  // return a success!
  if (!Case && isa<BreakStmt>(S))
    return CSFC_Success;

  // If this is a switch statement, then it might contain the SwitchCase, the
  // break, or neither.
  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
    // Handle this as two cases: we might be looking for the SwitchCase (if so
    // the skipped statements must be skippable) or we might already have it.
    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
    bool StartedInLiveCode = FoundCase;
    unsigned StartSize = ResultStmts.size();

    // If we've not found the case yet, scan through looking for it.
    if (Case) {
      // Keep track of whether we see a skipped declaration.  The code could be
      // using the declaration even if it is skipped, so we can't optimize out
      // the decl if the kept statements might refer to it.
      bool HadSkippedDecl = false;

      // If we're looking for the case, just see if we can skip each of the
      // substatements.
      for (; Case && I != E; ++I) {
        HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);

        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
        case CSFC_Failure: return CSFC_Failure;
        case CSFC_Success:
          // A successful result means that either 1) that the statement doesn't
          // have the case and is skippable, or 2) does contain the case value
          // and also contains the break to exit the switch.  In the later case,
          // we just verify the rest of the statements are elidable.
          if (FoundCase) {
            // If we found the case and skipped declarations, we can't do the
            // optimization.
            if (HadSkippedDecl)
              return CSFC_Failure;

            for (++I; I != E; ++I)
              if (CodeGenFunction::ContainsLabel(*I, true))
                return CSFC_Failure;
            return CSFC_Success;
          }
          break;
        case CSFC_FallThrough:
          // If we have a fallthrough condition, then we must have found the
          // case started to include statements.  Consider the rest of the
          // statements in the compound statement as candidates for inclusion.
          assert(FoundCase && "Didn't find case but returned fallthrough?");
          // We recursively found Case, so we're not looking for it anymore.
          Case = nullptr;

          // If we found the case and skipped declarations, we can't do the
          // optimization.
          if (HadSkippedDecl)
            return CSFC_Failure;
          break;
        }
      }

      if (!FoundCase)
        return CSFC_Success;

      assert(!HadSkippedDecl && "fallthrough after skipping decl");
    }

    // If we have statements in our range, then we know that the statements are
    // live and need to be added to the set of statements we're tracking.
    bool AnyDecls = false;
    for (; I != E; ++I) {
      AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);

      switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
      case CSFC_Failure: return CSFC_Failure;
      case CSFC_FallThrough:
        // A fallthrough result means that the statement was simple and just
        // included in ResultStmt, keep adding them afterwards.
        break;
      case CSFC_Success:
        // A successful result means that we found the break statement and
        // stopped statement inclusion.  We just ensure that any leftover stmts
        // are skippable and return success ourselves.
        for (++I; I != E; ++I)
          if (CodeGenFunction::ContainsLabel(*I, true))
            return CSFC_Failure;
        return CSFC_Success;
      }
    }

    // If we're about to fall out of a scope without hitting a 'break;', we
    // can't perform the optimization if there were any decls in that scope
    // (we'd lose their end-of-lifetime).
    if (AnyDecls) {
      // If the entire compound statement was live, there's one more thing we
      // can try before giving up: emit the whole thing as a single statement.
      // We can do that unless the statement contains a 'break;'.
      // FIXME: Such a break must be at the end of a construct within this one.
      // We could emit this by just ignoring the BreakStmts entirely.
      if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
        ResultStmts.resize(StartSize);
        ResultStmts.push_back(S);
      } else {
        return CSFC_Failure;
      }
    }

    return CSFC_FallThrough;
  }

  // Okay, this is some other statement that we don't handle explicitly, like a
  // for statement or increment etc.  If we are skipping over this statement,
  // just verify it doesn't have labels, which would make it invalid to elide.
  if (Case) {
    if (CodeGenFunction::ContainsLabel(S, true))
      return CSFC_Failure;
    return CSFC_Success;
  }

  // Otherwise, we want to include this statement.  Everything is cool with that
  // so long as it doesn't contain a break out of the switch we're in.
  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;

  // Otherwise, everything is great.  Include the statement and tell the caller
  // that we fall through and include the next statement as well.
  ResultStmts.push_back(S);
  return CSFC_FallThrough;
}

/// FindCaseStatementsForValue - Find the case statement being jumped to and
/// then invoke CollectStatementsForCase to find the list of statements to emit
/// for a switch on constant.  See the comment above CollectStatementsForCase
/// for more details.
static bool FindCaseStatementsForValue(const SwitchStmt &S,
                                       const llvm::APSInt &ConstantCondValue,
                                SmallVectorImpl<const Stmt*> &ResultStmts,
                                       ASTContext &C,
                                       const SwitchCase *&ResultCase) {
  // First step, find the switch case that is being branched to.  We can do this
  // efficiently by scanning the SwitchCase list.
  const SwitchCase *Case = S.getSwitchCaseList();
  const DefaultStmt *DefaultCase = nullptr;

  for (; Case; Case = Case->getNextSwitchCase()) {
    // It's either a default or case.  Just remember the default statement in
    // case we're not jumping to any numbered cases.
    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
      DefaultCase = DS;
      continue;
    }

    // Check to see if this case is the one we're looking for.
    const CaseStmt *CS = cast<CaseStmt>(Case);
    // Don't handle case ranges yet.
    if (CS->getRHS()) return false;

    // If we found our case, remember it as 'case'.
    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
      break;
  }

  // If we didn't find a matching case, we use a default if it exists, or we
  // elide the whole switch body!
  if (!Case) {
    // It is safe to elide the body of the switch if it doesn't contain labels
    // etc.  If it is safe, return successfully with an empty ResultStmts list.
    if (!DefaultCase)
      return !CodeGenFunction::ContainsLabel(&S);
    Case = DefaultCase;
  }

  // Ok, we know which case is being jumped to, try to collect all the
  // statements that follow it.  This can fail for a variety of reasons.  Also,
  // check to see that the recursive walk actually found our case statement.
  // Insane cases like this can fail to find it in the recursive walk since we
  // don't handle every stmt kind:
  // switch (4) {
  //   while (1) {
  //     case 4: ...
  bool FoundCase = false;
  ResultCase = Case;
  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
                                  ResultStmts) != CSFC_Failure &&
         FoundCase;
}

static Optional<SmallVector<uint64_t, 16>>
getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
  // Are there enough branches to weight them?
  if (Likelihoods.size() <= 1)
    return None;

  uint64_t NumUnlikely = 0;
  uint64_t NumNone = 0;
  uint64_t NumLikely = 0;
  for (const auto LH : Likelihoods) {
    switch (LH) {
    case Stmt::LH_Unlikely:
      ++NumUnlikely;
      break;
    case Stmt::LH_None:
      ++NumNone;
      break;
    case Stmt::LH_Likely:
      ++NumLikely;
      break;
    }
  }

  // Is there a likelihood attribute used?
  if (NumUnlikely == 0 && NumLikely == 0)
    return None;

  // When multiple cases share the same code they can be combined during
  // optimization. In that case the weights of the branch will be the sum of
  // the individual weights. Make sure the combined sum of all neutral cases
  // doesn't exceed the value of a single likely attribute.
  // The additions both avoid divisions by 0 and make sure the weights of None
  // don't exceed the weight of Likely.
  const uint64_t Likely = INT32_MAX / (NumLikely + 2);
  const uint64_t None = Likely / (NumNone + 1);
  const uint64_t Unlikely = 0;

  SmallVector<uint64_t, 16> Result;
  Result.reserve(Likelihoods.size());
  for (const auto LH : Likelihoods) {
    switch (LH) {
    case Stmt::LH_Unlikely:
      Result.push_back(Unlikely);
      break;
    case Stmt::LH_None:
      Result.push_back(None);
      break;
    case Stmt::LH_Likely:
      Result.push_back(Likely);
      break;
    }
  }

  return Result;
}

void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
  // Handle nested switch statements.
  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
  SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
  SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;

  // See if we can constant fold the condition of the switch and therefore only
  // emit the live case statement (if any) of the switch.
  llvm::APSInt ConstantCondValue;
  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
    SmallVector<const Stmt*, 4> CaseStmts;
    const SwitchCase *Case = nullptr;
    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
                                   getContext(), Case)) {
      if (Case)
        incrementProfileCounter(Case);
      RunCleanupsScope ExecutedScope(*this);

      if (S.getInit())
        EmitStmt(S.getInit());

      // Emit the condition variable if needed inside the entire cleanup scope
      // used by this special case for constant folded switches.
      if (S.getConditionVariable())
        EmitDecl(*S.getConditionVariable());

      // At this point, we are no longer "within" a switch instance, so
      // we can temporarily enforce this to ensure that any embedded case
      // statements are not emitted.
      SwitchInsn = nullptr;

      // Okay, we can dead code eliminate everything except this case.  Emit the
      // specified series of statements and we're good.
      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
        EmitStmt(CaseStmts[i]);
      incrementProfileCounter(&S);

      // Now we want to restore the saved switch instance so that nested
      // switches continue to function properly
      SwitchInsn = SavedSwitchInsn;

      return;
    }
  }

  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");

  RunCleanupsScope ConditionScope(*this);

  if (S.getInit())
    EmitStmt(S.getInit());

  if (S.getConditionVariable())
    EmitDecl(*S.getConditionVariable());
  llvm::Value *CondV = EmitScalarExpr(S.getCond());

  // Create basic block to hold stuff that comes after switch
  // statement. We also need to create a default block now so that
  // explicit case ranges tests can have a place to jump to on
  // failure.
  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
  if (PGO.haveRegionCounts()) {
    // Walk the SwitchCase list to find how many there are.
    uint64_t DefaultCount = 0;
    unsigned NumCases = 0;
    for (const SwitchCase *Case = S.getSwitchCaseList();
         Case;
         Case = Case->getNextSwitchCase()) {
      if (isa<DefaultStmt>(Case))
        DefaultCount = getProfileCount(Case);
      NumCases += 1;
    }
    SwitchWeights = new SmallVector<uint64_t, 16>();
    SwitchWeights->reserve(NumCases);
    // The default needs to be first. We store the edge count, so we already
    // know the right weight.
    SwitchWeights->push_back(DefaultCount);
  } else if (CGM.getCodeGenOpts().OptimizationLevel) {
    SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
    // Initialize the default case.
    SwitchLikelihood->push_back(Stmt::LH_None);
  }

  CaseRangeBlock = DefaultBlock;

  // Clear the insertion point to indicate we are in unreachable code.
  Builder.ClearInsertionPoint();

  // All break statements jump to NextBlock. If BreakContinueStack is non-empty
  // then reuse last ContinueBlock.
  JumpDest OuterContinue;
  if (!BreakContinueStack.empty())
    OuterContinue = BreakContinueStack.back().ContinueBlock;

  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));

  // Emit switch body.
  EmitStmt(S.getBody());

  BreakContinueStack.pop_back();

  // Update the default block in case explicit case range tests have
  // been chained on top.
  SwitchInsn->setDefaultDest(CaseRangeBlock);

  // If a default was never emitted:
  if (!DefaultBlock->getParent()) {
    // If we have cleanups, emit the default block so that there's a
    // place to jump through the cleanups from.
    if (ConditionScope.requiresCleanups()) {
      EmitBlock(DefaultBlock);

    // Otherwise, just forward the default block to the switch end.
    } else {
      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
      delete DefaultBlock;
    }
  }

  ConditionScope.ForceCleanup();

  // Emit continuation.
  EmitBlock(SwitchExit.getBlock(), true);
  incrementProfileCounter(&S);

  // If the switch has a condition wrapped by __builtin_unpredictable,
  // create metadata that specifies that the switch is unpredictable.
  // Don't bother if not optimizing because that metadata would not be used.
  auto *Call = dyn_cast<CallExpr>(S.getCond());
  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
      llvm::MDBuilder MDHelper(getLLVMContext());
      SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
                              MDHelper.createUnpredictable());
    }
  }

  if (SwitchWeights) {
    assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
           "switch weights do not match switch cases");
    // If there's only one jump destination there's no sense weighting it.
    if (SwitchWeights->size() > 1)
      SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
                              createProfileWeights(*SwitchWeights));
    delete SwitchWeights;
  } else if (SwitchLikelihood) {
    assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
           "switch likelihoods do not match switch cases");
    Optional<SmallVector<uint64_t, 16>> LHW =
        getLikelihoodWeights(*SwitchLikelihood);
    if (LHW) {
      llvm::MDBuilder MDHelper(CGM.getLLVMContext());
      SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
                              createProfileWeights(*LHW));
    }
    delete SwitchLikelihood;
  }
  SwitchInsn = SavedSwitchInsn;
  SwitchWeights = SavedSwitchWeights;
  SwitchLikelihood = SavedSwitchLikelihood;
  CaseRangeBlock = SavedCRBlock;
}

static std::string
SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
  std::string Result;

  while (*Constraint) {
    switch (*Constraint) {
    default:
      Result += Target.convertConstraint(Constraint);
      break;
    // Ignore these
    case '*':
    case '?':
    case '!':
    case '=': // Will see this and the following in mult-alt constraints.
    case '+':
      break;
    case '#': // Ignore the rest of the constraint alternative.
      while (Constraint[1] && Constraint[1] != ',')
        Constraint++;
      break;
    case '&':
    case '%':
      Result += *Constraint;
      while (Constraint[1] && Constraint[1] == *Constraint)
        Constraint++;
      break;
    case ',':
      Result += "|";
      break;
    case 'g':
      Result += "imr";
      break;
    case '[': {
      assert(OutCons &&
             "Must pass output names to constraints with a symbolic name");
      unsigned Index;
      bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
      assert(result && "Could not resolve symbolic name"); (void)result;
      Result += llvm::utostr(Index);
      break;
    }
    }

    Constraint++;
  }

  return Result;
}

/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
/// as using a particular register add that as a constraint that will be used
/// in this asm stmt.
static std::string
AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
                       const TargetInfo &Target, CodeGenModule &CGM,
                       const AsmStmt &Stmt, const bool EarlyClobber,
                       std::string *GCCReg = nullptr) {
  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
  if (!AsmDeclRef)
    return Constraint;
  const ValueDecl &Value = *AsmDeclRef->getDecl();
  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
  if (!Variable)
    return Constraint;
  if (Variable->getStorageClass() != SC_Register)
    return Constraint;
  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
  if (!Attr)
    return Constraint;
  StringRef Register = Attr->getLabel();
  assert(Target.isValidGCCRegisterName(Register));
  // We're using validateOutputConstraint here because we only care if
  // this is a register constraint.
  TargetInfo::ConstraintInfo Info(Constraint, "");
  if (Target.validateOutputConstraint(Info) &&
      !Info.allowsRegister()) {
    CGM.ErrorUnsupported(&Stmt, "__asm__");
    return Constraint;
  }
  // Canonicalize the register here before returning it.
  Register = Target.getNormalizedGCCRegisterName(Register);
  if (GCCReg != nullptr)
    *GCCReg = Register.str();
  return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
}

llvm::Value*
CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
                                    LValue InputValue, QualType InputType,
                                    std::string &ConstraintStr,
                                    SourceLocation Loc) {
  llvm::Value *Arg;
  if (Info.allowsRegister() || !Info.allowsMemory()) {
    if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
      Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
    } else {
      llvm::Type *Ty = ConvertType(InputType);
      uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
        Ty = llvm::PointerType::getUnqual(Ty);

        Arg = Builder.CreateLoad(
            Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
      } else {
        Arg = InputValue.getPointer(*this);
        ConstraintStr += '*';
      }
    }
  } else {
    Arg = InputValue.getPointer(*this);
    ConstraintStr += '*';
  }

  return Arg;
}

llvm::Value* CodeGenFunction::EmitAsmInput(
                                         const TargetInfo::ConstraintInfo &Info,
                                           const Expr *InputExpr,
                                           std::string &ConstraintStr) {
  // If this can't be a register or memory, i.e., has to be a constant
  // (immediate or symbolic), try to emit it as such.
  if (!Info.allowsRegister() && !Info.allowsMemory()) {
    if (Info.requiresImmediateConstant()) {
      Expr::EvalResult EVResult;
      InputExpr->EvaluateAsRValue(EVResult, getContext(), true);

      llvm::APSInt IntResult;
      if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
                                          getContext()))
        return llvm::ConstantInt::get(getLLVMContext(), IntResult);
    }

    Expr::EvalResult Result;
    if (InputExpr->EvaluateAsInt(Result, getContext()))
      return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
  }

  if (Info.allowsRegister() || !Info.allowsMemory())
    if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
      return EmitScalarExpr(InputExpr);
  if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
    return EmitScalarExpr(InputExpr);
  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
  LValue Dest = EmitLValue(InputExpr);
  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
                            InputExpr->getExprLoc());
}

/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
/// asm call instruction.  The !srcloc MDNode contains a list of constant
/// integers which are the source locations of the start of each line in the
/// asm.
static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
                                      CodeGenFunction &CGF) {
  SmallVector<llvm::Metadata *, 8> Locs;
  // Add the location of the first line to the MDNode.
  Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
      CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
  StringRef StrVal = Str->getString();
  if (!StrVal.empty()) {
    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
    const LangOptions &LangOpts = CGF.CGM.getLangOpts();
    unsigned StartToken = 0;
    unsigned ByteOffset = 0;

    // Add the location of the start of each subsequent line of the asm to the
    // MDNode.
    for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
      if (StrVal[i] != '\n') continue;
      SourceLocation LineLoc = Str->getLocationOfByte(
          i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
      Locs.push_back(llvm::ConstantAsMetadata::get(
          llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
    }
  }

  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
}

static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
                              bool HasUnwindClobber, bool ReadOnly,
                              bool ReadNone, bool NoMerge, const AsmStmt &S,
                              const std::vector<llvm::Type *> &ResultRegTypes,
                              CodeGenFunction &CGF,
                              std::vector<llvm::Value *> &RegResults) {
  if (!HasUnwindClobber)
    Result.addAttribute(llvm::AttributeList::FunctionIndex,
                        llvm::Attribute::NoUnwind);

  if (NoMerge)
    Result.addAttribute(llvm::AttributeList::FunctionIndex,
                        llvm::Attribute::NoMerge);
  // Attach readnone and readonly attributes.
  if (!HasSideEffect) {
    if (ReadNone)
      Result.addAttribute(llvm::AttributeList::FunctionIndex,
                          llvm::Attribute::ReadNone);
    else if (ReadOnly)
      Result.addAttribute(llvm::AttributeList::FunctionIndex,
                          llvm::Attribute::ReadOnly);
  }

  // Slap the source location of the inline asm into a !srcloc metadata on the
  // call.
  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
    Result.setMetadata("srcloc",
                       getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
  else {
    // At least put the line number on MS inline asm blobs.
    llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
                                        S.getAsmLoc().getRawEncoding());
    Result.setMetadata("srcloc",
                       llvm::MDNode::get(CGF.getLLVMContext(),
                                         llvm::ConstantAsMetadata::get(Loc)));
  }

  if (CGF.getLangOpts().assumeFunctionsAreConvergent())
    // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
    // convergent (meaning, they may call an intrinsically convergent op, such
    // as bar.sync, and so can't have certain optimizations applied around
    // them).
    Result.addAttribute(llvm::AttributeList::FunctionIndex,
                        llvm::Attribute::Convergent);
  // Extract all of the register value results from the asm.
  if (ResultRegTypes.size() == 1) {
    RegResults.push_back(&Result);
  } else {
    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
      llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
      RegResults.push_back(Tmp);
    }
  }
}

void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
  // Assemble the final asm string.
  std::string AsmString = S.generateAsmString(getContext());

  // Get all the output and input constraints together.
  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
    StringRef Name;
    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
      Name = GAS->getOutputName(i);
    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
    bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
    assert(IsValid && "Failed to parse output constraint");
    OutputConstraintInfos.push_back(Info);
  }

  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
    StringRef Name;
    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
      Name = GAS->getInputName(i);
    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
    bool IsValid =
      getTarget().validateInputConstraint(OutputConstraintInfos, Info);
    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
    InputConstraintInfos.push_back(Info);
  }

  std::string Constraints;

  std::vector<LValue> ResultRegDests;
  std::vector<QualType> ResultRegQualTys;
  std::vector<llvm::Type *> ResultRegTypes;
  std::vector<llvm::Type *> ResultTruncRegTypes;
  std::vector<llvm::Type *> ArgTypes;
  std::vector<llvm::Value*> Args;
  llvm::BitVector ResultTypeRequiresCast;

  // Keep track of inout constraints.
  std::string InOutConstraints;
  std::vector<llvm::Value*> InOutArgs;
  std::vector<llvm::Type*> InOutArgTypes;

  // Keep track of out constraints for tied input operand.
  std::vector<std::string> OutputConstraints;

  // Keep track of defined physregs.
  llvm::SmallSet<std::string, 8> PhysRegOutputs;

  // An inline asm can be marked readonly if it meets the following conditions:
  //  - it doesn't have any sideeffects
  //  - it doesn't clobber memory
  //  - it doesn't return a value by-reference
  // It can be marked readnone if it doesn't have any input memory constraints
  // in addition to meeting the conditions listed above.
  bool ReadOnly = true, ReadNone = true;

  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];

    // Simplify the output constraint.
    std::string OutputConstraint(S.getOutputConstraint(i));
    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
                                          getTarget(), &OutputConstraintInfos);

    const Expr *OutExpr = S.getOutputExpr(i);
    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());

    std::string GCCReg;
    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
                                              getTarget(), CGM, S,
                                              Info.earlyClobber(),
                                              &GCCReg);
    // Give an error on multiple outputs to same physreg.
    if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
      CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);

    OutputConstraints.push_back(OutputConstraint);
    LValue Dest = EmitLValue(OutExpr);
    if (!Constraints.empty())
      Constraints += ',';

    // If this is a register output, then make the inline asm return it
    // by-value.  If this is a memory result, return the value by-reference.
    bool isScalarizableAggregate =
        hasAggregateEvaluationKind(OutExpr->getType());
    if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
                                 isScalarizableAggregate)) {
      Constraints += "=" + OutputConstraint;
      ResultRegQualTys.push_back(OutExpr->getType());
      ResultRegDests.push_back(Dest);
      ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
      if (Info.allowsRegister() && isScalarizableAggregate) {
        ResultTypeRequiresCast.push_back(true);
        unsigned Size = getContext().getTypeSize(OutExpr->getType());
        llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
        ResultRegTypes.push_back(ConvTy);
      } else {
        ResultTypeRequiresCast.push_back(false);
        ResultRegTypes.push_back(ResultTruncRegTypes.back());
      }
      // If this output is tied to an input, and if the input is larger, then
      // we need to set the actual result type of the inline asm node to be the
      // same as the input type.
      if (Info.hasMatchingInput()) {
        unsigned InputNo;
        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
            break;
        }
        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");

        QualType InputTy = S.getInputExpr(InputNo)->getType();
        QualType OutputType = OutExpr->getType();

        uint64_t InputSize = getContext().getTypeSize(InputTy);
        if (getContext().getTypeSize(OutputType) < InputSize) {
          // Form the asm to return the value as a larger integer or fp type.
          ResultRegTypes.back() = ConvertType(InputTy);
        }
      }
      if (llvm::Type* AdjTy =
            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
                                                 ResultRegTypes.back()))
        ResultRegTypes.back() = AdjTy;
      else {
        CGM.getDiags().Report(S.getAsmLoc(),
                              diag::err_asm_invalid_type_in_input)
            << OutExpr->getType() << OutputConstraint;
      }

      // Update largest vector width for any vector types.
      if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
        LargestVectorWidth =
            std::max((uint64_t)LargestVectorWidth,
                     VT->getPrimitiveSizeInBits().getKnownMinSize());
    } else {
      llvm::Type *DestAddrTy = Dest.getAddress(*this).getType();
      llvm::Value *DestPtr = Dest.getPointer(*this);
      // Matrix types in memory are represented by arrays, but accessed through
      // vector pointers, with the alignment specified on the access operation.
      // For inline assembly, update pointer arguments to use vector pointers.
      // Otherwise there will be a mis-match if the matrix is also an
      // input-argument which is represented as vector.
      if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) {
        DestAddrTy = llvm::PointerType::get(
            ConvertType(OutExpr->getType()),
            cast<llvm::PointerType>(DestAddrTy)->getAddressSpace());
        DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy);
      }
      ArgTypes.push_back(DestAddrTy);
      Args.push_back(DestPtr);
      Constraints += "=*";
      Constraints += OutputConstraint;
      ReadOnly = ReadNone = false;
    }

    if (Info.isReadWrite()) {
      InOutConstraints += ',';

      const Expr *InputExpr = S.getOutputExpr(i);
      llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
                                            InOutConstraints,
                                            InputExpr->getExprLoc());

      if (llvm::Type* AdjTy =
          getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
                                               Arg->getType()))
        Arg = Builder.CreateBitCast(Arg, AdjTy);

      // Update largest vector width for any vector types.
      if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
        LargestVectorWidth =
            std::max((uint64_t)LargestVectorWidth,
                     VT->getPrimitiveSizeInBits().getKnownMinSize());
      // Only tie earlyclobber physregs.
      if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
        InOutConstraints += llvm::utostr(i);
      else
        InOutConstraints += OutputConstraint;

      InOutArgTypes.push_back(Arg->getType());
      InOutArgs.push_back(Arg);
    }
  }

  // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
  // to the return value slot. Only do this when returning in registers.
  if (isa<MSAsmStmt>(&S)) {
    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
    if (RetAI.isDirect() || RetAI.isExtend()) {
      // Make a fake lvalue for the return value slot.
      LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
      CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
          *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
          ResultRegDests, AsmString, S.getNumOutputs());
      SawAsmBlock = true;
    }
  }

  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
    const Expr *InputExpr = S.getInputExpr(i);

    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];

    if (Info.allowsMemory())
      ReadNone = false;

    if (!Constraints.empty())
      Constraints += ',';

    // Simplify the input constraint.
    std::string InputConstraint(S.getInputConstraint(i));
    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
                                         &OutputConstraintInfos);

    InputConstraint = AddVariableConstraints(
        InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
        getTarget(), CGM, S, false /* No EarlyClobber */);

    std::string ReplaceConstraint (InputConstraint);
    llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);

    // If this input argument is tied to a larger output result, extend the
    // input to be the same size as the output.  The LLVM backend wants to see
    // the input and output of a matching constraint be the same size.  Note
    // that GCC does not define what the top bits are here.  We use zext because
    // that is usually cheaper, but LLVM IR should really get an anyext someday.
    if (Info.hasTiedOperand()) {
      unsigned Output = Info.getTiedOperand();
      QualType OutputType = S.getOutputExpr(Output)->getType();
      QualType InputTy = InputExpr->getType();

      if (getContext().getTypeSize(OutputType) >
          getContext().getTypeSize(InputTy)) {
        // Use ptrtoint as appropriate so that we can do our extension.
        if (isa<llvm::PointerType>(Arg->getType()))
          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
        llvm::Type *OutputTy = ConvertType(OutputType);
        if (isa<llvm::IntegerType>(OutputTy))
          Arg = Builder.CreateZExt(Arg, OutputTy);
        else if (isa<llvm::PointerType>(OutputTy))
          Arg = Builder.CreateZExt(Arg, IntPtrTy);
        else {
          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
          Arg = Builder.CreateFPExt(Arg, OutputTy);
        }
      }
      // Deal with the tied operands' constraint code in adjustInlineAsmType.
      ReplaceConstraint = OutputConstraints[Output];
    }
    if (llvm::Type* AdjTy =
          getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
                                                   Arg->getType()))
      Arg = Builder.CreateBitCast(Arg, AdjTy);
    else
      CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << InputConstraint;

    // Update largest vector width for any vector types.
    if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
      LargestVectorWidth =
          std::max((uint64_t)LargestVectorWidth,
                   VT->getPrimitiveSizeInBits().getKnownMinSize());

    ArgTypes.push_back(Arg->getType());
    Args.push_back(Arg);
    Constraints += InputConstraint;
  }

  // Labels
  SmallVector<llvm::BasicBlock *, 16> Transfer;
  llvm::BasicBlock *Fallthrough = nullptr;
  bool IsGCCAsmGoto = false;
  if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
    IsGCCAsmGoto = GS->isAsmGoto();
    if (IsGCCAsmGoto) {
      for (const auto *E : GS->labels()) {
        JumpDest Dest = getJumpDestForLabel(E->getLabel());
        Transfer.push_back(Dest.getBlock());
        llvm::BlockAddress *BA =
            llvm::BlockAddress::get(CurFn, Dest.getBlock());
        Args.push_back(BA);
        ArgTypes.push_back(BA->getType());
        if (!Constraints.empty())
          Constraints += ',';
        Constraints += 'X';
      }
      Fallthrough = createBasicBlock("asm.fallthrough");
    }
  }

  // Append the "input" part of inout constraints last.
  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
    ArgTypes.push_back(InOutArgTypes[i]);
    Args.push_back(InOutArgs[i]);
  }
  Constraints += InOutConstraints;

  bool HasUnwindClobber = false;

  // Clobbers
  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
    StringRef Clobber = S.getClobber(i);

    if (Clobber == "memory")
      ReadOnly = ReadNone = false;
    else if (Clobber == "unwind") {
      HasUnwindClobber = true;
      continue;
    } else if (Clobber != "cc") {
      Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
      if (CGM.getCodeGenOpts().StackClashProtector &&
          getTarget().isSPRegName(Clobber)) {
        CGM.getDiags().Report(S.getAsmLoc(),
                              diag::warn_stack_clash_protection_inline_asm);
      }
    }

    if (isa<MSAsmStmt>(&S)) {
      if (Clobber == "eax" || Clobber == "edx") {
        if (Constraints.find("=&A") != std::string::npos)
          continue;
        std::string::size_type position1 =
            Constraints.find("={" + Clobber.str() + "}");
        if (position1 != std::string::npos) {
          Constraints.insert(position1 + 1, "&");
          continue;
        }
        std::string::size_type position2 = Constraints.find("=A");
        if (position2 != std::string::npos) {
          Constraints.insert(position2 + 1, "&");
          continue;
        }
      }
    }
    if (!Constraints.empty())
      Constraints += ',';

    Constraints += "~{";
    Constraints += Clobber;
    Constraints += '}';
  }

  assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
         "unwind clobber can't be used with asm goto");

  // Add machine specific clobbers
  std::string MachineClobbers = getTarget().getClobbers();
  if (!MachineClobbers.empty()) {
    if (!Constraints.empty())
      Constraints += ',';
    Constraints += MachineClobbers;
  }

  llvm::Type *ResultType;
  if (ResultRegTypes.empty())
    ResultType = VoidTy;
  else if (ResultRegTypes.size() == 1)
    ResultType = ResultRegTypes[0];
  else
    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);

  llvm::FunctionType *FTy =
    llvm::FunctionType::get(ResultType, ArgTypes, false);

  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
    llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
  llvm::InlineAsm *IA = llvm::InlineAsm::get(
      FTy, AsmString, Constraints, HasSideEffect,
      /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
  std::vector<llvm::Value*> RegResults;
  if (IsGCCAsmGoto) {
    llvm::CallBrInst *Result =
        Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
    EmitBlock(Fallthrough);
    UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
                      ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
                      ResultRegTypes, *this, RegResults);
  } else if (HasUnwindClobber) {
    llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
    UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
                      InNoMergeAttributedStmt, S, ResultRegTypes, *this,
                      RegResults);
  } else {
    llvm::CallInst *Result =
        Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
    UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
                      ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
                      ResultRegTypes, *this, RegResults);
  }

  assert(RegResults.size() == ResultRegTypes.size());
  assert(RegResults.size() == ResultTruncRegTypes.size());
  assert(RegResults.size() == ResultRegDests.size());
  // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
  // in which case its size may grow.
  assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
    llvm::Value *Tmp = RegResults[i];

    // If the result type of the LLVM IR asm doesn't match the result type of
    // the expression, do the conversion.
    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
      llvm::Type *TruncTy = ResultTruncRegTypes[i];

      // Truncate the integer result to the right size, note that TruncTy can be
      // a pointer.
      if (TruncTy->isFloatingPointTy())
        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
        uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
        Tmp = Builder.CreateTrunc(Tmp,
                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
        uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
        Tmp = Builder.CreatePtrToInt(Tmp,
                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
      } else if (TruncTy->isIntegerTy()) {
        Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
      } else if (TruncTy->isVectorTy()) {
        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
      }
    }

    LValue Dest = ResultRegDests[i];
    // ResultTypeRequiresCast elements correspond to the first
    // ResultTypeRequiresCast.size() elements of RegResults.
    if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
      unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
      Address A = Builder.CreateBitCast(Dest.getAddress(*this),
                                        ResultRegTypes[i]->getPointerTo());
      QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
      if (Ty.isNull()) {
        const Expr *OutExpr = S.getOutputExpr(i);
        CGM.Error(
            OutExpr->getExprLoc(),
            "impossible constraint in asm: can't store value into a register");
        return;
      }
      Dest = MakeAddrLValue(A, Ty);
    }
    EmitStoreThroughLValue(RValue::get(Tmp), Dest);
  }
}

LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
  const RecordDecl *RD = S.getCapturedRecordDecl();
  QualType RecordTy = getContext().getRecordType(RD);

  // Initialize the captured struct.
  LValue SlotLV =
    MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);

  RecordDecl::field_iterator CurField = RD->field_begin();
  for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
                                                 E = S.capture_init_end();
       I != E; ++I, ++CurField) {
    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
    if (CurField->hasCapturedVLAType()) {
      EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
    } else {
      EmitInitializerForField(*CurField, LV, *I);
    }
  }

  return SlotLV;
}

/// Generate an outlined function for the body of a CapturedStmt, store any
/// captured variables into the captured struct, and call the outlined function.
llvm::Function *
CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
  LValue CapStruct = InitCapturedStruct(S);

  // Emit the CapturedDecl
  CodeGenFunction CGF(CGM, true);
  CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
  llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
  delete CGF.CapturedStmtInfo;

  // Emit call to the helper function.
  EmitCallOrInvoke(F, CapStruct.getPointer(*this));

  return F;
}

Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
  LValue CapStruct = InitCapturedStruct(S);
  return CapStruct.getAddress(*this);
}

/// Creates the outlined function for a CapturedStmt.
llvm::Function *
CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
  assert(CapturedStmtInfo &&
    "CapturedStmtInfo should be set when generating the captured function");
  const CapturedDecl *CD = S.getCapturedDecl();
  const RecordDecl *RD = S.getCapturedRecordDecl();
  SourceLocation Loc = S.getBeginLoc();
  assert(CD->hasBody() && "missing CapturedDecl body");

  // Build the argument list.
  ASTContext &Ctx = CGM.getContext();
  FunctionArgList Args;
  Args.append(CD->param_begin(), CD->param_end());

  // Create the function declaration.
  const CGFunctionInfo &FuncInfo =
    CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);

  llvm::Function *F =
    llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
                           CapturedStmtInfo->getHelperName(), &CGM.getModule());
  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
  if (CD->isNothrow())
    F->addFnAttr(llvm::Attribute::NoUnwind);

  // Generate the function.
  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
                CD->getBody()->getBeginLoc());
  // Set the context parameter in CapturedStmtInfo.
  Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
  CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));

  // Initialize variable-length arrays.
  LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
                                           Ctx.getTagDeclType(RD));
  for (auto *FD : RD->fields()) {
    if (FD->hasCapturedVLAType()) {
      auto *ExprArg =
          EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
              .getScalarVal();
      auto VAT = FD->getCapturedVLAType();
      VLASizeMap[VAT->getSizeExpr()] = ExprArg;
    }
  }

  // If 'this' is captured, load it into CXXThisValue.
  if (CapturedStmtInfo->isCXXThisExprCaptured()) {
    FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
    LValue ThisLValue = EmitLValueForField(Base, FD);
    CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
  }

  PGO.assignRegionCounters(GlobalDecl(CD), F);
  CapturedStmtInfo->EmitBody(*this, CD->getBody());
  FinishFunction(CD->getBodyRBrace());

  return F;
}