Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
/*	$NetBSD: avl.c,v 1.2 2021/08/14 16:14:55 christos Exp $	*/

/* avl.c - routines to implement an avl tree */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
 *
 * Copyright 1998-2020 The OpenLDAP Foundation.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted only as authorized by the OpenLDAP
 * Public License.
 *
 * A copy of this license is available in the file LICENSE in the
 * top-level directory of the distribution or, alternatively, at
 * <http://www.OpenLDAP.org/license.html>.
 */
/* Portions Copyright (c) 1993 Regents of the University of Michigan.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms are permitted
 * provided that this notice is preserved and that due credit is given
 * to the University of Michigan at Ann Arbor. The name of the University
 * may not be used to endorse or promote products derived from this
 * software without specific prior written permission. This software
 * is provided ``as is'' without express or implied warranty.
 */
/* ACKNOWLEDGEMENTS:
 * This work was originally developed by the University of Michigan
 * (as part of U-MICH LDAP).  Additional significant contributors
 * include:
 *   Howard Y. Chu
 *   Hallvard B. Furuseth
 *   Kurt D. Zeilenga
 */

#include <sys/cdefs.h>
__RCSID("$NetBSD: avl.c,v 1.2 2021/08/14 16:14:55 christos Exp $");

#include "portable.h"

#include <limits.h>
#include <stdio.h>
#include <ac/stdlib.h>

#ifdef CSRIMALLOC
#define ber_memalloc malloc
#define ber_memrealloc realloc
#define ber_memfree free
#else
#include "lber.h"
#endif

#define AVL_INTERNAL
#include "ldap_avl.h"

/* Maximum tree depth this host's address space could support */
#define MAX_TREE_DEPTH	(sizeof(void *) * CHAR_BIT)

static const int avl_bfs[] = {LH, RH};

/*
 * ldap_avl_insert -- insert a node containing data data into the avl tree
 * with root root.  fcmp is a function to call to compare the data portion
 * of two nodes.  it should take two arguments and return <, >, or == 0,
 * depending on whether its first argument is <, >, or == its second
 * argument (like strcmp, e.g.).  fdup is a function to call when a duplicate
 * node is inserted.  it should return 0, or -1 and its return value
 * will be the return value from ldap_avl_insert in the case of a duplicate node.
 * the function will be called with the original node's data as its first
 * argument and with the incoming duplicate node's data as its second
 * argument.  this could be used, for example, to keep a count with each
 * node.
 *
 * NOTE: this routine may malloc memory
 */
int
ldap_avl_insert( Avlnode ** root, void *data, AVL_CMP fcmp, AVL_DUP fdup )
{
    Avlnode *t, *p, *s, *q, *r;
    int a, cmp, ncmp;

	if ( *root == NULL ) {
		if (( r = (Avlnode *) ber_memalloc( sizeof( Avlnode ))) == NULL ) {
			return( -1 );
		}
		r->avl_link[0] = r->avl_link[1] = NULL;
		r->avl_data = data;
		r->avl_bits[0] = r->avl_bits[1] = AVL_CHILD;
		r->avl_bf = EH;
		*root = r;

		return( 0 );
	}

    t = NULL;
    s = p = *root;

	/* find insertion point */
    while (1) {
		cmp = fcmp( data, p->avl_data );
		if ( cmp == 0 )
			return (*fdup)( p->avl_data, data );

		cmp = (cmp > 0);
		q = p->avl_link[cmp];
		if (q == NULL) {
			/* insert */
			if (( q = (Avlnode *) ber_memalloc( sizeof( Avlnode ))) == NULL ) {
				return( -1 );
			}
			q->avl_link[0] = q->avl_link[1] = NULL;
			q->avl_data = data;
			q->avl_bits[0] = q->avl_bits[1] = AVL_CHILD;
			q->avl_bf = EH;

			p->avl_link[cmp] = q;
			break;
		} else if ( q->avl_bf ) {
			t = p;
			s = q;
		}
		p = q;
    }

    /* adjust balance factors */
    cmp = fcmp( data, s->avl_data ) > 0;
	r = p = s->avl_link[cmp];
	a = avl_bfs[cmp];

	while ( p != q ) {
		cmp = fcmp( data, p->avl_data ) > 0;
		p->avl_bf = avl_bfs[cmp];
		p = p->avl_link[cmp];
	}

	/* checks and balances */

	if ( s->avl_bf == EH ) {
		s->avl_bf = a;
		return 0;
	} else if ( s->avl_bf == -a ) {
		s->avl_bf = EH;
		return 0;
    } else if ( s->avl_bf == a ) {
		cmp = (a > 0);
		ncmp = !cmp;
		if ( r->avl_bf == a ) {
			/* single rotation */
			p = r;
			s->avl_link[cmp] = r->avl_link[ncmp];
			r->avl_link[ncmp] = s;
			s->avl_bf = 0;
			r->avl_bf = 0;
		} else if ( r->avl_bf == -a ) {
			/* double rotation */
			p = r->avl_link[ncmp];
			r->avl_link[ncmp] = p->avl_link[cmp];
			p->avl_link[cmp] = r;
			s->avl_link[cmp] = p->avl_link[ncmp];
			p->avl_link[ncmp] = s;

			if ( p->avl_bf == a ) {
				s->avl_bf = -a;
				r->avl_bf = 0;
			} else if ( p->avl_bf == -a ) {
				s->avl_bf = 0;
				r->avl_bf = a;
			} else {
				s->avl_bf = 0;
				r->avl_bf = 0;
			}
			p->avl_bf = 0;
		}
		/* Update parent */
		if ( t == NULL )
			*root = p;
		else if ( s == t->avl_right )
			t->avl_right = p;
		else
			t->avl_left = p;
    }

  return 0;
}

void*
ldap_avl_delete( Avlnode **root, void* data, AVL_CMP fcmp )
{
	Avlnode *p, *q, *r, *top;
	int side, side_bf, shorter, nside;

	/* parent stack */
	Avlnode *pptr[MAX_TREE_DEPTH];
	unsigned char pdir[MAX_TREE_DEPTH];
	int depth = 0;

	if ( *root == NULL )
		return NULL;

	p = *root;

	while (1) {
		side = fcmp( data, p->avl_data );
		if ( !side )
			break;
		side = ( side > 0 );
		pdir[depth] = side;
		pptr[depth++] = p;

		p = p->avl_link[side];
		if ( p == NULL )
			return p;
	}
	data = p->avl_data;

	/* If this node has two children, swap so we are deleting a node with
	 * at most one child.
	 */
	if ( p->avl_link[0] && p->avl_link[1] ) {

		/* find the immediate predecessor <q> */
		q = p->avl_link[0];
		side = depth;
		pdir[depth++] = 0;
		while (q->avl_link[1]) {
			pdir[depth] = 1;
			pptr[depth++] = q;
			q = q->avl_link[1];
		}
		/* swap links */
		r = p->avl_link[0];
		p->avl_link[0] = q->avl_link[0];
		q->avl_link[0] = r;

		q->avl_link[1] = p->avl_link[1];
		p->avl_link[1] = NULL;

		q->avl_bf = p->avl_bf;

		/* fix stack positions: old parent of p points to q */
		pptr[side] = q;
		if ( side ) {
			r = pptr[side-1];
			r->avl_link[pdir[side-1]] = q;
		} else {
			*root = q;
		}
		/* new parent of p points to p */
		if ( depth-side > 1 ) {
			r = pptr[depth-1];
			r->avl_link[1] = p;
		} else {
			q->avl_link[0] = p;
		}
	}

	/* now <p> has at most one child, get it */
	q = p->avl_link[0] ? p->avl_link[0] : p->avl_link[1];

	ber_memfree( p );

	if ( !depth ) {
		*root = q;
		return data;
	}

	/* set the child into p's parent */
	depth--;
	p = pptr[depth];
	side = pdir[depth];
	p->avl_link[side] = q;

	top = NULL;
	shorter = 1;

	while ( shorter ) {
		p = pptr[depth];
		side = pdir[depth];
		nside = !side;
		side_bf = avl_bfs[side];

		/* case 1: height unchanged */
		if ( p->avl_bf == EH ) {
			/* Tree is now heavier on opposite side */
			p->avl_bf = avl_bfs[nside];
			shorter = 0;

		} else if ( p->avl_bf == side_bf ) {
		/* case 2: taller subtree shortened, height reduced */
			p->avl_bf = EH;
		} else {
		/* case 3: shorter subtree shortened */
			if ( depth )
				top = pptr[depth-1]; /* p->parent; */
			else
				top = NULL;
			/* set <q> to the taller of the two subtrees of <p> */
			q = p->avl_link[nside];
			if ( q->avl_bf == EH ) {
				/* case 3a: height unchanged, single rotate */
				p->avl_link[nside] = q->avl_link[side];
				q->avl_link[side] = p;
				shorter = 0;
				q->avl_bf = side_bf;
				p->avl_bf = (- side_bf);

			} else if ( q->avl_bf == p->avl_bf ) {
				/* case 3b: height reduced, single rotate */
				p->avl_link[nside] = q->avl_link[side];
				q->avl_link[side] = p;
				shorter = 1;
				q->avl_bf = EH;
				p->avl_bf = EH;

			} else {
				/* case 3c: height reduced, balance factors opposite */
				r = q->avl_link[side];
				q->avl_link[side] = r->avl_link[nside];
				r->avl_link[nside] = q;

				p->avl_link[nside] = r->avl_link[side];
				r->avl_link[side] = p;

				if ( r->avl_bf == side_bf ) {
					q->avl_bf = (- side_bf);
					p->avl_bf = EH;
				} else if ( r->avl_bf == (- side_bf)) {
					q->avl_bf = EH;
					p->avl_bf = side_bf;
				} else {
					q->avl_bf = EH;
					p->avl_bf = EH;
				}
				r->avl_bf = EH;
				q = r;
			}
			/* a rotation has caused <q> (or <r> in case 3c) to become
			 * the root.  let <p>'s former parent know this.
			 */
			if ( top == NULL ) {
				*root = q;
			} else if (top->avl_link[0] == p) {
				top->avl_link[0] = q;
			} else {
				top->avl_link[1] = q;
			}
			/* end case 3 */
			p = q;
		}
		if ( !depth )
			break;
		depth--;
	} /* end while(shorter) */

	return data;
}

static int
avl_inapply( Avlnode *root, AVL_APPLY fn, void* arg, int stopflag )
{
	if ( root == 0 )
		return( AVL_NOMORE );

	if ( root->avl_left != 0 )
		if ( avl_inapply( root->avl_left, fn, arg, stopflag )
		    == stopflag )
			return( stopflag );

	if ( (*fn)( root->avl_data, arg ) == stopflag )
		return( stopflag );

	if ( root->avl_right == 0 )
		return( AVL_NOMORE );
	else
		return( avl_inapply( root->avl_right, fn, arg, stopflag ) );
}

static int
avl_postapply( Avlnode *root, AVL_APPLY fn, void* arg, int stopflag )
{
	if ( root == 0 )
		return( AVL_NOMORE );

	if ( root->avl_left != 0 )
		if ( avl_postapply( root->avl_left, fn, arg, stopflag )
		    == stopflag )
			return( stopflag );

	if ( root->avl_right != 0 )
		if ( avl_postapply( root->avl_right, fn, arg, stopflag )
		    == stopflag )
			return( stopflag );

	return( (*fn)( root->avl_data, arg ) );
}

static int
avl_preapply( Avlnode *root, AVL_APPLY fn, void* arg, int stopflag )
{
	if ( root == 0 )
		return( AVL_NOMORE );

	if ( (*fn)( root->avl_data, arg ) == stopflag )
		return( stopflag );

	if ( root->avl_left != 0 )
		if ( avl_preapply( root->avl_left, fn, arg, stopflag )
		    == stopflag )
			return( stopflag );

	if ( root->avl_right == 0 )
		return( AVL_NOMORE );
	else
		return( avl_preapply( root->avl_right, fn, arg, stopflag ) );
}

/*
 * ldap_avl_apply -- avl tree root is traversed, function fn is called with
 * arguments arg and the data portion of each node.  if fn returns stopflag,
 * the traversal is cut short, otherwise it continues.  Do not use -6 as
 * a stopflag, as this is what is used to indicate the traversal ran out
 * of nodes.
 */

int
ldap_avl_apply( Avlnode *root, AVL_APPLY fn, void* arg, int stopflag, int type )
{
	switch ( type ) {
	case AVL_INORDER:
		return( avl_inapply( root, fn, arg, stopflag ) );
	case AVL_PREORDER:
		return( avl_preapply( root, fn, arg, stopflag ) );
	case AVL_POSTORDER:
		return( avl_postapply( root, fn, arg, stopflag ) );
	default:
		fprintf( stderr, "Invalid traversal type %d\n", type );
		return( -1 );
	}

	/* NOTREACHED */
}

/*
 * ldap_avl_prefixapply - traverse avl tree root, applying function fprefix
 * to any nodes that match.  fcmp is called with data as its first arg
 * and the current node's data as its second arg.  it should return
 * 0 if they match, < 0 if data is less, and > 0 if data is greater.
 * the idea is to efficiently find all nodes that are prefixes of
 * some key...  Like ldap_avl_apply, this routine also takes a stopflag
 * and will return prematurely if fmatch returns this value.  Otherwise,
 * AVL_NOMORE is returned.
 */

int
ldap_avl_prefixapply(
    Avlnode	*root,
    void*	data,
    AVL_CMP		fmatch,
    void*	marg,
    AVL_CMP		fcmp,
    void*	carg,
    int		stopflag
)
{
	int	cmp;

	if ( root == 0 )
		return( AVL_NOMORE );

	cmp = (*fcmp)( data, root->avl_data /* , carg */);
	if ( cmp == 0 ) {
		if ( (*fmatch)( root->avl_data, marg ) == stopflag )
			return( stopflag );

		if ( root->avl_left != 0 )
			if ( ldap_avl_prefixapply( root->avl_left, data, fmatch,
			    marg, fcmp, carg, stopflag ) == stopflag )
				return( stopflag );

		if ( root->avl_right != 0 )
			return( ldap_avl_prefixapply( root->avl_right, data, fmatch,
			    marg, fcmp, carg, stopflag ) );
		else
			return( AVL_NOMORE );

	} else if ( cmp < 0 ) {
		if ( root->avl_left != 0 )
			return( ldap_avl_prefixapply( root->avl_left, data, fmatch,
			    marg, fcmp, carg, stopflag ) );
	} else {
		if ( root->avl_right != 0 )
			return( ldap_avl_prefixapply( root->avl_right, data, fmatch,
			    marg, fcmp, carg, stopflag ) );
	}

	return( AVL_NOMORE );
}

/*
 * ldap_avl_free -- traverse avltree root, freeing the memory it is using.
 * the dfree() is called to free the data portion of each node.  The
 * number of items actually freed is returned.
 */

int
ldap_avl_free( Avlnode *root, AVL_FREE dfree )
{
	int	nleft, nright;

	if ( root == 0 )
		return( 0 );

	nleft = nright = 0;
	if ( root->avl_left != 0 )
		nleft = ldap_avl_free( root->avl_left, dfree );

	if ( root->avl_right != 0 )
		nright = ldap_avl_free( root->avl_right, dfree );

	if ( dfree )
		(*dfree)( root->avl_data );
	ber_memfree( root );

	return( nleft + nright + 1 );
}

/*
 * ldap_avl_find -- search avltree root for a node with data data.  the function
 * cmp is used to compare things.  it is called with data as its first arg
 * and the current node data as its second.  it should return 0 if they match,
 * < 0 if arg1 is less than arg2 and > 0 if arg1 is greater than arg2.
 */

Avlnode *
ldap_avl_find2( Avlnode *root, const void *data, AVL_CMP fcmp )
{
	int	cmp;

	while ( root != 0 && (cmp = (*fcmp)( data, root->avl_data )) != 0 ) {
		cmp = cmp > 0;
		root = root->avl_link[cmp];
	}
	return root;
}

void*
ldap_avl_find( Avlnode *root, const void* data, AVL_CMP fcmp )
{
	int	cmp;

	while ( root != 0 && (cmp = (*fcmp)( data, root->avl_data )) != 0 ) {
		cmp = cmp > 0;
		root = root->avl_link[cmp];
	}

	return( root ? root->avl_data : 0 );
}

/*
 * ldap_avl_find_lin -- search avltree root linearly for a node with data data.
 * the function cmp is used to compare things.  it is called with data as its
 * first arg and the current node data as its second.  it should return 0 if
 * they match, non-zero otherwise.
 */

void*
ldap_avl_find_lin( Avlnode *root, const void* data, AVL_CMP fcmp )
{
	void*	res;

	if ( root == 0 )
		return( NULL );

	if ( (*fcmp)( data, root->avl_data ) == 0 )
		return( root->avl_data );

	if ( root->avl_left != 0 )
		if ( (res = ldap_avl_find_lin( root->avl_left, data, fcmp ))
		    != NULL )
			return( res );

	if ( root->avl_right == 0 )
		return( NULL );
	else
		return( ldap_avl_find_lin( root->avl_right, data, fcmp ) );
}

/* NON-REENTRANT INTERFACE */

static void*	*avl_list;
static int	avl_maxlist;
static int	ldap_avl_nextlist;

#define AVL_GRABSIZE	100

/* ARGSUSED */
static int
avl_buildlist( void* data, void* arg )
{
	static int	slots;

	if ( avl_list == (void* *) 0 ) {
		avl_list = (void* *) ber_memalloc(AVL_GRABSIZE * sizeof(void*));
		slots = AVL_GRABSIZE;
		avl_maxlist = 0;
	} else if ( avl_maxlist == slots ) {
		slots += AVL_GRABSIZE;
		avl_list = (void* *) ber_memrealloc( (char *) avl_list,
		    (unsigned) slots * sizeof(void*));
	}

	avl_list[ avl_maxlist++ ] = data;

	return( 0 );
}

/*
 * ldap_avl_getfirst() and ldap_avl_getnext() are provided as alternate tree
 * traversal methods, to be used when a single function cannot be
 * provided to be called with every node in the tree.  ldap_avl_getfirst()
 * traverses the tree and builds a linear list of all the nodes,
 * returning the first node.  ldap_avl_getnext() returns the next thing
 * on the list built by ldap_avl_getfirst().  This means that ldap_avl_getfirst()
 * can take a while, and that the tree should not be messed with while
 * being traversed in this way, and that multiple traversals (even of
 * different trees) cannot be active at once.
 */

void*
ldap_avl_getfirst( Avlnode *root )
{
	if ( avl_list ) {
		ber_memfree( (char *) avl_list);
		avl_list = (void* *) 0;
	}
	avl_maxlist = 0;
	ldap_avl_nextlist = 0;

	if ( root == 0 )
		return( 0 );

	(void) ldap_avl_apply( root, avl_buildlist, (void*) 0, -1, AVL_INORDER );

	return( avl_list[ ldap_avl_nextlist++ ] );
}

void*
ldap_avl_getnext( void )
{
	if ( avl_list == 0 )
		return( 0 );

	if ( ldap_avl_nextlist == avl_maxlist ) {
		ber_memfree( (void*) avl_list);
		avl_list = (void* *) 0;
		return( 0 );
	}

	return( avl_list[ ldap_avl_nextlist++ ] );
}

/* end non-reentrant code */


int
ldap_avl_dup_error( void* left, void* right )
{
	return( -1 );
}

int
ldap_avl_dup_ok( void* left, void* right )
{
	return( 0 );
}