Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
// resolve.cc -- symbol resolution for gold

// Copyright (C) 2006-2022 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include "elfcpp.h"
#include "target.h"
#include "object.h"
#include "symtab.h"
#include "plugin.h"

namespace gold
{

// Symbol methods used in this file.

// This symbol is being overridden by another symbol whose version is
// VERSION.  Update the VERSION_ field accordingly.

inline void
Symbol::override_version(const char* version)
{
  if (version == NULL)
    {
      // This is the case where this symbol is NAME/VERSION, and the
      // version was not marked as hidden.  That makes it the default
      // version, so we create NAME/NULL.  Later we see another symbol
      // NAME/NULL, and that symbol is overriding this one.  In this
      // case, since NAME/VERSION is the default, we make NAME/NULL
      // override NAME/VERSION as well.  They are already the same
      // Symbol structure.  Setting the VERSION_ field to NULL ensures
      // that it will be output with the correct, empty, version.
      this->version_ = version;
    }
  else
    {
      // This is the case where this symbol is NAME/VERSION_ONE, and
      // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
      // overriding NAME.  If VERSION_ONE and VERSION_TWO are
      // different, then this can only happen when VERSION_ONE is NULL
      // and VERSION_TWO is not hidden.
      gold_assert(this->version_ == version || this->version_ == NULL);
      this->version_ = version;
    }
}

// This symbol is being overidden by another symbol whose visibility
// is VISIBILITY.  Updated the VISIBILITY_ field accordingly.

inline void
Symbol::override_visibility(elfcpp::STV visibility)
{
  // The rule for combining visibility is that we always choose the
  // most constrained visibility.  In order of increasing constraint,
  // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
  // of the numeric values, so the effect is that we always want the
  // smallest non-zero value.
  if (visibility != elfcpp::STV_DEFAULT)
    {
      if (this->visibility_ == elfcpp::STV_DEFAULT)
	this->visibility_ = visibility;
      else if (this->visibility_ > visibility)
	this->visibility_ = visibility;
    }
}

// Override the fields in Symbol.

template<int size, bool big_endian>
void
Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
		      unsigned int st_shndx, bool is_ordinary,
		      Object* object, const char* version)
{
  gold_assert(this->source_ == FROM_OBJECT);
  this->u1_.object = object;
  this->override_version(version);
  this->u2_.shndx = st_shndx;
  this->is_ordinary_shndx_ = is_ordinary;
  // Don't override st_type from plugin placeholder symbols.
  if (object->pluginobj() == NULL)
    this->type_ = sym.get_st_type();
  this->binding_ = sym.get_st_bind();
  this->override_visibility(sym.get_st_visibility());
  this->nonvis_ = sym.get_st_nonvis();
  if (object->is_dynamic())
    this->in_dyn_ = true;
  else
    this->in_reg_ = true;
}

// Override the fields in Sized_symbol.

template<int size>
template<bool big_endian>
void
Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
			     unsigned st_shndx, bool is_ordinary,
			     Object* object, const char* version)
{
  this->override_base(sym, st_shndx, is_ordinary, object, version);
  this->value_ = sym.get_st_value();
  this->symsize_ = sym.get_st_size();
}

// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
// VERSION.  This handles all aliases of TOSYM.

template<int size, bool big_endian>
void
Symbol_table::override(Sized_symbol<size>* tosym,
		       const elfcpp::Sym<size, big_endian>& fromsym,
		       unsigned int st_shndx, bool is_ordinary,
		       Object* object, const char* version)
{
  tosym->override(fromsym, st_shndx, is_ordinary, object, version);
  if (tosym->has_alias())
    {
      Symbol* sym = this->weak_aliases_[tosym];
      gold_assert(sym != NULL);
      Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
      do
	{
	  ssym->override(fromsym, st_shndx, is_ordinary, object, version);
	  sym = this->weak_aliases_[ssym];
	  gold_assert(sym != NULL);
	  ssym = this->get_sized_symbol<size>(sym);
	}
      while (ssym != tosym);
    }
}

// The resolve functions build a little code for each symbol.
// Bit 0: 0 for global, 1 for weak.
// Bit 1: 0 for regular object, 1 for shared object
// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
// This gives us values from 0 to 11.

static const int global_or_weak_shift = 0;
static const unsigned int global_flag = 0 << global_or_weak_shift;
static const unsigned int weak_flag = 1 << global_or_weak_shift;

static const int regular_or_dynamic_shift = 1;
static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;

static const int def_undef_or_common_shift = 2;
static const unsigned int def_flag = 0 << def_undef_or_common_shift;
static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
static const unsigned int common_flag = 2 << def_undef_or_common_shift;

// This convenience function combines all the flags based on facts
// about the symbol.

static unsigned int
symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
	       unsigned int shndx, bool is_ordinary)
{
  unsigned int bits;

  switch (binding)
    {
    case elfcpp::STB_GLOBAL:
    case elfcpp::STB_GNU_UNIQUE:
      bits = global_flag;
      break;

    case elfcpp::STB_WEAK:
      bits = weak_flag;
      break;

    case elfcpp::STB_LOCAL:
      // We should only see externally visible symbols in the symbol
      // table.
      gold_error(_("invalid STB_LOCAL symbol in external symbols"));
      bits = global_flag;
      break;

    default:
      // Any target which wants to handle STB_LOOS, etc., needs to
      // define a resolve method.
      gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
      bits = global_flag;
    }

  if (is_dynamic)
    bits |= dynamic_flag;
  else
    bits |= regular_flag;

  switch (shndx)
    {
    case elfcpp::SHN_UNDEF:
      bits |= undef_flag;
      break;

    case elfcpp::SHN_COMMON:
      if (!is_ordinary)
	bits |= common_flag;
      break;

    default:
      if (!is_ordinary && Symbol::is_common_shndx(shndx))
	bits |= common_flag;
      else
        bits |= def_flag;
      break;
    }

  return bits;
}

// Resolve a symbol.  This is called the second and subsequent times
// we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
// section index for SYM, possibly adjusted for many sections.
// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
// than a special code.  ORIG_ST_SHNDX is the original section index,
// before any munging because of discarded sections, except that all
// non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
// the version of SYM.

template<int size, bool big_endian>
void
Symbol_table::resolve(Sized_symbol<size>* to,
		      const elfcpp::Sym<size, big_endian>& sym,
		      unsigned int st_shndx, bool is_ordinary,
		      unsigned int orig_st_shndx,
		      Object* object, const char* version,
		      bool is_default_version)
{
  bool to_is_ordinary;
  const unsigned int to_shndx = to->shndx(&to_is_ordinary);

  // It's possible for a symbol to be defined in an object file
  // using .symver to give it a version, and for there to also be
  // a linker script giving that symbol the same version.  We
  // don't want to give a multiple-definition error for this
  // harmless redefinition.
  if (to->source() == Symbol::FROM_OBJECT
      && to->object() == object
      && to->is_defined()
      && is_ordinary
      && to_is_ordinary
      && to_shndx == st_shndx
      && to->value() == sym.get_st_value())
    return;

  // Likewise for an absolute symbol defined twice with the same value.
  if (!is_ordinary
      && st_shndx == elfcpp::SHN_ABS
      && !to_is_ordinary
      && to_shndx == elfcpp::SHN_ABS
      && to->value() == sym.get_st_value())
    return;

  if (parameters->target().has_resolve())
    {
      Sized_target<size, big_endian>* sized_target;
      sized_target = parameters->sized_target<size, big_endian>();
      if (sized_target->resolve(to, sym, object, version))
	return;
    }

  if (!object->is_dynamic())
    {
      if (sym.get_st_type() == elfcpp::STT_COMMON
	  && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
	{
	  gold_warning(_("STT_COMMON symbol '%s' in %s "
			 "is not in a common section"),
		       to->demangled_name().c_str(),
		       to->object()->name().c_str());
	  return;
	}
      // Record that we've seen this symbol in a regular object.
      to->set_in_reg();
    }
  else if (st_shndx == elfcpp::SHN_UNDEF
           && (to->visibility() == elfcpp::STV_HIDDEN
               || to->visibility() == elfcpp::STV_INTERNAL))
    {
      // The symbol is hidden, so a reference from a shared object
      // cannot bind to it.  We tried issuing a warning in this case,
      // but that produces false positives when the symbol is
      // actually resolved in a different shared object (PR 15574).
      return;
    }
  else
    {
      // Record that we've seen this symbol in a dynamic object.
      to->set_in_dyn();
    }

  // Record if we've seen this symbol in a real ELF object (i.e., the
  // symbol is referenced from outside the world known to the plugin).
  if (object->pluginobj() == NULL && !object->is_dynamic())
    to->set_in_real_elf();

  // If we're processing replacement files, allow new symbols to override
  // the placeholders from the plugin objects.
  // Treat common symbols specially since it is possible that an ELF
  // file increased the size of the alignment.
  if (to->source() == Symbol::FROM_OBJECT)
    {
      Pluginobj* obj = to->object()->pluginobj();
      if (obj != NULL
          && parameters->options().plugins()->in_replacement_phase())
        {
	  bool adjust_common = false;
	  typename Sized_symbol<size>::Size_type tosize = 0;
	  typename Sized_symbol<size>::Value_type tovalue = 0;
	  if (to->is_common()
	      && !is_ordinary && Symbol::is_common_shndx(st_shndx))
	    {
	      adjust_common = true;
	      tosize = to->symsize();
	      tovalue = to->value();
	    }
	  this->override(to, sym, st_shndx, is_ordinary, object, version);
	  if (adjust_common)
	    {
	      if (tosize > to->symsize())
		to->set_symsize(tosize);
	      if (tovalue > to->value())
		to->set_value(tovalue);
	    }
	  return;
        }
    }

  // A new weak undefined reference, merging with an old weak
  // reference, could be a One Definition Rule (ODR) violation --
  // especially if the types or sizes of the references differ.  We'll
  // store such pairs and look them up later to make sure they
  // actually refer to the same lines of code.  We also check
  // combinations of weak and strong, which might occur if one case is
  // inline and the other is not.  (Note: not all ODR violations can
  // be found this way, and not everything this finds is an ODR
  // violation.  But it's helpful to warn about.)
  if (parameters->options().detect_odr_violations()
      && (sym.get_st_bind() == elfcpp::STB_WEAK
	  || to->binding() == elfcpp::STB_WEAK)
      && orig_st_shndx != elfcpp::SHN_UNDEF
      && to_is_ordinary
      && to_shndx != elfcpp::SHN_UNDEF
      && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
      && to->symsize() != 0
      && (sym.get_st_type() != to->type()
          || sym.get_st_size() != to->symsize())
      // C does not have a concept of ODR, so we only need to do this
      // on C++ symbols.  These have (mangled) names starting with _Z.
      && to->name()[0] == '_' && to->name()[1] == 'Z')
    {
      Symbol_location fromloc
          = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
      Symbol_location toloc = { to->object(), to_shndx,
				static_cast<off_t>(to->value()) };
      this->candidate_odr_violations_[to->name()].insert(fromloc);
      this->candidate_odr_violations_[to->name()].insert(toloc);
    }

  // Plugins don't provide a symbol type, so adopt the existing type
  // if the FROM symbol is from a plugin.
  elfcpp::STT fromtype = (object->pluginobj() != NULL
			  ? to->type()
			  : sym.get_st_type());
  unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
                                         object->is_dynamic(),
					 st_shndx, is_ordinary);

  bool adjust_common_sizes;
  bool adjust_dyndef;
  typename Sized_symbol<size>::Size_type tosize = to->symsize();
  if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
				    object, &adjust_common_sizes,
				    &adjust_dyndef, is_default_version))
    {
      elfcpp::STB orig_tobinding = to->binding();
      typename Sized_symbol<size>::Value_type tovalue = to->value();
      this->override(to, sym, st_shndx, is_ordinary, object, version);
      if (adjust_common_sizes)
	{
	  if (tosize > to->symsize())
	    to->set_symsize(tosize);
	  if (tovalue > to->value())
	    to->set_value(tovalue);
	}
      if (adjust_dyndef)
	{
	  // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
	  // Remember which kind of UNDEF it was for future reference.
	  to->set_undef_binding(orig_tobinding);
	}
    }
  else
    {
      if (adjust_common_sizes)
	{
	  if (sym.get_st_size() > tosize)
	    to->set_symsize(sym.get_st_size());
	  if (sym.get_st_value() > to->value())
	    to->set_value(sym.get_st_value());
	}
      if (adjust_dyndef)
	{
	  // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
	  // Remember which kind of UNDEF it was.
	  to->set_undef_binding(sym.get_st_bind());
	}
      // The ELF ABI says that even for a reference to a symbol we
      // merge the visibility.
      to->override_visibility(sym.get_st_visibility());
    }

  // If we have a non-WEAK reference from a regular object to a
  // dynamic object, mark the dynamic object as needed.
  if (to->is_from_dynobj() && to->in_reg() && !to->is_undef_binding_weak())
    to->object()->set_is_needed();

  if (adjust_common_sizes && parameters->options().warn_common())
    {
      if (tosize > sym.get_st_size())
	Symbol_table::report_resolve_problem(false,
					     _("common of '%s' overriding "
					       "smaller common"),
					     to, OBJECT, object);
      else if (tosize < sym.get_st_size())
	Symbol_table::report_resolve_problem(false,
					     _("common of '%s' overidden by "
					       "larger common"),
					     to, OBJECT, object);
      else
	Symbol_table::report_resolve_problem(false,
					     _("multiple common of '%s'"),
					     to, OBJECT, object);
    }
}

// Handle the core of symbol resolution.  This is called with the
// existing symbol, TO, and a bitflag describing the new symbol.  This
// returns true if we should override the existing symbol with the new
// one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
// true if we should set the symbol size to the maximum of the TO and
// FROM sizes.  It handles error conditions.

bool
Symbol_table::should_override(const Symbol* to, unsigned int frombits,
			      elfcpp::STT fromtype, Defined defined,
			      Object* object, bool* adjust_common_sizes,
			      bool* adjust_dyndef, bool is_default_version)
{
  *adjust_common_sizes = false;
  *adjust_dyndef = false;

  unsigned int tobits;
  if (to->source() == Symbol::IS_UNDEFINED)
    tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
  else if (to->source() != Symbol::FROM_OBJECT)
    tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
  else
    {
      bool is_ordinary;
      unsigned int shndx = to->shndx(&is_ordinary);
      tobits = symbol_to_bits(to->binding(),
			      to->object()->is_dynamic(),
			      shndx,
			      is_ordinary);
    }

  if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
      && !to->is_placeholder())
    Symbol_table::report_resolve_problem(true,
					 _("symbol '%s' used as both __thread "
					   "and non-__thread"),
					 to, defined, object);

  // We use a giant switch table for symbol resolution.  This code is
  // unwieldy, but: 1) it is efficient; 2) we definitely handle all
  // cases; 3) it is easy to change the handling of a particular case.
  // The alternative would be a series of conditionals, but it is easy
  // to get the ordering wrong.  This could also be done as a table,
  // but that is no easier to understand than this large switch
  // statement.

  // These are the values generated by the bit codes.
  enum
  {
    DEF =              global_flag | regular_flag | def_flag,
    WEAK_DEF =         weak_flag   | regular_flag | def_flag,
    DYN_DEF =          global_flag | dynamic_flag | def_flag,
    DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
    UNDEF =            global_flag | regular_flag | undef_flag,
    WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
    DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
    DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
    COMMON =           global_flag | regular_flag | common_flag,
    WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
    DYN_COMMON =       global_flag | dynamic_flag | common_flag,
    DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
  };

  switch (tobits * 16 + frombits)
    {
    case DEF * 16 + DEF:
      // Two definitions of the same symbol.

      // If either symbol is defined by an object included using
      // --just-symbols, then don't warn.  This is for compatibility
      // with the GNU linker.  FIXME: This is a hack.
      if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
          || (object != NULL && object->just_symbols()))
        return false;

      if (!parameters->options().muldefs())
	Symbol_table::report_resolve_problem(true,
					     _("multiple definition of '%s'"),
					     to, defined, object);
      return false;

    case WEAK_DEF * 16 + DEF:
      // We've seen a weak definition, and now we see a strong
      // definition.  In the original SVR4 linker, this was treated as
      // a multiple definition error.  In the Solaris linker and the
      // GNU linker, a weak definition followed by a regular
      // definition causes the weak definition to be overridden.  We
      // are currently compatible with the GNU linker.  In the future
      // we should add a target specific option to change this.
      // FIXME.
      return true;

    case DYN_DEF * 16 + DEF:
    case DYN_WEAK_DEF * 16 + DEF:
      // We've seen a definition in a dynamic object, and now we see a
      // definition in a regular object.  The definition in the
      // regular object overrides the definition in the dynamic
      // object.
      return true;

    case UNDEF * 16 + DEF:
    case WEAK_UNDEF * 16 + DEF:
    case DYN_UNDEF * 16 + DEF:
    case DYN_WEAK_UNDEF * 16 + DEF:
      // We've seen an undefined reference, and now we see a
      // definition.  We use the definition.
      return true;

    case COMMON * 16 + DEF:
    case WEAK_COMMON * 16 + DEF:
    case DYN_COMMON * 16 + DEF:
    case DYN_WEAK_COMMON * 16 + DEF:
      // We've seen a common symbol and now we see a definition.  The
      // definition overrides.
      if (parameters->options().warn_common())
	Symbol_table::report_resolve_problem(false,
					     _("definition of '%s' overriding "
					       "common"),
					     to, defined, object);
      return true;

    case DEF * 16 + WEAK_DEF:
    case WEAK_DEF * 16 + WEAK_DEF:
      // We've seen a definition and now we see a weak definition.  We
      // ignore the new weak definition.
      return false;

    case DYN_DEF * 16 + WEAK_DEF:
    case DYN_WEAK_DEF * 16 + WEAK_DEF:
      // We've seen a dynamic definition and now we see a regular weak
      // definition.  The regular weak definition overrides.
      return true;

    case UNDEF * 16 + WEAK_DEF:
    case WEAK_UNDEF * 16 + WEAK_DEF:
    case DYN_UNDEF * 16 + WEAK_DEF:
    case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
      // A weak definition of a currently undefined symbol.
      return true;

    case COMMON * 16 + WEAK_DEF:
    case WEAK_COMMON * 16 + WEAK_DEF:
      // A weak definition does not override a common definition.
      return false;

    case DYN_COMMON * 16 + WEAK_DEF:
    case DYN_WEAK_COMMON * 16 + WEAK_DEF:
      // A weak definition does override a definition in a dynamic
      // object.
      if (parameters->options().warn_common())
	Symbol_table::report_resolve_problem(false,
					     _("definition of '%s' overriding "
					       "dynamic common definition"),
					     to, defined, object);
      return true;

    case DEF * 16 + DYN_DEF:
    case WEAK_DEF * 16 + DYN_DEF:
      // Ignore a dynamic definition if we already have a definition.
      return false;

    case DYN_DEF * 16 + DYN_DEF:
    case DYN_WEAK_DEF * 16 + DYN_DEF:
      // Ignore a dynamic definition if we already have a definition,
      // unless the existing definition is an unversioned definition
      // in the same dynamic object, and the new definition is a
      // default version.
      if (to->object() == object
          && to->version() == NULL
          && is_default_version)
        return true;
      // Or, if the existing definition is in an unused --as-needed library,
      // and the reference is weak, let the new definition override.
      if (to->in_reg()
	  && to->is_undef_binding_weak()
	  && to->object()->as_needed()
	  && !to->object()->is_needed())
	return true;
      return false;

    case UNDEF * 16 + DYN_DEF:
    case DYN_UNDEF * 16 + DYN_DEF:
    case DYN_WEAK_UNDEF * 16 + DYN_DEF:
      // Use a dynamic definition if we have a reference.
      return true;

    case WEAK_UNDEF * 16 + DYN_DEF:
      // When overriding a weak undef by a dynamic definition,
      // we need to remember that the original undef was weak.
      *adjust_dyndef = true;
      return true;

    case COMMON * 16 + DYN_DEF:
    case WEAK_COMMON * 16 + DYN_DEF:
      // Ignore a dynamic definition if we already have a common
      // definition.
      return false;

    case DEF * 16 + DYN_WEAK_DEF:
    case WEAK_DEF * 16 + DYN_WEAK_DEF:
      // Ignore a weak dynamic definition if we already have a
      // definition.
      return false;

    case UNDEF * 16 + DYN_WEAK_DEF:
      // When overriding an undef by a dynamic weak definition,
      // we need to remember that the original undef was not weak.
      *adjust_dyndef = true;
      return true;

    case DYN_UNDEF * 16 + DYN_WEAK_DEF:
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
      // Use a weak dynamic definition if we have a reference.
      return true;

    case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
      // When overriding a weak undef by a dynamic definition,
      // we need to remember that the original undef was weak.
      *adjust_dyndef = true;
      return true;

    case COMMON * 16 + DYN_WEAK_DEF:
    case WEAK_COMMON * 16 + DYN_WEAK_DEF:
      // Ignore a weak dynamic definition if we already have a common
      // definition.
      return false;

    case DYN_COMMON * 16 + DYN_DEF:
    case DYN_WEAK_COMMON * 16 + DYN_DEF:
    case DYN_DEF * 16 + DYN_WEAK_DEF:
    case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
    case DYN_COMMON * 16 + DYN_WEAK_DEF:
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
      // If the existing definition is in an unused --as-needed library,
      // and the reference is weak, let a new dynamic definition override.
      if (to->in_reg()
	  && to->is_undef_binding_weak()
	  && to->object()->as_needed()
	  && !to->object()->is_needed())
	return true;
      return false;

    case DEF * 16 + UNDEF:
    case WEAK_DEF * 16 + UNDEF:
    case UNDEF * 16 + UNDEF:
      // A new undefined reference tells us nothing.
      return false;

    case DYN_DEF * 16 + UNDEF:
    case DYN_WEAK_DEF * 16 + UNDEF:
      // For a dynamic def, we need to remember which kind of undef we see.
      *adjust_dyndef = true;
      return false;

    case WEAK_UNDEF * 16 + UNDEF:
    case DYN_UNDEF * 16 + UNDEF:
    case DYN_WEAK_UNDEF * 16 + UNDEF:
      // A strong undef overrides a dynamic or weak undef.
      return true;

    case COMMON * 16 + UNDEF:
    case WEAK_COMMON * 16 + UNDEF:
    case DYN_COMMON * 16 + UNDEF:
    case DYN_WEAK_COMMON * 16 + UNDEF:
      // A new undefined reference tells us nothing.
      return false;

    case DEF * 16 + WEAK_UNDEF:
    case WEAK_DEF * 16 + WEAK_UNDEF:
    case UNDEF * 16 + WEAK_UNDEF:
    case WEAK_UNDEF * 16 + WEAK_UNDEF:
    case DYN_UNDEF * 16 + WEAK_UNDEF:
    case COMMON * 16 + WEAK_UNDEF:
    case WEAK_COMMON * 16 + WEAK_UNDEF:
    case DYN_COMMON * 16 + WEAK_UNDEF:
    case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
      // A new weak undefined reference tells us nothing unless the
      // exisiting symbol is a dynamic weak reference.
      return false;

    case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
      // A new weak reference overrides an existing dynamic weak reference.
      // This is necessary because a dynamic weak reference remembers
      // the old binding, which may not be weak.  If we keeps the existing
      // dynamic weak reference, the weakness may be dropped in the output.
      return true;

    case DYN_DEF * 16 + WEAK_UNDEF:
    case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
      // For a dynamic def, we need to remember which kind of undef we see.
      *adjust_dyndef = true;
      return false;

    case DEF * 16 + DYN_UNDEF:
    case WEAK_DEF * 16 + DYN_UNDEF:
    case DYN_DEF * 16 + DYN_UNDEF:
    case DYN_WEAK_DEF * 16 + DYN_UNDEF:
    case UNDEF * 16 + DYN_UNDEF:
    case WEAK_UNDEF * 16 + DYN_UNDEF:
    case DYN_UNDEF * 16 + DYN_UNDEF:
    case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
    case COMMON * 16 + DYN_UNDEF:
    case WEAK_COMMON * 16 + DYN_UNDEF:
    case DYN_COMMON * 16 + DYN_UNDEF:
    case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
      // A new dynamic undefined reference tells us nothing.
      return false;

    case DEF * 16 + DYN_WEAK_UNDEF:
    case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
    case DYN_DEF * 16 + DYN_WEAK_UNDEF:
    case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
    case UNDEF * 16 + DYN_WEAK_UNDEF:
    case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
    case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
    case COMMON * 16 + DYN_WEAK_UNDEF:
    case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
    case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
      // A new weak dynamic undefined reference tells us nothing.
      return false;

    case DEF * 16 + COMMON:
      // A common symbol does not override a definition.
      if (parameters->options().warn_common())
	Symbol_table::report_resolve_problem(false,
					     _("common '%s' overridden by "
					       "previous definition"),
					     to, defined, object);
      return false;

    case WEAK_DEF * 16 + COMMON:
    case DYN_DEF * 16 + COMMON:
    case DYN_WEAK_DEF * 16 + COMMON:
      // A common symbol does override a weak definition or a dynamic
      // definition.
      return true;

    case UNDEF * 16 + COMMON:
    case WEAK_UNDEF * 16 + COMMON:
    case DYN_UNDEF * 16 + COMMON:
    case DYN_WEAK_UNDEF * 16 + COMMON:
      // A common symbol is a definition for a reference.
      return true;

    case COMMON * 16 + COMMON:
      // Set the size to the maximum.
      *adjust_common_sizes = true;
      return false;

    case WEAK_COMMON * 16 + COMMON:
      // I'm not sure just what a weak common symbol means, but
      // presumably it can be overridden by a regular common symbol.
      return true;

    case DYN_COMMON * 16 + COMMON:
    case DYN_WEAK_COMMON * 16 + COMMON:
      // Use the real common symbol, but adjust the size if necessary.
      *adjust_common_sizes = true;
      return true;

    case DEF * 16 + WEAK_COMMON:
    case WEAK_DEF * 16 + WEAK_COMMON:
    case DYN_DEF * 16 + WEAK_COMMON:
    case DYN_WEAK_DEF * 16 + WEAK_COMMON:
      // Whatever a weak common symbol is, it won't override a
      // definition.
      return false;

    case UNDEF * 16 + WEAK_COMMON:
    case WEAK_UNDEF * 16 + WEAK_COMMON:
    case DYN_UNDEF * 16 + WEAK_COMMON:
    case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
      // A weak common symbol is better than an undefined symbol.
      return true;

    case COMMON * 16 + WEAK_COMMON:
    case WEAK_COMMON * 16 + WEAK_COMMON:
    case DYN_COMMON * 16 + WEAK_COMMON:
    case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
      // Ignore a weak common symbol in the presence of a real common
      // symbol.
      return false;

    case DEF * 16 + DYN_COMMON:
    case WEAK_DEF * 16 + DYN_COMMON:
    case DYN_DEF * 16 + DYN_COMMON:
    case DYN_WEAK_DEF * 16 + DYN_COMMON:
      // Ignore a dynamic common symbol in the presence of a
      // definition.
      return false;

    case UNDEF * 16 + DYN_COMMON:
    case WEAK_UNDEF * 16 + DYN_COMMON:
    case DYN_UNDEF * 16 + DYN_COMMON:
    case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
      // A dynamic common symbol is a definition of sorts.
      return true;

    case COMMON * 16 + DYN_COMMON:
    case WEAK_COMMON * 16 + DYN_COMMON:
    case DYN_COMMON * 16 + DYN_COMMON:
    case DYN_WEAK_COMMON * 16 + DYN_COMMON:
      // Set the size to the maximum.
      *adjust_common_sizes = true;
      return false;

    case DEF * 16 + DYN_WEAK_COMMON:
    case WEAK_DEF * 16 + DYN_WEAK_COMMON:
    case DYN_DEF * 16 + DYN_WEAK_COMMON:
    case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
      // A common symbol is ignored in the face of a definition.
      return false;

    case UNDEF * 16 + DYN_WEAK_COMMON:
    case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
    case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
      // I guess a weak common symbol is better than a definition.
      return true;

    case COMMON * 16 + DYN_WEAK_COMMON:
    case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
    case DYN_COMMON * 16 + DYN_WEAK_COMMON:
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
      // Set the size to the maximum.
      *adjust_common_sizes = true;
      return false;

    default:
      gold_unreachable();
    }
}

// Issue an error or warning due to symbol resolution.  IS_ERROR
// indicates an error rather than a warning.  MSG is the error
// message; it is expected to have a %s for the symbol name.  TO is
// the existing symbol.  DEFINED/OBJECT is where the new symbol was
// found.

// FIXME: We should have better location information here.  When the
// symbol is defined, we should be able to pull the location from the
// debug info if there is any.

void
Symbol_table::report_resolve_problem(bool is_error, const char* msg,
				     const Symbol* to, Defined defined,
				     Object* object)
{
  std::string demangled(to->demangled_name());
  size_t len = strlen(msg) + demangled.length() + 10;
  char* buf = new char[len];
  snprintf(buf, len, msg, demangled.c_str());

  const char* objname;
  switch (defined)
    {
    case OBJECT:
      objname = object->name().c_str();
      break;
    case COPY:
      objname = _("COPY reloc");
      break;
    case DEFSYM:
    case UNDEFINED:
      objname = _("command line");
      break;
    case SCRIPT:
      objname = _("linker script");
      break;
    case PREDEFINED:
    case INCREMENTAL_BASE:
      objname = _("linker defined");
      break;
    default:
      gold_unreachable();
    }

  if (is_error)
    gold_error("%s: %s", objname, buf);
  else
    gold_warning("%s: %s", objname, buf);

  delete[] buf;

  if (to->source() == Symbol::FROM_OBJECT)
    objname = to->object()->name().c_str();
  else
    objname = _("command line");
  gold_info("%s: %s: previous definition here", program_name, objname);
}

// Completely override existing symbol.  Everything bar name_,
// version_, and is_forced_local_ flag are copied.  version_ is
// cleared if from->version_ is clear.  Returns true if this symbol
// should be forced local.
bool
Symbol::clone(const Symbol* from)
{
  // Don't allow cloning after dynamic linking info is attached to symbols.
  // We aren't prepared to merge such.
  gold_assert(!this->has_symtab_index() && !from->has_symtab_index());
  gold_assert(!this->has_dynsym_index() && !from->has_dynsym_index());
  gold_assert(this->got_offset_list() == NULL
	      && from->got_offset_list() == NULL);
  gold_assert(!this->has_plt_offset() && !from->has_plt_offset());

  if (!from->version_)
    this->version_ = from->version_;
  this->u1_ = from->u1_;
  this->u2_ = from->u2_;
  this->type_ = from->type_;
  this->binding_ = from->binding_;
  this->visibility_ = from->visibility_;
  this->nonvis_ = from->nonvis_;
  this->source_ = from->source_;
  this->is_def_ = from->is_def_;
  this->is_forwarder_ = from->is_forwarder_;
  this->has_alias_ = from->has_alias_;
  this->needs_dynsym_entry_ = from->needs_dynsym_entry_;
  this->in_reg_ = from->in_reg_;
  this->in_dyn_ = from->in_dyn_;
  this->needs_dynsym_value_ = from->needs_dynsym_value_;
  this->has_warning_ = from->has_warning_;
  this->is_copied_from_dynobj_ = from->is_copied_from_dynobj_;
  this->is_ordinary_shndx_ = from->is_ordinary_shndx_;
  this->in_real_elf_ = from->in_real_elf_;
  this->is_defined_in_discarded_section_
    = from->is_defined_in_discarded_section_;
  this->undef_binding_set_ = from->undef_binding_set_;
  this->undef_binding_weak_ = from->undef_binding_weak_;
  this->is_predefined_ = from->is_predefined_;
  this->is_protected_ = from->is_protected_;
  this->non_zero_localentry_ = from->non_zero_localentry_;

  return !this->is_forced_local_ && from->is_forced_local_;
}

template <int size>
bool
Sized_symbol<size>::clone(const Sized_symbol<size>* from)
{
  this->value_ = from->value_;
  this->symsize_ = from->symsize_;
  return Symbol::clone(from);
}

// A special case of should_override which is only called for a strong
// defined symbol from a regular object file.  This is used when
// defining special symbols.

bool
Symbol_table::should_override_with_special(const Symbol* to,
					   elfcpp::STT fromtype,
					   Defined defined)
{
  bool adjust_common_sizes;
  bool adjust_dyn_def;
  unsigned int frombits = global_flag | regular_flag | def_flag;
  bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
					   NULL, &adjust_common_sizes,
					   &adjust_dyn_def, false);
  gold_assert(!adjust_common_sizes && !adjust_dyn_def);
  return ret;
}

// Override symbol base with a special symbol.

void
Symbol::override_base_with_special(const Symbol* from)
{
  bool same_name = this->name_ == from->name_;
  gold_assert(same_name || this->has_alias());

  // If we are overriding an undef, remember the original binding.
  if (this->is_undefined())
    this->set_undef_binding(this->binding_);

  this->source_ = from->source_;
  switch (from->source_)
    {
    case FROM_OBJECT:
    case IN_OUTPUT_DATA:
    case IN_OUTPUT_SEGMENT:
      this->u1_ = from->u1_;
      this->u2_ = from->u2_;
      break;
    case IS_CONSTANT:
    case IS_UNDEFINED:
      break;
    default:
      gold_unreachable();
      break;
    }

  if (same_name)
    {
      // When overriding a versioned symbol with a special symbol, we
      // may be changing the version.  This will happen if we see a
      // special symbol such as "_end" defined in a shared object with
      // one version (from a version script), but we want to define it
      // here with a different version (from a different version
      // script).
      this->version_ = from->version_;
    }
  this->type_ = from->type_;
  this->binding_ = from->binding_;
  this->override_visibility(from->visibility_);
  this->nonvis_ = from->nonvis_;

  // Special symbols are always considered to be regular symbols.
  this->in_reg_ = true;

  if (from->needs_dynsym_entry_)
    this->needs_dynsym_entry_ = true;
  if (from->needs_dynsym_value_)
    this->needs_dynsym_value_ = true;

  this->is_predefined_ = from->is_predefined_;

  // We shouldn't see these flags.  If we do, we need to handle them
  // somehow.
  gold_assert(!from->is_forwarder_);
  gold_assert(!from->has_plt_offset());
  gold_assert(!from->has_warning_);
  gold_assert(!from->is_copied_from_dynobj_);
  gold_assert(!from->is_forced_local_);
}

// Override a symbol with a special symbol.

template<int size>
void
Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
{
  this->override_base_with_special(from);
  this->value_ = from->value_;
  this->symsize_ = from->symsize_;
}

// Override TOSYM with the special symbol FROMSYM.  This handles all
// aliases of TOSYM.

template<int size>
void
Symbol_table::override_with_special(Sized_symbol<size>* tosym,
				    const Sized_symbol<size>* fromsym)
{
  tosym->override_with_special(fromsym);
  if (tosym->has_alias())
    {
      Symbol* sym = this->weak_aliases_[tosym];
      gold_assert(sym != NULL);
      Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
      do
	{
	  ssym->override_with_special(fromsym);
	  sym = this->weak_aliases_[ssym];
	  gold_assert(sym != NULL);
	  ssym = this->get_sized_symbol<size>(sym);
	}
      while (ssym != tosym);
    }
  if (tosym->binding() == elfcpp::STB_LOCAL
      || ((tosym->visibility() == elfcpp::STV_HIDDEN
	   || tosym->visibility() == elfcpp::STV_INTERNAL)
	  && (tosym->binding() == elfcpp::STB_GLOBAL
	      || tosym->binding() == elfcpp::STB_GNU_UNIQUE
	      || tosym->binding() == elfcpp::STB_WEAK)
	  && !parameters->options().relocatable()))
    this->force_local(tosym);
}

// Instantiate the templates we need.  We could use the configure
// script to restrict this to only the ones needed for implemented
// targets.

// We have to instantiate both big and little endian versions because
// these are used by other templates that depends on size only.

#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
template
void
Symbol_table::resolve<32, false>(
    Sized_symbol<32>* to,
    const elfcpp::Sym<32, false>& sym,
    unsigned int st_shndx,
    bool is_ordinary,
    unsigned int orig_st_shndx,
    Object* object,
    const char* version,
    bool is_default_version);

template
void
Symbol_table::resolve<32, true>(
    Sized_symbol<32>* to,
    const elfcpp::Sym<32, true>& sym,
    unsigned int st_shndx,
    bool is_ordinary,
    unsigned int orig_st_shndx,
    Object* object,
    const char* version,
    bool is_default_version);
#endif

#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
template
void
Symbol_table::resolve<64, false>(
    Sized_symbol<64>* to,
    const elfcpp::Sym<64, false>& sym,
    unsigned int st_shndx,
    bool is_ordinary,
    unsigned int orig_st_shndx,
    Object* object,
    const char* version,
    bool is_default_version);

template
void
Symbol_table::resolve<64, true>(
    Sized_symbol<64>* to,
    const elfcpp::Sym<64, true>& sym,
    unsigned int st_shndx,
    bool is_ordinary,
    unsigned int orig_st_shndx,
    Object* object,
    const char* version,
    bool is_default_version);
#endif

#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
template
void
Symbol_table::override_with_special<32>(Sized_symbol<32>*,
					const Sized_symbol<32>*);
#endif

#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
template
void
Symbol_table::override_with_special<64>(Sized_symbol<64>*,
					const Sized_symbol<64>*);
#endif

template
bool
Sized_symbol<32>::clone(const Sized_symbol<32>*);

template
bool
Sized_symbol<64>::clone(const Sized_symbol<64>*);
} // End namespace gold.