Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
;; Scheduling for the Intel P6 family of processors
;; Copyright (C) 2004-2020 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.  */

;; The P6 family includes the Pentium Pro, Pentium II, Pentium III, Celeron
;; and Xeon lines of CPUs.  The DFA scheduler description in this file is
;; based on information that can be found in the following three documents:
;;
;;    "P6 Family of Processors Hardware Developer's Manual",
;;    Intel, September 1999.
;;
;;    "Intel Architecture Optimization Manual",
;;    Intel, 1999 (Order Number: 245127-001).
;;
;;    "How to optimize for the Pentium family of microprocessors",
;;    by Agner Fog, PhD.
;;
;; The P6 pipeline has three major components:
;;   1) the FETCH/DECODE unit, an in-order issue front-end
;;   2) the DISPATCH/EXECUTE unit, which is the out-of-order core
;;   3) the RETIRE unit, an in-order retirement unit
;;
;; So, the P6 CPUs have out-of-order cores, but the instruction decoder and
;; retirement unit are naturally in-order.
;;
;;                       BUS INTERFACE UNIT
;;                     /                   \
;;                L1 ICACHE             L1 DCACHE
;;              /     |     \              |     \
;;       DECODER0  DECODER1  DECODER2  DISP/EXEC  RETIRE
;;              \     |     /              |        |
;;            INSTRUCTION POOL   __________|_______/
;;          (inc. reorder buffer)
;;
;; Since the P6 CPUs execute instructions out-of-order, the most important
;; consideration in performance tuning is making sure enough micro-ops are
;; ready for execution in the out-of-order core, while not stalling the
;; decoder.
;;
;; TODO:
;; - Find a less crude way to model complex instructions, in
;;   particular how many cycles they take to be decoded.
;; - Include decoder latencies in the total reservation latencies.
;;   This isn't necessary right now because we assume for every
;;   instruction that it never blocks a decoder.
;; - Figure out where the p0 and p1 reservations come from.  These
;;   appear not to be in the manual
;; - Lots more because I'm sure this is still far from optimal :-)

;; The ppro_idiv and ppro_fdiv automata are used to model issue
;; latencies of idiv and fdiv type insns.
(define_automaton "ppro_decoder,ppro_core,ppro_idiv,ppro_fdiv,ppro_load,ppro_store")

;; Simple instructions of the register-register form have only one uop.
;; Load instructions are also only one uop.  Store instructions decode to
;; two uops, and simple read-modify instructions also take two uops.
;; Simple instructions of the register-memory form have two to three uops.
;; Simple read-modify-write instructions have four uops.  The rules for
;; the decoder are simple:
;;  - an instruction with 1 uop can be decoded by any of the three
;;    decoders in one cycle.
;;  - an instruction with 1 to 4 uops can be decoded only by decoder 0
;;    but still in only one cycle.
;;  - a complex (microcode) instruction can also only be decoded by
;;    decoder 0, and this takes an unspecified number of cycles.
;;
;; The goal is to schedule such that we have a few-one-one uops sequence
;; in each cycle, to decode as many instructions per cycle as possible.
(define_cpu_unit "decoder0" "ppro_decoder")
(define_cpu_unit "decoder1" "ppro_decoder")
(define_cpu_unit "decoder2" "ppro_decoder")

;; We first wish to find an instruction for decoder0, so exclude
;; decoder1 and decoder2 from being reserved until decoder 0 is
;; reserved.
(presence_set "decoder1" "decoder0")
(presence_set "decoder2" "decoder0")

;; Most instructions can be decoded on any of the three decoders.
(define_reservation "decodern" "(decoder0|decoder1|decoder2)")

;; The out-of-order core has five pipelines.  During each cycle, the core
;; may dispatch zero or one uop on the port of any of the five pipelines
;; so the maximum number of dispatched uops per cycle is 5.  In practicer,
;; 3 uops per cycle is more realistic.
;;
;; Two of the five pipelines contain several execution units:
;;
;; Port 0	Port 1		Port 2		Port 3		Port 4
;; ALU		ALU		LOAD		SAC		SDA
;; FPU		JUE
;; AGU		MMX
;; MMX		P3FPU
;; P3FPU
;;
;; (SAC=Store Address Calculation, SDA=Store Data Unit, P3FPU = SSE unit,
;;  JUE = Jump Execution Unit, AGU = Address Generation Unit)
;;
(define_cpu_unit "p0,p1" "ppro_core")
(define_cpu_unit "p2" "ppro_load")
(define_cpu_unit "p3,p4" "ppro_store")
(define_cpu_unit "idiv" "ppro_idiv")
(define_cpu_unit "fdiv" "ppro_fdiv")

;; Only the irregular instructions have to be modeled here.  A load
;; increases the latency by 2 or 3, or by nothing if the manual gives
;; a latency already.  Store latencies are not accounted for.
;;
;; The simple instructions follow a very regular pattern of 1 uop per
;; reg-reg operation, 1 uop per load on port 2. and 2 uops per store
;; on port 4 and port 3.  These instructions are modelled at the bottom
;; of this file.
;;
;; For microcoded instructions we don't know how many uops are produced.
;; These instructions are the "complex" ones in the Intel manuals.  All
;; we _do_ know is that they typically produce four or more uops, so
;; they can only be decoded on decoder0.  Modelling their latencies
;; doesn't make sense because we don't know how these instructions are
;; executed in the core.  So we just model that they can only be decoded
;; on decoder 0, and say that it takes a little while before the result
;; is available.
(define_insn_reservation "ppro_complex_insn" 6
			 (and (eq_attr "cpu" "pentiumpro")
			      (eq_attr "type" "other,multi,call,callv,str"))
			 "decoder0")

;; imov with memory operands does not use the integer units.
(define_insn_reservation "ppro_imov" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "imov")))
			 "decodern,(p0|p1)")

(define_insn_reservation "ppro_imov_load" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (eq_attr "type" "imov")))
			 "decodern,p2")

(define_insn_reservation "ppro_imov_store" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "store")
				   (eq_attr "type" "imov")))
			 "decoder0,p4+p3")

;; imovx always decodes to one uop, and also doesn't use the integer
;; units if it has memory operands.
(define_insn_reservation "ppro_imovx" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "imovx")))
			 "decodern,(p0|p1)")

(define_insn_reservation "ppro_imovx_load" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (eq_attr "type" "imovx")))
			 "decodern,p2")

;; lea executes on port 0 with latency one and throughput 1.
(define_insn_reservation "ppro_lea" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "lea")))
			 "decodern,p0")

;; Shift and rotate execute on port 0 with latency and throughput 1.
;; The load and store units need to be reserved when memory operands
;; are involved.
(define_insn_reservation "ppro_shift_rotate" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "ishift,ishift1,rotate,rotate1")))
			 "decodern,p0")

(define_insn_reservation "ppro_shift_rotate_mem" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "!none")
				   (eq_attr "type" "ishift,ishift1,rotate,rotate1")))
			 "decoder0,p2+p0,p4+p3")


;; The P6 has a sophisticated branch prediction mechanism to minimize
;; latencies due to branching.  In particular, it has a fast way to
;; execute branches that are taken multiple times (such as in loops).
;; Branches not taken suffer no penalty, and correctly predicted
;; branches cost only one fetch cycle.  Mispredicted branches are very
;; costly: typically 15 cycles and possibly as many as 26 cycles.
;;
;; Unfortunately all this makes it quite difficult to properly model
;; the latencies for the compiler.  Here I've made the choice to be
;; optimistic and assume branches are often predicted correctly, so
;; they have latency 1, and the decoders are not blocked.
;;
;; In addition, the model assumes a branch always decodes to only 1 uop,
;; which is not exactly true because there are a few instructions that
;; decode to 2 uops or microcode.  But this probably gives the best
;; results because we can assume these instructions can decode on all
;; decoders.
(define_insn_reservation "ppro_branch" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "ibr")))
			 "decodern,p1")

;; ??? Indirect branches probably have worse latency than this.
(define_insn_reservation "ppro_indirect_branch" 6
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "!none")
				   (eq_attr "type" "ibr")))
			 "decoder0,p2+p1")

(define_insn_reservation "ppro_leave" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (eq_attr "type" "leave"))
			 "decoder0,p2+(p0|p1),(p0|p1)")

;; imul has throughput one, but latency 4, and can only execute on port 0.
(define_insn_reservation "ppro_imul" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "imul")))
			 "decodern,p0")

(define_insn_reservation "ppro_imul_mem" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "!none")
				   (eq_attr "type" "imul")))
			 "decoder0,p2+p0")

;; div and idiv are very similar, so we model them the same.
;; QI, HI, and SI have issue latency 12, 21, and 37, respectively.
;; These issue latencies are modelled via the ppro_div automaton.
(define_insn_reservation "ppro_idiv_QI" 19
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "QI")
					(eq_attr "type" "idiv"))))
			 "decoder0,(p0+idiv)*2,(p0|p1)+idiv,idiv*9")

(define_insn_reservation "ppro_idiv_QI_load" 19
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "QI")
					(eq_attr "type" "idiv"))))
			 "decoder0,p2+p0+idiv,p0+idiv,(p0|p1)+idiv,idiv*9")

(define_insn_reservation "ppro_idiv_HI" 23
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "HI")
					(eq_attr "type" "idiv"))))
			 "decoder0,(p0+idiv)*3,(p0|p1)+idiv,idiv*17")

(define_insn_reservation "ppro_idiv_HI_load" 23
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "HI")
					(eq_attr "type" "idiv"))))
			 "decoder0,p2+p0+idiv,p0+idiv,(p0|p1)+idiv,idiv*18")

(define_insn_reservation "ppro_idiv_SI" 39
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SI")
					(eq_attr "type" "idiv"))))
			 "decoder0,(p0+idiv)*3,(p0|p1)+idiv,idiv*33")

(define_insn_reservation "ppro_idiv_SI_load" 39
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "SI")
					(eq_attr "type" "idiv"))))
			 "decoder0,p2+p0+idiv,p0+idiv,(p0|p1)+idiv,idiv*34")

;; Floating point operations always execute on port 0.
;; ??? where do these latencies come from? fadd has latency 3 and
;;     has throughput "1/cycle (align with FADD)".  What do they
;;     mean and how can we model that?
(define_insn_reservation "ppro_fop" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none,unknown")
				   (eq_attr "type" "fop")))
			 "decodern,p0")

(define_insn_reservation "ppro_fop_load" 5
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (eq_attr "type" "fop")))
			 "decoder0,p2+p0,p0")

(define_insn_reservation "ppro_fop_store" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "store")
				   (eq_attr "type" "fop")))
			 "decoder0,p0,p0,p0+p4+p3")

(define_insn_reservation "ppro_fop_both" 5
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "both")
				   (eq_attr "type" "fop")))
			 "decoder0,p2+p0,p0+p4+p3")

(define_insn_reservation "ppro_fsgn" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (eq_attr "type" "fsgn"))
			 "decodern,p0")

(define_insn_reservation "ppro_fistp" 5
			 (and (eq_attr "cpu" "pentiumpro")
			      (eq_attr "type" "fistp"))
			 "decoder0,p0*2,p4+p3")

(define_insn_reservation "ppro_fcmov" 2
			 (and (eq_attr "cpu" "pentiumpro")
			      (eq_attr "type" "fcmov"))
			 "decoder0,p0*2")

(define_insn_reservation "ppro_fcmp" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "fcmp")))
			 "decodern,p0")

(define_insn_reservation "ppro_fcmp_load" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (eq_attr "type" "fcmp")))
			 "decoder0,p2+p0")

(define_insn_reservation "ppro_fmov" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "fmov")))
			 "decodern,p0")

(define_insn_reservation "ppro_fmov_load" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "!XF")
					(eq_attr "type" "fmov"))))
			 "decodern,p2")

(define_insn_reservation "ppro_fmov_XF_load" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "XF")
					(eq_attr "type" "fmov"))))
			 "decoder0,(p2+p0)*2")

(define_insn_reservation "ppro_fmov_store" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "store")
				   (and (eq_attr "mode" "!XF")
					(eq_attr "type" "fmov"))))
			 "decodern,p0")

(define_insn_reservation "ppro_fmov_XF_store" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "store")
				   (and (eq_attr "mode" "XF")
					(eq_attr "type" "fmov"))))
			 "decoder0,(p0+p4),(p0+p3)")

;; fmul executes on port 0 with latency 5.  It has issue latency 2,
;; but we don't model this.
(define_insn_reservation "ppro_fmul" 5
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "fmul")))
			 "decoder0,p0*2")

(define_insn_reservation "ppro_fmul_load" 6
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (eq_attr "type" "fmul")))
			 "decoder0,p2+p0,p0")

;; fdiv latencies depend on the mode of the operands.  XFmode gives
;; a latency of 38 cycles, DFmode gives 32, and SFmode gives latency 18.
;; Division by a power of 2 takes only 9 cycles, but we cannot model
;; that.  Throughput is equal to latency - 1, which we model using the
;; ppro_div automaton.
(define_insn_reservation "ppro_fdiv_SF" 18
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "fdiv,fpspc"))))
			 "decodern,p0+fdiv,fdiv*16")

(define_insn_reservation "ppro_fdiv_SF_load" 19
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "fdiv,fpspc"))))
			 "decoder0,p2+p0+fdiv,fdiv*16")

(define_insn_reservation "ppro_fdiv_DF" 32
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "DF")
					(eq_attr "type" "fdiv,fpspc"))))
			 "decodern,p0+fdiv,fdiv*30")

(define_insn_reservation "ppro_fdiv_DF_load" 33
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "DF")
					(eq_attr "type" "fdiv,fpspc"))))
			 "decoder0,p2+p0+fdiv,fdiv*30")

(define_insn_reservation "ppro_fdiv_XF" 38
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "XF")
					(eq_attr "type" "fdiv,fpspc"))))
			 "decodern,p0+fdiv,fdiv*36")

(define_insn_reservation "ppro_fdiv_XF_load" 39
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "XF")
					(eq_attr "type" "fdiv,fpspc"))))
			 "decoder0,p2+p0+fdiv,fdiv*36")

;; MMX instructions can execute on either port 0 or port 1 with a
;; throughput of 1/cycle.
;;   on port 0:	- ALU (latency 1)
;;		- Multiplier Unit (latency 3)
;;   on port 1:	- ALU (latency 1)
;;		- Shift Unit (latency 1)
;;
;; MMX instructions are either of the type reg-reg, or read-modify, and
;; except for mmxshft and mmxmul they can execute on port 0 or port 1,
;; so they behave as "simple" instructions that need no special modelling.
;; We only have to model mmxshft and mmxmul.
(define_insn_reservation "ppro_mmx_shft" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "mmxshft")))
			 "decodern,p1")

(define_insn_reservation "ppro_mmx_shft_load" 2
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "mmxshft")))
			 "decoder0,p2+p1")

(define_insn_reservation "ppro_mmx_mul" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "mmxmul")))
			 "decodern,p0")

(define_insn_reservation "ppro_mmx_mul_load" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (eq_attr "type" "mmxmul")))
			 "decoder0,p2+p0")

(define_insn_reservation "ppro_sse_mmxcvt" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "mode" "DI")
				   (eq_attr "type" "mmxcvt")))
			 "decodern,p1")

;; FIXME: These are Pentium III only, but we cannot tell here if
;; we're generating code for PentiumPro/Pentium II or Pentium III
;; (define_insn_reservation "ppro_sse_mmxshft" 2
;;			 (and (eq_attr "cpu" "pentiumpro")
;;			      (and (eq_attr "mode" "DI")
;;				   (eq_attr "type" "mmxshft")))
;;			 "decodern,p0")

;; SSE is very complicated, and takes a bit more effort.
;; ??? I assumed that all SSE instructions decode on decoder0,
;;     but is this correct?

;; The sfence instruction.
(define_insn_reservation "ppro_sse_sfence" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "unknown")
				   (eq_attr "type" "sse")))
			 "decoder0,p4+p3")

;; FIXME: This reservation is all wrong when we're scheduling sqrtss.
(define_insn_reservation "ppro_sse_SF" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "mode" "SF")
				   (eq_attr "type" "sse")))
			 "decodern,p0")

(define_insn_reservation "ppro_sse_add_SF" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "sseadd,sseadd1"))))
			 "decodern,p1")

(define_insn_reservation "ppro_sse_add_SF_load" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "sseadd,sseadd1"))))
			 "decoder0,p2+p1")

(define_insn_reservation "ppro_sse_cmp_SF" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssecmp"))))
			 "decoder0,p1")

(define_insn_reservation "ppro_sse_cmp_SF_load" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssecmp"))))
			 "decoder0,p2+p1")

(define_insn_reservation "ppro_sse_comi_SF" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssecomi"))))
			 "decodern,p0")

(define_insn_reservation "ppro_sse_comi_SF_load" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssecomi"))))
			 "decoder0,p2+p0")

(define_insn_reservation "ppro_sse_mul_SF" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssemul"))))
			"decodern,p0")

(define_insn_reservation "ppro_sse_mul_SF_load" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssemul"))))
			"decoder0,p2+p0")

;; FIXME: ssediv doesn't close p0 for 17 cycles, surely???
(define_insn_reservation "ppro_sse_div_SF" 18
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssediv"))))
			 "decoder0,p0*17")

(define_insn_reservation "ppro_sse_div_SF_load" 18
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssediv"))))
			 "decoder0,(p2+p0),p0*16")

(define_insn_reservation "ppro_sse_icvt_SF" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "mode" "SF")
				   (eq_attr "type" "sseicvt")))
			 "decoder0,(p2+p1)*2")

(define_insn_reservation "ppro_sse_icvt_SI" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "mode" "SI")
				   (eq_attr "type" "sseicvt")))
			 "decoder0,(p2+p1)")

(define_insn_reservation "ppro_sse_mov_SF" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssemov"))))
			 "decoder0,(p0|p1)")

(define_insn_reservation "ppro_sse_mov_SF_load" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssemov"))))
			 "decoder0,p2+(p0|p1)")

(define_insn_reservation "ppro_sse_mov_SF_store" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "store")
				   (and (eq_attr "mode" "SF")
					(eq_attr "type" "ssemov"))))
			 "decoder0,p4+p3")

(define_insn_reservation "ppro_sse_V4SF" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "mode" "V4SF")
				   (eq_attr "type" "sse")))
			 "decoder0,p1*2")

(define_insn_reservation "ppro_sse_add_V4SF" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "sseadd,sseadd1"))))
			 "decoder0,p1*2")

(define_insn_reservation "ppro_sse_add_V4SF_load" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "sseadd,sseadd1"))))
			 "decoder0,(p2+p1)*2")

(define_insn_reservation "ppro_sse_cmp_V4SF" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssecmp"))))
			 "decoder0,p1*2")

(define_insn_reservation "ppro_sse_cmp_V4SF_load" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssecmp"))))
			 "decoder0,(p2+p1)*2")

(define_insn_reservation "ppro_sse_cvt_V4SF" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none,unknown")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssecvt"))))
			 "decoder0,p1*2")

(define_insn_reservation "ppro_sse_cvt_V4SF_other" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "!none,unknown")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssecmp"))))
			 "decoder0,p1,p4+p3")

(define_insn_reservation "ppro_sse_mul_V4SF" 5
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssemul"))))
			"decoder0,p0*2")

(define_insn_reservation "ppro_sse_mul_V4SF_load" 5
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssemul"))))
			"decoder0,(p2+p0)*2")

;; FIXME: p0 really closed this long???
(define_insn_reservation "ppro_sse_div_V4SF" 48
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssediv"))))
			 "decoder0,p0*34")

(define_insn_reservation "ppro_sse_div_V4SF_load" 48
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssediv"))))
			 "decoder0,(p2+p0)*2,p0*32")

(define_insn_reservation "ppro_sse_log_V4SF" 2
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "sselog,sselog1,sseshuf,sseshuf1"))))
			 "decodern,p1")

(define_insn_reservation "ppro_sse_log_V4SF_load" 2
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "sselog,sselog1,sseshuf,sseshuf1"))))
			 "decoder0,(p2+p1)")

(define_insn_reservation "ppro_sse_mov_V4SF" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssemov"))))
			 "decoder0,(p0|p1)*2")

(define_insn_reservation "ppro_sse_mov_V4SF_load" 2
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssemov"))))
			 "decoder0,p2*2")

(define_insn_reservation "ppro_sse_mov_V4SF_store" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "store")
				   (and (eq_attr "mode" "V4SF")
					(eq_attr "type" "ssemov"))))
			 "decoder0,(p4+p3)*2")

;; All other instructions are modelled as simple instructions.
;; We have already modelled all i387 floating point instructions, so all
;; other instructions execute on either port 0 or port 1.  This includes
;; the ALU units, and the MMX units.
;;
;; reg-reg instructions produce 1 uop so they can be decoded on any of
;; the three decoders.
(define_insn_reservation "ppro_insn" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "none,unknown")
				   (eq_attr "type" "alu,alu1,negnot,incdec,icmp,test,setcc,icmov,push,pop,fxch,sseiadd,sseishft,sseishft1,sseimul,mmx,mmxadd,mmxcmp")))
			 "decodern,(p0|p1)")

;; read-modify and register-memory instructions have 2 or three uops,
;; so they have to be decoded on decoder0.
(define_insn_reservation "ppro_insn_load" 3
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "load")
				   (eq_attr "type" "alu,alu1,negnot,incdec,icmp,test,setcc,icmov,push,pop,fxch,sseiadd,sseishft,sseishft1,sseimul,mmx,mmxadd,mmxcmp")))
			 "decoder0,p2+(p0|p1)")

(define_insn_reservation "ppro_insn_store" 1
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "store")
				   (eq_attr "type" "alu,alu1,negnot,incdec,icmp,test,setcc,icmov,push,pop,fxch,sseiadd,sseishft,sseishft1,sseimul,mmx,mmxadd,mmxcmp")))
			 "decoder0,(p0|p1),p4+p3")

;; read-modify-store instructions produce 4 uops so they have to be
;; decoded on decoder0 as well.
(define_insn_reservation "ppro_insn_both" 4
			 (and (eq_attr "cpu" "pentiumpro")
			      (and (eq_attr "memory" "both")
				   (eq_attr "type" "alu,alu1,negnot,incdec,icmp,test,setcc,icmov,push,pop,fxch,sseiadd,sseishft,sseishft1,sseimul,mmx,mmxadd,mmxcmp")))
			 "decoder0,p2+(p0|p1),p4+p3")