Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
;; Predicate definitions for IA-32 and x86-64.
;; Copyright (C) 2004-2020 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.

;; Return true if OP is either a i387 or SSE fp register.
(define_predicate "any_fp_register_operand"
  (and (match_code "reg")
       (match_test "ANY_FP_REGNO_P (REGNO (op))")))

;; Return true if OP is an i387 fp register.
(define_predicate "fp_register_operand"
  (and (match_code "reg")
       (match_test "STACK_REGNO_P (REGNO (op))")))

;; True if the operand is a GENERAL class register.
(define_predicate "general_reg_operand"
  (and (match_code "reg")
       (match_test "GENERAL_REGNO_P (REGNO (op))")))

;; True if the operand is a nonimmediate operand with GENERAL class register.
(define_predicate "nonimmediate_gr_operand"
  (if_then_else (match_code "reg")
    (match_test "GENERAL_REGNO_P (REGNO (op))")
    (match_operand 0 "nonimmediate_operand")))

;; True if the operand is a general operand with GENERAL class register.
(define_predicate "general_gr_operand"
  (if_then_else (match_code "reg")
    (match_test "GENERAL_REGNO_P (REGNO (op))")
    (match_operand 0 "general_operand")))

;; True if the operand is an MMX register.
(define_predicate "mmx_reg_operand"
  (and (match_code "reg")
       (match_test "MMX_REGNO_P (REGNO (op))")))

;; Match register operands, but include memory operands for
;; !TARGET_MMX_WITH_SSE.
(define_predicate "register_mmxmem_operand"
  (ior (match_operand 0 "register_operand")
       (and (not (match_test "TARGET_MMX_WITH_SSE"))
	    (match_operand 0 "memory_operand"))))

;; True if the operand is an SSE register.
(define_predicate "sse_reg_operand"
  (and (match_code "reg")
       (match_test "SSE_REGNO_P (REGNO (op))")))

;; Return true if op is a QImode register.
(define_predicate "any_QIreg_operand"
  (and (match_code "reg")
       (match_test "ANY_QI_REGNO_P (REGNO (op))")))

;; Return true if op is one of QImode registers: %[abcd][hl].
(define_predicate "QIreg_operand"
  (and (match_code "reg")
       (match_test "QI_REGNO_P (REGNO (op))")))

;; Return true if op is a QImode register operand other than %[abcd][hl].
(define_predicate "ext_QIreg_operand"
  (and (match_test "TARGET_64BIT")
       (match_code "reg")
       (not (match_test "QI_REGNO_P (REGNO (op))"))))

;; Return true if op is the AX register.
(define_predicate "ax_reg_operand"
  (and (match_code "reg")
       (match_test "REGNO (op) == AX_REG")))

;; Return true if op is the flags register.
(define_predicate "flags_reg_operand"
  (and (match_code "reg")
       (match_test "REGNO (op) == FLAGS_REG")))

;; Match a DI, SI or HImode register for a zero_extract.
(define_special_predicate "ext_register_operand"
  (and (match_operand 0 "register_operand")
       (ior (and (match_test "TARGET_64BIT")
		 (match_test "GET_MODE (op) == DImode"))
	    (match_test "GET_MODE (op) == SImode")
	    (match_test "GET_MODE (op) == HImode"))))

;; Match a DI, SI, HI or QImode nonimmediate_operand.
(define_special_predicate "int_nonimmediate_operand"
  (and (match_operand 0 "nonimmediate_operand")
       (ior (and (match_test "TARGET_64BIT")
		 (match_test "GET_MODE (op) == DImode"))
	    (match_test "GET_MODE (op) == SImode")
	    (match_test "GET_MODE (op) == HImode")
	    (match_test "GET_MODE (op) == QImode"))))

;; Match register operands, but include memory operands for TARGET_SSE_MATH.
(define_predicate "register_ssemem_operand"
  (if_then_else
    (match_test "SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH")
    (match_operand 0 "nonimmediate_operand")
    (match_operand 0 "register_operand")))

;; Match nonimmediate operands, but exclude memory operands
;; for TARGET_SSE_MATH if TARGET_MIX_SSE_I387 is not enabled.
(define_predicate "nonimm_ssenomem_operand"
  (if_then_else
    (and (match_test "SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH")
	 (not (match_test "TARGET_MIX_SSE_I387")))
    (match_operand 0 "register_operand")
    (match_operand 0 "nonimmediate_operand")))

;; The above predicate, suitable for x87 arithmetic operators.
(define_predicate "x87nonimm_ssenomem_operand"
  (if_then_else
    (and (match_test "SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH")
	 (not (match_test "TARGET_MIX_SSE_I387 && X87_ENABLE_ARITH (mode)")))
    (match_operand 0 "register_operand")
    (match_operand 0 "nonimmediate_operand")))

;; Match register operands, include memory operand for TARGET_SSE4_1.
(define_predicate "register_sse4nonimm_operand"
  (if_then_else (match_test "TARGET_SSE4_1")
    (match_operand 0 "nonimmediate_operand")
    (match_operand 0 "register_operand")))

;; Return true if VALUE is symbol reference
(define_predicate "symbol_operand"
  (match_code "symbol_ref"))

;; Return true if VALUE can be stored in a sign extended immediate field.
(define_predicate "x86_64_immediate_operand"
  (match_code "const_int,symbol_ref,label_ref,const")
{
  if (!TARGET_64BIT)
    return immediate_operand (op, mode);

  switch (GET_CODE (op))
    {
    case CONST_INT:
      {
        HOST_WIDE_INT val = INTVAL (op);
        return trunc_int_for_mode (val, SImode) == val;
      }
    case SYMBOL_REF:
      /* TLS symbols are not constant.  */
      if (SYMBOL_REF_TLS_MODEL (op))
	return false;

      /* Load the external function address via the GOT slot.  */
      if (ix86_force_load_from_GOT_p (op))
	return false;

      /* For certain code models, the symbolic references are known to fit.
	 in CM_SMALL_PIC model we know it fits if it is local to the shared
	 library.  Don't count TLS SYMBOL_REFs here, since they should fit
	 only if inside of UNSPEC handled below.  */
      return (ix86_cmodel == CM_SMALL || ix86_cmodel == CM_KERNEL
	      || (ix86_cmodel == CM_MEDIUM && !SYMBOL_REF_FAR_ADDR_P (op)));

    case LABEL_REF:
      /* For certain code models, the code is near as well.  */
      return (ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM
	      || ix86_cmodel == CM_KERNEL);

    case CONST:
      /* We also may accept the offsetted memory references in certain
	 special cases.  */
      if (GET_CODE (XEXP (op, 0)) == UNSPEC)
	switch (XINT (XEXP (op, 0), 1))
	  {
	  case UNSPEC_GOTPCREL:
	  case UNSPEC_DTPOFF:
	  case UNSPEC_GOTNTPOFF:
	  case UNSPEC_NTPOFF:
	    return true;
	  default:
	    break;
	  }

      if (GET_CODE (XEXP (op, 0)) == PLUS)
	{
	  rtx op1 = XEXP (XEXP (op, 0), 0);
	  rtx op2 = XEXP (XEXP (op, 0), 1);

	  if (ix86_cmodel == CM_LARGE && GET_CODE (op1) != UNSPEC)
	    return false;
	  if (!CONST_INT_P (op2))
	    return false;

	  HOST_WIDE_INT offset = INTVAL (op2);
	  if (trunc_int_for_mode (offset, SImode) != offset)
	    return false;

	  switch (GET_CODE (op1))
	    {
	    case SYMBOL_REF:
	      /* TLS symbols are not constant.  */
	      if (SYMBOL_REF_TLS_MODEL (op1))
		return false;

	      /* Load the external function address via the GOT slot.  */
	      if (ix86_force_load_from_GOT_p (op1))
	        return false;

	      /* For CM_SMALL assume that latest object is 16MB before
		 end of 31bits boundary.  We may also accept pretty
		 large negative constants knowing that all objects are
		 in the positive half of address space.  */
	      if ((ix86_cmodel == CM_SMALL
		   || (ix86_cmodel == CM_MEDIUM
		       && !SYMBOL_REF_FAR_ADDR_P (op1)))
		  && offset < 16*1024*1024)
		return true;
	      /* For CM_KERNEL we know that all object resist in the
		 negative half of 32bits address space.  We may not
		 accept negative offsets, since they may be just off
		 and we may accept pretty large positive ones.  */
	      if (ix86_cmodel == CM_KERNEL
		  && offset > 0)
		return true;
	      break;

	    case LABEL_REF:
	      /* These conditions are similar to SYMBOL_REF ones, just the
		 constraints for code models differ.  */
	      if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM)
		  && offset < 16*1024*1024)
		return true;
	      if (ix86_cmodel == CM_KERNEL
		  && offset > 0)
		return true;
	      break;

	    case UNSPEC:
	      switch (XINT (op1, 1))
		{
		case UNSPEC_DTPOFF:
		case UNSPEC_NTPOFF:
		  return true;
		}
	      break;

	    default:
	      break;
	    }
	}
      break;

      default:
	gcc_unreachable ();
    }

  return false;
})

;; Return true if VALUE can be stored in the zero extended immediate field.
(define_predicate "x86_64_zext_immediate_operand"
  (match_code "const_int,symbol_ref,label_ref,const")
{
  switch (GET_CODE (op))
    {
    case CONST_INT:
      return !(INTVAL (op) & ~(HOST_WIDE_INT) 0xffffffff);

    case SYMBOL_REF:
      /* TLS symbols are not constant.  */
      if (SYMBOL_REF_TLS_MODEL (op))
	return false;

      /* Load the external function address via the GOT slot.  */
      if (ix86_force_load_from_GOT_p (op))
	return false;

     /* For certain code models, the symbolic references are known to fit.  */
      return (ix86_cmodel == CM_SMALL
	      || (ix86_cmodel == CM_MEDIUM
		  && !SYMBOL_REF_FAR_ADDR_P (op)));

    case LABEL_REF:
      /* For certain code models, the code is near as well.  */
      return ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM;

    case CONST:
      /* We also may accept the offsetted memory references in certain
	 special cases.  */
      if (GET_CODE (XEXP (op, 0)) == PLUS)
	{
	  rtx op1 = XEXP (XEXP (op, 0), 0);
	  rtx op2 = XEXP (XEXP (op, 0), 1);

	  if (ix86_cmodel == CM_LARGE)
	    return false;
	  if (!CONST_INT_P (op2))
	    return false;

	  HOST_WIDE_INT offset = INTVAL (op2);
	  if (trunc_int_for_mode (offset, SImode) != offset)
	    return false;

	  switch (GET_CODE (op1))
	    {
	    case SYMBOL_REF:
	      /* TLS symbols are not constant.  */
	      if (SYMBOL_REF_TLS_MODEL (op1))
		return false;

	      /* Load the external function address via the GOT slot.  */
	      if (ix86_force_load_from_GOT_p (op1))
	        return false;

	      /* For small code model we may accept pretty large positive
		 offsets, since one bit is available for free.  Negative
		 offsets are limited by the size of NULL pointer area
		 specified by the ABI.  */
	      if ((ix86_cmodel == CM_SMALL
		   || (ix86_cmodel == CM_MEDIUM
		       && !SYMBOL_REF_FAR_ADDR_P (op1)))
		  && offset > -0x10000)
		return true;
	      /* ??? For the kernel, we may accept adjustment of
		 -0x10000000, since we know that it will just convert
		 negative address space to positive, but perhaps this
		 is not worthwhile.  */
	      break;

	    case LABEL_REF:
	      /* These conditions are similar to SYMBOL_REF ones, just the
		 constraints for code models differ.  */
	      if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM)
		  && offset > -0x10000)
		return true;
	      break;

	    default:
	      return false;
	    }
	}
      break;

    default:
      gcc_unreachable ();
    }
  return false;
})

;; Return true if VALUE is a constant integer whose low and high words satisfy
;; x86_64_immediate_operand.
(define_predicate "x86_64_hilo_int_operand"
  (match_code "const_int,const_wide_int")
{
  switch (GET_CODE (op))
    {
    case CONST_INT:
      return x86_64_immediate_operand (op, mode);

    case CONST_WIDE_INT:
      gcc_assert (CONST_WIDE_INT_NUNITS (op) == 2);
      return (x86_64_immediate_operand (GEN_INT (CONST_WIDE_INT_ELT (op, 0)),
					DImode)
	      && x86_64_immediate_operand (GEN_INT (CONST_WIDE_INT_ELT (op,
									1)),
					   DImode));

    default:
      gcc_unreachable ();
    }
})

;; Return true if VALUE is a constant integer whose value is
;; x86_64_immediate_operand value zero extended from word mode to mode.
(define_predicate "x86_64_dwzext_immediate_operand"
  (match_code "const_int,const_wide_int")
{
  switch (GET_CODE (op))
    {
    case CONST_INT:
      if (!TARGET_64BIT)
	return UINTVAL (op) <= HOST_WIDE_INT_UC (0xffffffff);
      return UINTVAL (op) <= HOST_WIDE_INT_UC (0x7fffffff);

    case CONST_WIDE_INT:
      if (!TARGET_64BIT)
	return false;
      return (CONST_WIDE_INT_NUNITS (op) == 2
	      && CONST_WIDE_INT_ELT (op, 1) == 0
	      && (trunc_int_for_mode (CONST_WIDE_INT_ELT (op, 0), SImode)
		  == (HOST_WIDE_INT) CONST_WIDE_INT_ELT (op, 0)));

    default:
      gcc_unreachable ();
    }
})

;; Return true if size of VALUE can be stored in a sign
;; extended immediate field.
(define_predicate "x86_64_immediate_size_operand"
  (and (match_code "symbol_ref")
       (ior (not (match_test "TARGET_64BIT"))
	    (match_test "ix86_cmodel == CM_SMALL")
	    (match_test "ix86_cmodel == CM_KERNEL"))))

;; Return true if OP is general operand representable on x86_64.
(define_predicate "x86_64_general_operand"
  (if_then_else (match_test "TARGET_64BIT")
    (ior (match_operand 0 "nonimmediate_operand")
	 (match_operand 0 "x86_64_immediate_operand"))
    (match_operand 0 "general_operand")))

;; Return true if OP's both words are general operands representable
;; on x86_64.
(define_predicate "x86_64_hilo_general_operand"
  (if_then_else (match_test "TARGET_64BIT")
    (ior (match_operand 0 "nonimmediate_operand")
	 (match_operand 0 "x86_64_hilo_int_operand"))
    (match_operand 0 "general_operand")))

;; Return true if OP is non-VOIDmode general operand representable
;; on x86_64.  This predicate is used in sign-extending conversion
;; operations that require non-VOIDmode immediate operands.
(define_predicate "x86_64_sext_operand"
  (and (match_test "GET_MODE (op) != VOIDmode")
       (match_operand 0 "x86_64_general_operand")))

;; Return true if OP is non-VOIDmode general operand.  This predicate
;; is used in sign-extending conversion operations that require
;; non-VOIDmode immediate operands.
(define_predicate "sext_operand"
  (and (match_test "GET_MODE (op) != VOIDmode")
       (match_operand 0 "general_operand")))

;; Return true if OP is representable on x86_64 as zero-extended operand.
;; This predicate is used in zero-extending conversion operations that
;; require non-VOIDmode immediate operands.
(define_predicate "x86_64_zext_operand"
  (if_then_else (match_test "TARGET_64BIT")
    (ior (match_operand 0 "nonimmediate_operand")
	 (and (match_operand 0 "x86_64_zext_immediate_operand")
	      (match_test "GET_MODE (op) != VOIDmode")))
    (match_operand 0 "nonimmediate_operand")))

;; Return true if OP is general operand representable on x86_64
;; as either sign extended or zero extended constant.
(define_predicate "x86_64_szext_general_operand"
  (if_then_else (match_test "TARGET_64BIT")
    (ior (match_operand 0 "nonimmediate_operand")
	 (match_operand 0 "x86_64_immediate_operand")
	 (match_operand 0 "x86_64_zext_immediate_operand"))
    (match_operand 0 "general_operand")))

;; Return true if OP is nonmemory operand representable on x86_64.
(define_predicate "x86_64_nonmemory_operand"
  (if_then_else (match_test "TARGET_64BIT")
    (ior (match_operand 0 "register_operand")
	 (match_operand 0 "x86_64_immediate_operand"))
    (match_operand 0 "nonmemory_operand")))

;; Return true if OP is nonmemory operand representable on x86_64.
(define_predicate "x86_64_szext_nonmemory_operand"
  (if_then_else (match_test "TARGET_64BIT")
    (ior (match_operand 0 "register_operand")
	 (match_operand 0 "x86_64_immediate_operand")
	 (match_operand 0 "x86_64_zext_immediate_operand"))
    (match_operand 0 "nonmemory_operand")))

;; Return true when operand is PIC expression that can be computed by lea
;; operation.
(define_predicate "pic_32bit_operand"
  (match_code "const,symbol_ref,label_ref")
{
  if (!flag_pic)
    return false;

  /* Rule out relocations that translate into 64bit constants.  */
  if (TARGET_64BIT && GET_CODE (op) == CONST)
    {
      op = XEXP (op, 0);
      if (GET_CODE (op) == PLUS && CONST_INT_P (XEXP (op, 1)))
	op = XEXP (op, 0);
      if (GET_CODE (op) == UNSPEC
	  && (XINT (op, 1) == UNSPEC_GOTOFF
	      || XINT (op, 1) == UNSPEC_GOT))
	return false;
    }

  return symbolic_operand (op, mode);
})

;; Return true if OP is nonmemory operand acceptable by movabs patterns.
(define_predicate "x86_64_movabs_operand"
  (and (match_operand 0 "nonmemory_operand")
       (not (match_operand 0 "pic_32bit_operand"))))

;; Return true if OP is either a symbol reference or a sum of a symbol
;; reference and a constant.
(define_predicate "symbolic_operand"
  (match_code "symbol_ref,label_ref,const")
{
  switch (GET_CODE (op))
    {
    case SYMBOL_REF:
    case LABEL_REF:
      return true;

    case CONST:
      op = XEXP (op, 0);
      if (GET_CODE (op) == SYMBOL_REF
	  || GET_CODE (op) == LABEL_REF
	  || (GET_CODE (op) == UNSPEC
	      && (XINT (op, 1) == UNSPEC_GOT
		  || XINT (op, 1) == UNSPEC_GOTOFF
		  || XINT (op, 1) == UNSPEC_PCREL
		  || XINT (op, 1) == UNSPEC_GOTPCREL)))
	return true;
      if (GET_CODE (op) != PLUS
	  || !CONST_INT_P (XEXP (op, 1)))
	return false;

      op = XEXP (op, 0);
      if (GET_CODE (op) == SYMBOL_REF
	  || GET_CODE (op) == LABEL_REF)
	return true;
      /* Only @GOTOFF gets offsets.  */
      if (GET_CODE (op) != UNSPEC
	  || XINT (op, 1) != UNSPEC_GOTOFF)
	return false;

      op = XVECEXP (op, 0, 0);
      if (GET_CODE (op) == SYMBOL_REF
	  || GET_CODE (op) == LABEL_REF)
	return true;
      return false;

    default:
      gcc_unreachable ();
    }
})

;; Return true if OP is a symbolic operand that resolves locally.
(define_predicate "local_symbolic_operand"
  (match_code "const,label_ref,symbol_ref")
{
  if (GET_CODE (op) == CONST
      && GET_CODE (XEXP (op, 0)) == PLUS
      && CONST_INT_P (XEXP (XEXP (op, 0), 1)))
    op = XEXP (XEXP (op, 0), 0);

  if (GET_CODE (op) == LABEL_REF)
    return true;

  if (GET_CODE (op) != SYMBOL_REF)
    return false;

  if (SYMBOL_REF_TLS_MODEL (op))
    return false;

  /* Dll-imported symbols are always external.  */
  if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op))
    return false;
  if (SYMBOL_REF_LOCAL_P (op))
    return true;

  /* There is, however, a not insubstantial body of code in the rest of
     the compiler that assumes it can just stick the results of
     ASM_GENERATE_INTERNAL_LABEL in a symbol_ref and have done.  */
  /* ??? This is a hack.  Should update the body of the compiler to
     always create a DECL an invoke targetm.encode_section_info.  */
  if (strncmp (XSTR (op, 0), internal_label_prefix,
	       internal_label_prefix_len) == 0)
    return true;

  return false;
})

;; Test for a legitimate @GOTOFF operand.
;;
;; VxWorks does not impose a fixed gap between segments; the run-time
;; gap can be different from the object-file gap.  We therefore can't
;; use @GOTOFF unless we are absolutely sure that the symbol is in the
;; same segment as the GOT.  Unfortunately, the flexibility of linker
;; scripts means that we can't be sure of that in general, so assume
;; that @GOTOFF is never valid on VxWorks.
(define_predicate "gotoff_operand"
  (and (not (match_test "TARGET_VXWORKS_RTP"))
       (match_operand 0 "local_symbolic_operand")))

;; Test for various thread-local symbols.
(define_special_predicate "tls_symbolic_operand"
  (and (match_code "symbol_ref")
       (match_test "SYMBOL_REF_TLS_MODEL (op)")))

(define_special_predicate "tls_modbase_operand"
  (and (match_code "symbol_ref")
       (match_test "op == ix86_tls_module_base ()")))

(define_predicate "tls_address_pattern"
  (and (match_code "set,parallel,unspec,unspec_volatile")
       (match_test "ix86_tls_address_pattern_p (op)")))

;; Test for a pc-relative call operand
(define_predicate "constant_call_address_operand"
  (match_code "symbol_ref")
{
  if (ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC
      || flag_force_indirect_call)
    return false;
  if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op))
    return false;
  return true;
})

;; P6 processors will jump to the address after the decrement when %esp
;; is used as a call operand, so they will execute return address as a code.
;; See Pentium Pro errata 70, Pentium 2 errata A33 and Pentium 3 errata E17.

(define_predicate "call_register_no_elim_operand"
  (match_operand 0 "register_operand")
{
  if (SUBREG_P (op))
    op = SUBREG_REG (op);

  if (!TARGET_64BIT && op == stack_pointer_rtx)
    return false;

  return register_no_elim_operand (op, mode);
})

;; True for any non-virtual or eliminable register.  Used in places where
;; instantiation of such a register may cause the pattern to not be recognized.
(define_predicate "register_no_elim_operand"
  (match_operand 0 "register_operand")
{
  if (SUBREG_P (op))
    op = SUBREG_REG (op);
  return !(op == arg_pointer_rtx
	   || op == frame_pointer_rtx
	   || IN_RANGE (REGNO (op),
			FIRST_PSEUDO_REGISTER, LAST_VIRTUAL_REGISTER));
})

;; Similarly, but include the stack pointer.  This is used to prevent esp
;; from being used as an index reg.
(define_predicate "index_register_operand"
  (match_operand 0 "register_operand")
{
  if (SUBREG_P (op))
    op = SUBREG_REG (op);
  if (reload_completed)
    return REG_OK_FOR_INDEX_STRICT_P (op);
  else
    return REG_OK_FOR_INDEX_NONSTRICT_P (op);
})

;; Return false if this is any eliminable register.  Otherwise general_operand.
(define_predicate "general_no_elim_operand"
  (if_then_else (match_code "reg,subreg")
    (match_operand 0 "register_no_elim_operand")
    (match_operand 0 "general_operand")))

;; Return false if this is any eliminable register.  Otherwise
;; register_operand or a constant.
(define_predicate "nonmemory_no_elim_operand"
  (ior (match_operand 0 "register_no_elim_operand")
       (match_operand 0 "immediate_operand")))

;; Test for a valid operand for indirect branch.
(define_predicate "indirect_branch_operand"
  (ior (match_operand 0 "register_operand")
       (and (not (match_test "TARGET_INDIRECT_BRANCH_REGISTER"))
	    (not (match_test "TARGET_X32"))
	    (match_operand 0 "memory_operand"))))

;; Return true if OP is a memory operands that can be used in sibcalls.
;; Since sibcall never returns, we can only use call-clobbered register
;; as GOT base.  Allow GOT slot here only with pseudo register as GOT
;; base.  Properly handle sibcall over GOT slot with *sibcall_GOT_32
;; and *sibcall_value_GOT_32 patterns.
(define_predicate "sibcall_memory_operand"
  (match_operand 0 "memory_operand")
{
  op = XEXP (op, 0);
  if (CONSTANT_P (op))
    return true;
  if (GET_CODE (op) == PLUS && REG_P (XEXP (op, 0)))
    {
      int regno = REGNO (XEXP (op, 0));
      if (!HARD_REGISTER_NUM_P (regno) || call_used_or_fixed_reg_p (regno))
	{
	  op = XEXP (op, 1);
	  if (GOT32_symbol_operand (op, VOIDmode))
	    return true;
	}
    }
  return false;
})

;; Return true if OP is a GOT memory operand.
(define_predicate "GOT_memory_operand"
  (match_operand 0 "memory_operand")
{
  op = XEXP (op, 0);
  return (GET_CODE (op) == CONST
	  && GET_CODE (XEXP (op, 0)) == UNSPEC
	  && XINT (XEXP (op, 0), 1) == UNSPEC_GOTPCREL);
})

;; Test for a valid operand for a call instruction.
;; Allow constant call address operands in Pmode only.
(define_special_predicate "call_insn_operand"
  (ior (match_test "constant_call_address_operand
		     (op, mode == VOIDmode ? mode : Pmode)")
       (match_operand 0 "call_register_no_elim_operand")
       (and (not (match_test "TARGET_INDIRECT_BRANCH_REGISTER"))
	    (ior (and (not (match_test "TARGET_X32"))
		      (match_operand 0 "memory_operand"))
		 (and (match_test "TARGET_X32 && Pmode == DImode")
		      (match_operand 0 "GOT_memory_operand"))))))

;; Similarly, but for tail calls, in which we cannot allow memory references.
(define_special_predicate "sibcall_insn_operand"
  (ior (match_test "constant_call_address_operand
		     (op, mode == VOIDmode ? mode : Pmode)")
       (match_operand 0 "register_no_elim_operand")
       (and (not (match_test "TARGET_INDIRECT_BRANCH_REGISTER"))
	    (ior (and (not (match_test "TARGET_X32"))
		      (match_operand 0 "sibcall_memory_operand"))
		 (and (match_test "TARGET_X32 && Pmode == DImode")
		      (match_operand 0 "GOT_memory_operand"))))))

;; Return true if OP is a 32-bit GOT symbol operand.
(define_predicate "GOT32_symbol_operand"
  (match_test "GET_CODE (op) == CONST
               && GET_CODE (XEXP (op, 0)) == UNSPEC
               && XINT (XEXP (op, 0), 1) == UNSPEC_GOT"))

;; Match exactly zero.
(define_predicate "const0_operand"
  (match_code "const_int,const_double,const_vector")
{
  if (mode == VOIDmode)
    mode = GET_MODE (op);
  return op == CONST0_RTX (mode);
})

;; Match one or a vector with all elements equal to one.
(define_predicate "const1_operand"
  (match_code "const_int,const_double,const_vector")
{
  if (mode == VOIDmode)
    mode = GET_MODE (op);
  return op == CONST1_RTX (mode);
})

;; Match exactly -1.
(define_predicate "constm1_operand"
  (and (match_code "const_int")
       (match_test "op == constm1_rtx")))

;; Match exactly eight.
(define_predicate "const8_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) == 8")))

;; Match exactly 128.
(define_predicate "const128_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) == 128")))

;; Match exactly 0x0FFFFFFFF in anddi as a zero-extension operation
(define_predicate "const_32bit_mask"
  (and (match_code "const_int")
       (match_test "trunc_int_for_mode (INTVAL (op), DImode)
		    == (HOST_WIDE_INT) 0xffffffff")))

;; Match 2, 4, or 8.  Used for leal multiplicands.
(define_predicate "const248_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT i = INTVAL (op);
  return i == 2 || i == 4 || i == 8;
})

;; Match 1, 2, or 3.  Used for lea shift amounts.
(define_predicate "const123_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT i = INTVAL (op);
  return i == 1 || i == 2 || i == 3;
})

;; Match 2, 3, 6, or 7
(define_predicate "const2367_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT i = INTVAL (op);
  return i == 2 || i == 3 || i == 6 || i == 7;
})

;; Match 1, 2, 4, or 8
(define_predicate "const1248_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT i = INTVAL (op);
  return i == 1 || i == 2 || i == 4 || i == 8;
})

;; Match 3, 5, or 9.  Used for leal multiplicands.
(define_predicate "const359_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT i = INTVAL (op);
  return i == 3 || i == 5 || i == 9;
})

;; Match 4 or 8 to 11.  Used for embeded rounding.
(define_predicate "const_4_or_8_to_11_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT i = INTVAL (op);
  return i == 4 || (i >= 8 && i <= 11);
})

;; Match 4 or 8. Used for SAE.
(define_predicate "const48_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT i = INTVAL (op);
  return i == 4 || i == 8;
})

;; Match 0 or 1.
(define_predicate "const_0_to_1_operand"
  (and (match_code "const_int")
       (ior (match_test "op == const0_rtx")
	    (match_test "op == const1_rtx"))))

;; Match 0 to 3.
(define_predicate "const_0_to_3_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 3)")))

;; Match 0 to 4.
(define_predicate "const_0_to_4_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 4)")))

;; Match 0 to 5.
(define_predicate "const_0_to_5_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 5)")))

;; Match 0 to 7.
(define_predicate "const_0_to_7_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 7)")))

;; Match 0 to 15.
(define_predicate "const_0_to_15_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 15)")))

;; Match 0 to 31.
(define_predicate "const_0_to_31_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 31)")))

;; Match 0 to 63.
(define_predicate "const_0_to_63_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 63)")))

;; Match 0 to 255.
(define_predicate "const_0_to_255_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 255)")))

;; Match (0 to 255) * 8
(define_predicate "const_0_to_255_mul_8_operand"
  (match_code "const_int")
{
  unsigned HOST_WIDE_INT val = INTVAL (op);
  return val <= 255*8 && val % 8 == 0;
})

;; Return true if OP is CONST_INT >= 1 and <= 31 (a valid operand
;; for shift & compare patterns, as shifting by 0 does not change flags).
(define_predicate "const_1_to_31_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 1, 31)")))

;; Return true if OP is CONST_INT >= 1 and <= 63 (a valid operand
;; for 64bit shift & compare patterns, as shifting by 0 does not change flags).
(define_predicate "const_1_to_63_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 1, 63)")))

;; Match 2 or 3.
(define_predicate "const_2_to_3_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 2, 3)")))

;; Match 4 to 5.
(define_predicate "const_4_to_5_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 4, 5)")))

;; Match 4 to 7.
(define_predicate "const_4_to_7_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 4, 7)")))

;; Match 6 to 7.
(define_predicate "const_6_to_7_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 6, 7)")))

;; Match 8 to 9.
(define_predicate "const_8_to_9_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 8, 9)")))

;; Match 8 to 11.
(define_predicate "const_8_to_11_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 8, 11)")))

;; Match 8 to 15.
(define_predicate "const_8_to_15_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 8, 15)")))

;; Match 10 to 11.
(define_predicate "const_10_to_11_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 10, 11)")))

;; Match 12 to 13.
(define_predicate "const_12_to_13_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 12, 13)")))

;; Match 12 to 15.
(define_predicate "const_12_to_15_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 12, 15)")))

;; Match 14 to 15.
(define_predicate "const_14_to_15_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 14, 15)")))

;; Match 16 to 19.
(define_predicate "const_16_to_19_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 16, 19)")))

;; Match 16 to 31.
(define_predicate "const_16_to_31_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 16, 31)")))

;; Match 20 to 23.
(define_predicate "const_20_to_23_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 20, 23)")))

;; Match 24 to 27.
(define_predicate "const_24_to_27_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 24, 27)")))

;; Match 28 to 31.
(define_predicate "const_28_to_31_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 28, 31)")))

;; True if this is a constant appropriate for an increment or decrement.
(define_predicate "incdec_operand"
  (match_code "const_int")
{
  /* On Pentium4, the inc and dec operations causes extra dependency on flag
     registers, since carry flag is not set.  */
  if (!TARGET_USE_INCDEC && !optimize_insn_for_size_p ())
    return false;
  return op == const1_rtx || op == constm1_rtx;
})

;; True for registers, or 1 or -1.  Used to optimize double-word shifts.
(define_predicate "reg_or_pm1_operand"
  (ior (match_operand 0 "register_operand")
       (and (match_code "const_int")
	    (ior (match_test "op == const1_rtx")
		 (match_test "op == constm1_rtx")))))

;; True if OP is acceptable as operand of DImode shift expander.
(define_predicate "shiftdi_operand"
  (if_then_else (match_test "TARGET_64BIT")
    (match_operand 0 "nonimmediate_operand")
    (match_operand 0 "register_operand")))

(define_predicate "ashldi_input_operand"
  (if_then_else (match_test "TARGET_64BIT")
    (match_operand 0 "nonimmediate_operand")
    (match_operand 0 "reg_or_pm1_operand")))

;; Return true if OP is a vector load from the constant pool with just
;; the first element nonzero.
(define_predicate "zero_extended_scalar_load_operand"
  (match_code "mem")
{
  unsigned n_elts;
  op = avoid_constant_pool_reference (op);

  if (GET_CODE (op) != CONST_VECTOR)
    return false;

  n_elts = CONST_VECTOR_NUNITS (op);

  for (n_elts--; n_elts > 0; n_elts--)
    {
      rtx elt = CONST_VECTOR_ELT (op, n_elts);
      if (elt != CONST0_RTX (GET_MODE_INNER (GET_MODE (op))))
	return false;
    }
  return true;
})

/* Return true if operand is a vector constant that is all ones. */
(define_predicate "vector_all_ones_operand"
  (and (match_code "const_vector")
       (match_test "INTEGRAL_MODE_P (GET_MODE (op))")
       (match_test "op == CONSTM1_RTX (GET_MODE (op))")))

; Return true when OP is operand acceptable for vector memory operand.
; Only AVX can have misaligned memory operand.
(define_predicate "vector_memory_operand"
  (and (match_operand 0 "memory_operand")
       (ior (match_test "TARGET_AVX")
	    (match_test "MEM_ALIGN (op) >= GET_MODE_ALIGNMENT (mode)"))))

; Return true when OP is register_operand or vector_memory_operand.
(define_predicate "vector_operand"
  (ior (match_operand 0 "register_operand")
       (match_operand 0 "vector_memory_operand")))

;; Return true when OP is either nonimmediate operand, or any
;; CONST_VECTOR.
(define_predicate "nonimmediate_or_const_vector_operand"
  (ior (match_operand 0 "nonimmediate_operand")
       (match_code "const_vector")))

;; Return true when OP is nonimmediate or standard SSE constant.
(define_predicate "nonimmediate_or_sse_const_operand"
  (ior (match_operand 0 "nonimmediate_operand")
       (match_test "standard_sse_constant_p (op, mode)")))

;; Return true if OP is a register or a zero.
(define_predicate "reg_or_0_operand"
  (ior (match_operand 0 "register_operand")
       (match_operand 0 "const0_operand")))

; Return true when OP is a nonimmediate or zero.
(define_predicate "nonimm_or_0_operand"
  (ior (match_operand 0 "nonimmediate_operand")
       (match_operand 0 "const0_operand")))

(define_predicate "norex_memory_operand"
  (and (match_operand 0 "memory_operand")
       (not (match_test "x86_extended_reg_mentioned_p (op)"))))

;; Return true for RTX codes that force SImode address.
(define_predicate "SImode_address_operand"
  (match_code "subreg,zero_extend,and"))

;; Return true if op is a valid address for LEA, and does not contain
;; a segment override.  Defined as a special predicate to allow
;; mode-less const_int operands pass to address_operand.
(define_special_predicate "address_no_seg_operand"
  (match_test "address_operand (op, VOIDmode)")
{
  struct ix86_address parts;
  int ok;

  if (!CONST_INT_P (op)
      && mode != VOIDmode
      && GET_MODE (op) != mode)
    return false;

  ok = ix86_decompose_address (op, &parts);
  gcc_assert (ok);
  return parts.seg == ADDR_SPACE_GENERIC;
})

;; Return true if op if a valid base register, displacement or
;; sum of base register and displacement for VSIB addressing.
(define_predicate "vsib_address_operand"
  (match_test "address_operand (op, VOIDmode)")
{
  struct ix86_address parts;
  int ok;
  rtx disp;

  ok = ix86_decompose_address (op, &parts);
  gcc_assert (ok);
  if (parts.index || parts.seg != ADDR_SPACE_GENERIC)
    return false;

  /* VSIB addressing doesn't support (%rip).  */
  if (parts.disp)
    {
      disp = parts.disp;
      if (GET_CODE (disp) == CONST)
	{
	  disp = XEXP (disp, 0);
	  if (GET_CODE (disp) == PLUS)
	    disp = XEXP (disp, 0);
	  if (GET_CODE (disp) == UNSPEC)
	    switch (XINT (disp, 1))
	      {
	      case UNSPEC_GOTPCREL:
	      case UNSPEC_PCREL:
	      case UNSPEC_GOTNTPOFF:
		return false;
	      }
	}
      if (TARGET_64BIT
	  && flag_pic
	  && (GET_CODE (disp) == SYMBOL_REF
	      || GET_CODE (disp) == LABEL_REF))
	return false;
    }

  return true;
})

(define_predicate "vsib_mem_operator"
  (match_code "mem"))

;; Return true if the rtx is known to be at least 32 bits aligned.
(define_predicate "aligned_operand"
  (match_operand 0 "general_operand")
{
  struct ix86_address parts;
  int ok;

  /* Registers and immediate operands are always "aligned".  */
  if (!MEM_P (op))
    return true;

  /* All patterns using aligned_operand on memory operands ends up
     in promoting memory operand to 64bit and thus causing memory mismatch.  */
  if (TARGET_MEMORY_MISMATCH_STALL && !optimize_insn_for_size_p ())
    return false;

  /* Don't even try to do any aligned optimizations with volatiles.  */
  if (MEM_VOLATILE_P (op))
    return false;

  if (MEM_ALIGN (op) >= 32)
    return true;

  op = XEXP (op, 0);

  /* Pushes and pops are only valid on the stack pointer.  */
  if (GET_CODE (op) == PRE_DEC
      || GET_CODE (op) == POST_INC)
    return true;

  /* Decode the address.  */
  ok = ix86_decompose_address (op, &parts);
  gcc_assert (ok);

  if (parts.base && SUBREG_P (parts.base))
    parts.base = SUBREG_REG (parts.base);
  if (parts.index && SUBREG_P (parts.index))
    parts.index = SUBREG_REG (parts.index);

  /* Look for some component that isn't known to be aligned.  */
  if (parts.index)
    {
      if (REGNO_POINTER_ALIGN (REGNO (parts.index)) * parts.scale < 32)
	return false;
    }
  if (parts.base)
    {
      if (REGNO_POINTER_ALIGN (REGNO (parts.base)) < 32)
	return false;
    }
  if (parts.disp)
    {
      if (!CONST_INT_P (parts.disp)
	  || (INTVAL (parts.disp) & 3))
	return false;
    }

  /* Didn't find one -- this must be an aligned address.  */
  return true;
})

;; Return true if OP is memory operand with a displacement.
(define_predicate "memory_displacement_operand"
  (match_operand 0 "memory_operand")
{
  struct ix86_address parts;
  int ok;

  ok = ix86_decompose_address (XEXP (op, 0), &parts);
  gcc_assert (ok);
  return parts.disp != NULL_RTX;
})

;; Return true if OP is memory operand with a displacement only.
(define_predicate "memory_displacement_only_operand"
  (match_operand 0 "memory_operand")
{
  struct ix86_address parts;
  int ok;

  if (TARGET_64BIT)
    return false;

  ok = ix86_decompose_address (XEXP (op, 0), &parts);
  gcc_assert (ok);

  if (parts.base || parts.index)
    return false;

  return parts.disp != NULL_RTX;
})

;; Return true if OP is memory operand that cannot be represented
;; by the modRM array.
(define_predicate "long_memory_operand"
  (and (match_operand 0 "memory_operand")
       (match_test "memory_address_length (op, false)")))

;; Return true if OP is a comparison operator that can be issued by fcmov.
(define_predicate "fcmov_comparison_operator"
  (match_operand 0 "comparison_operator")
{
  machine_mode inmode = GET_MODE (XEXP (op, 0));
  enum rtx_code code = GET_CODE (op);

  if (inmode == CCFPmode)
    {
      if (!ix86_trivial_fp_comparison_operator (op, mode))
	return false;
      code = ix86_fp_compare_code_to_integer (code);
    }
  /* i387 supports just limited amount of conditional codes.  */
  switch (code)
    {
    case LTU: case GTU: case LEU: case GEU:
      if (inmode == CCmode || inmode == CCFPmode || inmode == CCCmode)
	return true;
      return false;
    case ORDERED: case UNORDERED:
    case EQ: case NE:
      return true;
    default:
      return false;
    }
})

;; Return true if OP is a comparison that can be used in the CMPSS/CMPPS insns.
;; The first set are supported directly; the second set can't be done with
;; full IEEE support, i.e. NaNs.

(define_predicate "sse_comparison_operator"
  (ior (match_code "eq,ne,lt,le,unordered,unge,ungt,ordered")
       (and (match_test "TARGET_AVX")
	    (match_code "ge,gt,uneq,unle,unlt,ltgt"))))

(define_predicate "ix86_comparison_int_operator"
  (match_code "ne,eq,ge,gt,le,lt"))

(define_predicate "ix86_comparison_uns_operator"
  (match_code "ne,eq,geu,gtu,leu,ltu"))

(define_predicate "bt_comparison_operator"
  (match_code "ne,eq"))

;; Return true if OP is a valid comparison operator in valid mode.
(define_predicate "ix86_comparison_operator"
  (match_operand 0 "comparison_operator")
{
  machine_mode inmode = GET_MODE (XEXP (op, 0));
  enum rtx_code code = GET_CODE (op);

  if (inmode == CCFPmode)
    return ix86_trivial_fp_comparison_operator (op, mode);

  switch (code)
    {
    case EQ: case NE:
      if (inmode == CCGZmode)
	return false;
      return true;
    case GE: case LT:
      if (inmode == CCmode || inmode == CCGCmode
	  || inmode == CCGOCmode || inmode == CCNOmode || inmode == CCGZmode)
	return true;
      return false;
    case GEU: case LTU:
      if (inmode == CCGZmode)
	return true;
      /* FALLTHRU */
    case GTU: case LEU:
      if (inmode == CCmode || inmode == CCCmode || inmode == CCGZmode)
	return true;
      return false;
    case ORDERED: case UNORDERED:
      if (inmode == CCmode)
	return true;
      return false;
    case GT: case LE:
      if (inmode == CCmode || inmode == CCGCmode || inmode == CCNOmode)
	return true;
      return false;
    default:
      return false;
    }
})

;; Return true if OP is a valid comparison operator
;; testing carry flag to be set.
(define_predicate "ix86_carry_flag_operator"
  (match_code "ltu,lt,unlt,gtu,gt,ungt,le,unle,ge,unge,ltgt,uneq")
{
  machine_mode inmode = GET_MODE (XEXP (op, 0));
  enum rtx_code code = GET_CODE (op);

  if (inmode == CCFPmode)
    {
      if (!ix86_trivial_fp_comparison_operator (op, mode))
	return false;
      code = ix86_fp_compare_code_to_integer (code);
    }
  else if (inmode == CCCmode)
   return code == LTU || code == GTU;
  else if (inmode != CCmode)
    return false;

  return code == LTU;
})

;; Return true if this comparison only requires testing one flag bit.
(define_predicate "ix86_trivial_fp_comparison_operator"
  (match_code "gt,ge,unlt,unle,uneq,ltgt,ordered,unordered"))

;; Return true if we know how to do this comparison.  Others require
;; testing more than one flag bit, and we let the generic middle-end
;; code do that.
(define_predicate "ix86_fp_comparison_operator"
  (if_then_else (match_test "ix86_fp_comparison_strategy (GET_CODE (op))
                             == IX86_FPCMP_ARITH")
               (match_operand 0 "comparison_operator")
               (match_operand 0 "ix86_trivial_fp_comparison_operator")))

;; Nearly general operand, but accept any const_double, since we wish
;; to be able to drop them into memory rather than have them get pulled
;; into registers.
(define_predicate "cmp_fp_expander_operand"
  (ior (match_code "const_double")
       (match_operand 0 "general_operand")))

;; Return true if this is a valid binary floating-point operation.
(define_predicate "binary_fp_operator"
  (match_code "plus,minus,mult,div"))

;; Return true if this is a multiply operation.
(define_predicate "mult_operator"
  (match_code "mult"))

;; Return true if this is a division operation.
(define_predicate "div_operator"
  (match_code "div"))

;; Return true if this is a plus, minus, and, ior or xor operation.
(define_predicate "plusminuslogic_operator"
  (match_code "plus,minus,and,ior,xor"))

;; Return true for ARITHMETIC_P.
(define_predicate "arith_or_logical_operator"
  (match_code "plus,mult,and,ior,xor,smin,smax,umin,umax,compare,minus,div,
	       mod,udiv,umod,ashift,rotate,ashiftrt,lshiftrt,rotatert"))

;; Return true for COMMUTATIVE_P.
(define_predicate "commutative_operator"
  (match_code "plus,mult,and,ior,xor,smin,smax,umin,umax"))

;; Return true if OP is a binary operator that can be promoted to wider mode.
(define_predicate "promotable_binary_operator"
  (ior (match_code "plus,minus,and,ior,xor,ashift")
       (and (match_code "mult")
	    (match_test "TARGET_TUNE_PROMOTE_HIMODE_IMUL"))))

(define_predicate "compare_operator"
  (match_code "compare"))

;; Return true if OP is a memory operand, aligned to
;; less than its natural alignment.
(define_predicate "misaligned_operand"
  (and (match_code "mem")
       (match_test "MEM_ALIGN (op) < GET_MODE_BITSIZE (mode)")))

;; Return true if OP is a vzeroall operation, known to be a PARALLEL.
(define_predicate "vzeroall_operation"
  (match_code "parallel")
{
  unsigned i, nregs = TARGET_64BIT ? 16 : 8;

  if ((unsigned) XVECLEN (op, 0) != 1 + nregs)
    return false;

  for (i = 0; i < nregs; i++)
    {
      rtx elt = XVECEXP (op, 0, i+1);

      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_DEST (elt)) != REG
	  || GET_MODE (SET_DEST (elt)) != V8SImode
	  || REGNO (SET_DEST (elt)) != GET_SSE_REGNO (i)
	  || SET_SRC (elt) != CONST0_RTX (V8SImode))
	return false;
    }
  return true;
})

;; return true if OP is a vzeroall pattern.
(define_predicate "vzeroall_pattern"
  (and (match_code "parallel")
       (match_code "unspec_volatile" "a")
       (match_test "XINT (XVECEXP (op, 0, 0), 1) == UNSPECV_VZEROALL")))

;; return true if OP is a vzeroupper pattern.
(define_predicate "vzeroupper_pattern"
  (and (match_code "parallel")
       (match_code "unspec_volatile" "a")
       (match_test "XINT (XVECEXP (op, 0, 0), 1) == UNSPECV_VZEROUPPER")))

;; Return true if OP is an addsub vec_merge operation
(define_predicate "addsub_vm_operator"
  (match_code "vec_merge")
{
  rtx op0, op1;
  int swapped;
  HOST_WIDE_INT mask;
  int nunits, elt;

  op0 = XEXP (op, 0);
  op1 = XEXP (op, 1);

  /* Sanity check.  */
  if (GET_CODE (op0) == MINUS && GET_CODE (op1) == PLUS)
    swapped = 0;
  else if (GET_CODE (op0) == PLUS && GET_CODE (op1) == MINUS)
    swapped = 1;
  else
    gcc_unreachable ();

  mask = INTVAL (XEXP (op, 2));
  nunits = GET_MODE_NUNITS (mode);

  for (elt = 0; elt < nunits; elt++)
    {
      /* bit clear: take from op0, set: take from op1  */
      int bit = !(mask & (HOST_WIDE_INT_1U << elt));

      if (bit != ((elt & 1) ^ swapped))
	return false;
    }

  return true;
})

;; Return true if OP is an addsub vec_select/vec_concat operation
(define_predicate "addsub_vs_operator"
  (and (match_code "vec_select")
       (match_code "vec_concat" "0"))
{
  rtx op0, op1;
  bool swapped;
  int nunits, elt;

  op0 = XEXP (XEXP (op, 0), 0);
  op1 = XEXP (XEXP (op, 0), 1);

  /* Sanity check.  */
  if (GET_CODE (op0) == MINUS && GET_CODE (op1) == PLUS)
    swapped = false;
  else if (GET_CODE (op0) == PLUS && GET_CODE (op1) == MINUS)
    swapped = true;
  else
    gcc_unreachable ();

  nunits = GET_MODE_NUNITS (mode);
  if (XVECLEN (XEXP (op, 1), 0) != nunits)
    return false;

  /* We already checked that permutation is suitable for addsub,
     so only look at the first element of the parallel.  */
  elt = INTVAL (XVECEXP (XEXP (op, 1), 0, 0));

  return elt == (swapped ? nunits : 0);
})

;; Return true if OP is a parallel for an addsub vec_select.
(define_predicate "addsub_vs_parallel"
  (and (match_code "parallel")
       (match_code "const_int" "a"))
{
  int nelt = XVECLEN (op, 0);
  int elt, i;
  
  if (nelt < 2)
    return false;

  /* Check that the permutation is suitable for addsub.
     For example, { 0 9 2 11 4 13 6 15 } or { 8 1 10 3 12 5 14 7 }.  */
  elt = INTVAL (XVECEXP (op, 0, 0));
  if (elt == 0)
    {
      for (i = 1; i < nelt; ++i)
	if (INTVAL (XVECEXP (op, 0, i)) != (i + (i & 1) * nelt))
	  return false;
    }
  else if (elt == nelt)
    {
      for (i = 1; i < nelt; ++i)
	if (INTVAL (XVECEXP (op, 0, i)) != (elt + i - (i & 1) * nelt))
	  return false;
    }
  else
    return false;

  return true;
})

;; Return true if OP is a parallel for a vbroadcast permute.
(define_predicate "avx_vbroadcast_operand"
  (and (match_code "parallel")
       (match_code "const_int" "a"))
{
  rtx elt = XVECEXP (op, 0, 0);
  int i, nelt = XVECLEN (op, 0);

  /* Don't bother checking there are the right number of operands,
     merely that they're all identical.  */
  for (i = 1; i < nelt; ++i)
    if (XVECEXP (op, 0, i) != elt)
      return false;
  return true;
})

;; Return true if OP is a parallel for a palignr permute.
(define_predicate "palignr_operand"
  (and (match_code "parallel")
       (match_code "const_int" "a"))
{
  int elt = INTVAL (XVECEXP (op, 0, 0));
  int i, nelt = XVECLEN (op, 0);

  /* Check that an order in the permutation is suitable for palignr.
     For example, {5 6 7 0 1 2 3 4} is "palignr 5, xmm, xmm".  */
  for (i = 1; i < nelt; ++i)
    if (INTVAL (XVECEXP (op, 0, i)) != ((elt + i) % nelt))
      return false;
  return true;
})

;; Return true if OP is a proper third operand to vpblendw256.
(define_predicate "avx2_pblendw_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT val = INTVAL (op);
  HOST_WIDE_INT low = val & 0xff;
  return val == ((low << 8) | low);
})

;; Return true if OP is vector_operand or CONST_VECTOR.
(define_predicate "general_vector_operand"
  (ior (match_operand 0 "vector_operand")
       (match_code "const_vector")))

;; Return true if OP is either -1 constant or stored in register.
(define_predicate "register_or_constm1_operand"
  (ior (match_operand 0 "register_operand")
       (and (match_code "const_int")
	    (match_test "op == constm1_rtx"))))

;; Return true if the vector ends with between 12 and 18 register saves using
;; RAX as the base address.
(define_predicate "save_multiple"
  (match_code "parallel")
{
  const unsigned len = XVECLEN (op, 0);
  unsigned i;

  /* Starting from end of vector, count register saves.  */
  for (i = 0; i < len; ++i)
    {
      rtx src, dest, addr;
      rtx e = XVECEXP (op, 0, len - 1 - i);

      if (GET_CODE (e) != SET)
	break;

      src  = SET_SRC (e);
      dest = SET_DEST (e);

      if (!REG_P (src) || !MEM_P (dest))
	break;

      addr = XEXP (dest, 0);

      /* Good if dest address is in RAX.  */
      if (REG_P (addr) && REGNO (addr) == AX_REG)
	continue;

      /* Good if dest address is offset of RAX.  */
      if (GET_CODE (addr) == PLUS
	  && REG_P (XEXP (addr, 0))
	  && REGNO (XEXP (addr, 0)) == AX_REG)
	continue;

      break;
    }
  return (i >= 12 && i <= 18);
})


;; Return true if the vector ends with between 12 and 18 register loads using
;; RSI as the base address.
(define_predicate "restore_multiple"
  (match_code "parallel")
{
  const unsigned len = XVECLEN (op, 0);
  unsigned i;

  /* Starting from end of vector, count register restores.  */
  for (i = 0; i < len; ++i)
    {
      rtx src, dest, addr;
      rtx e = XVECEXP (op, 0, len - 1 - i);

      if (GET_CODE (e) != SET)
	break;

      src  = SET_SRC (e);
      dest = SET_DEST (e);

      if (!MEM_P (src) || !REG_P (dest))
	break;

      addr = XEXP (src, 0);

      /* Good if src address is in RSI.  */
      if (REG_P (addr) && REGNO (addr) == SI_REG)
	continue;

      /* Good if src address is offset of RSI.  */
      if (GET_CODE (addr) == PLUS
	  && REG_P (XEXP (addr, 0))
	  && REGNO (XEXP (addr, 0)) == SI_REG)
	continue;

      break;
    }
  return (i >= 12 && i <= 18);
})