Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
/* Functions related to building classes and their related objects.
   Copyright (C) 1987-2020 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* High-level class interface.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "cp-tree.h"
#include "stringpool.h"
#include "cgraph.h"
#include "stor-layout.h"
#include "attribs.h"
#include "flags.h"
#include "toplev.h"
#include "convert.h"
#include "dumpfile.h"
#include "gimplify.h"
#include "intl.h"
#include "asan.h"

/* Id for dumping the class hierarchy.  */
int class_dump_id;
 
/* The number of nested classes being processed.  If we are not in the
   scope of any class, this is zero.  */

int current_class_depth;

/* In order to deal with nested classes, we keep a stack of classes.
   The topmost entry is the innermost class, and is the entry at index
   CURRENT_CLASS_DEPTH  */

typedef struct class_stack_node {
  /* The name of the class.  */
  tree name;

  /* The _TYPE node for the class.  */
  tree type;

  /* The access specifier pending for new declarations in the scope of
     this class.  */
  tree access;

  /* If were defining TYPE, the names used in this class.  */
  splay_tree names_used;

  /* Nonzero if this class is no longer open, because of a call to
     push_to_top_level.  */
  size_t hidden;
}* class_stack_node_t;

struct vtbl_init_data
{
  /* The base for which we're building initializers.  */
  tree binfo;
  /* The type of the most-derived type.  */
  tree derived;
  /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
     unless ctor_vtbl_p is true.  */
  tree rtti_binfo;
  /* The negative-index vtable initializers built up so far.  These
     are in order from least negative index to most negative index.  */
  vec<constructor_elt, va_gc> *inits;
  /* The binfo for the virtual base for which we're building
     vcall offset initializers.  */
  tree vbase;
  /* The functions in vbase for which we have already provided vcall
     offsets.  */
  vec<tree, va_gc> *fns;
  /* The vtable index of the next vcall or vbase offset.  */
  tree index;
  /* Nonzero if we are building the initializer for the primary
     vtable.  */
  int primary_vtbl_p;
  /* Nonzero if we are building the initializer for a construction
     vtable.  */
  int ctor_vtbl_p;
  /* True when adding vcall offset entries to the vtable.  False when
     merely computing the indices.  */
  bool generate_vcall_entries;
};

/* The type of a function passed to walk_subobject_offsets.  */
typedef int (*subobject_offset_fn) (tree, tree, splay_tree);

/* The stack itself.  This is a dynamically resized array.  The
   number of elements allocated is CURRENT_CLASS_STACK_SIZE.  */
static int current_class_stack_size;
static class_stack_node_t current_class_stack;

/* The size of the largest empty class seen in this translation unit.  */
static GTY (()) tree sizeof_biggest_empty_class;

static tree get_vfield_name (tree);
static void finish_struct_anon (tree);
static tree get_vtable_name (tree);
static void get_basefndecls (tree, tree, vec<tree> *);
static int build_primary_vtable (tree, tree);
static int build_secondary_vtable (tree);
static void finish_vtbls (tree);
static void modify_vtable_entry (tree, tree, tree, tree, tree *);
static void finish_struct_bits (tree);
static int alter_access (tree, tree, tree);
static void handle_using_decl (tree, tree);
static tree dfs_modify_vtables (tree, void *);
static tree modify_all_vtables (tree, tree);
static void determine_primary_bases (tree);
static void maybe_warn_about_overly_private_class (tree);
static void add_implicitly_declared_members (tree, tree*, int, int);
static tree fixed_type_or_null (tree, int *, int *);
static tree build_simple_base_path (tree expr, tree binfo);
static void build_vtbl_initializer (tree, tree, tree, tree, int *,
				    vec<constructor_elt, va_gc> **);
static bool check_bitfield_decl (tree);
static bool check_field_decl (tree, tree, int *, int *);
static void check_field_decls (tree, tree *, int *, int *);
static void build_base_fields (record_layout_info, splay_tree, tree *);
static void check_methods (tree);
static void remove_zero_width_bit_fields (tree);
static bool accessible_nvdtor_p (tree);

/* Used by find_flexarrays and related functions.  */
struct flexmems_t;
static void diagnose_flexarrays (tree, const flexmems_t *);
static void find_flexarrays (tree, flexmems_t *, bool = false,
			     tree = NULL_TREE, tree = NULL_TREE);
static void check_flexarrays (tree, flexmems_t * = NULL, bool = false);
static void check_bases (tree, int *, int *);
static void check_bases_and_members (tree);
static tree create_vtable_ptr (tree, tree *);
static void include_empty_classes (record_layout_info);
static void layout_class_type (tree, tree *);
static void propagate_binfo_offsets (tree, tree);
static void layout_virtual_bases (record_layout_info, splay_tree);
static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
static void add_vcall_offset (tree, tree, vtbl_init_data *);
static void layout_vtable_decl (tree, int);
static tree dfs_find_final_overrider_pre (tree, void *);
static tree dfs_find_final_overrider_post (tree, void *);
static tree find_final_overrider (tree, tree, tree);
static int make_new_vtable (tree, tree);
static tree get_primary_binfo (tree);
static int maybe_indent_hierarchy (FILE *, int, int);
static tree dump_class_hierarchy_r (FILE *, dump_flags_t, tree, tree, int);
static void dump_class_hierarchy (tree);
static void dump_class_hierarchy_1 (FILE *, dump_flags_t, tree);
static void dump_array (FILE *, tree);
static void dump_vtable (tree, tree, tree);
static void dump_vtt (tree, tree);
static void dump_thunk (FILE *, int, tree);
static tree build_vtable (tree, tree, tree);
static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
static void layout_nonempty_base_or_field (record_layout_info,
					   tree, tree, splay_tree);
static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
				   vec<constructor_elt, va_gc> **);
static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
				       vec<constructor_elt, va_gc> **);
static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
static void clone_constructors_and_destructors (tree);
static tree build_clone (tree, tree);
static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
static void build_ctor_vtbl_group (tree, tree);
static void build_vtt (tree);
static tree binfo_ctor_vtable (tree);
static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
			     tree *);
static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
static tree dfs_fixup_binfo_vtbls (tree, void *);
static int record_subobject_offset (tree, tree, splay_tree);
static int check_subobject_offset (tree, tree, splay_tree);
static int walk_subobject_offsets (tree, subobject_offset_fn,
				   tree, splay_tree, tree, int);
static int layout_conflict_p (tree, tree, splay_tree, int);
static int splay_tree_compare_integer_csts (splay_tree_key k1,
					    splay_tree_key k2);
static void maybe_warn_about_inaccessible_bases (tree);
static bool type_requires_array_cookie (tree);
static bool base_derived_from (tree, tree);
static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
static tree end_of_base (tree);
static tree get_vcall_index (tree, tree);
static bool type_maybe_constexpr_default_constructor (tree);
static bool type_maybe_constexpr_destructor (tree);
static bool field_poverlapping_p (tree);

/* Return a COND_EXPR that executes TRUE_STMT if this execution of the
   'structor is in charge of 'structing virtual bases, or FALSE_STMT
   otherwise.  */

tree
build_if_in_charge (tree true_stmt, tree false_stmt)
{
  gcc_assert (DECL_HAS_IN_CHARGE_PARM_P (current_function_decl));
  tree cmp = build2 (NE_EXPR, boolean_type_node,
		     current_in_charge_parm, integer_zero_node);
  tree type = unlowered_expr_type (true_stmt);
  if (VOID_TYPE_P (type))
    type = unlowered_expr_type (false_stmt);
  tree cond = build3 (COND_EXPR, type,
		      cmp, true_stmt, false_stmt);
  return cond;
}

/* Convert to or from a base subobject.  EXPR is an expression of type
   `A' or `A*', an expression of type `B' or `B*' is returned.  To
   convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
   the B base instance within A.  To convert base A to derived B, CODE
   is MINUS_EXPR and BINFO is the binfo for the A instance within B.
   In this latter case, A must not be a morally virtual base of B.
   NONNULL is true if EXPR is known to be non-NULL (this is only
   needed when EXPR is of pointer type).  CV qualifiers are preserved
   from EXPR.  */

tree
build_base_path (enum tree_code code,
		 tree expr,
		 tree binfo,
		 int nonnull,
		 tsubst_flags_t complain)
{
  tree v_binfo = NULL_TREE;
  tree d_binfo = NULL_TREE;
  tree probe;
  tree offset;
  tree target_type;
  tree null_test = NULL;
  tree ptr_target_type;
  int fixed_type_p;
  int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
  bool has_empty = false;
  bool virtual_access;
  bool rvalue = false;

  if (expr == error_mark_node || binfo == error_mark_node || !binfo)
    return error_mark_node;

  for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
    {
      d_binfo = probe;
      if (is_empty_class (BINFO_TYPE (probe)))
	has_empty = true;
      if (!v_binfo && BINFO_VIRTUAL_P (probe))
	v_binfo = probe;
    }

  probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
  if (want_pointer)
    probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
  if (dependent_type_p (probe))
    if (tree open = currently_open_class (probe))
      probe = open;

  if (code == PLUS_EXPR
      && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
    {
      /* This can happen when adjust_result_of_qualified_name_lookup can't
	 find a unique base binfo in a call to a member function.  We
	 couldn't give the diagnostic then since we might have been calling
	 a static member function, so we do it now.  In other cases, eg.
	 during error recovery (c++/71979), we may not have a base at all.  */
      if (complain & tf_error)
	{
	  tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
				   ba_unique, NULL, complain);
	  gcc_assert (base == error_mark_node || !base);
	}
      return error_mark_node;
    }

  gcc_assert ((code == MINUS_EXPR
	       && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
	      || code == PLUS_EXPR);

  if (binfo == d_binfo)
    /* Nothing to do.  */
    return expr;

  if (code == MINUS_EXPR && v_binfo)
    {
      if (complain & tf_error)
	{
	  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
	    {
	      if (want_pointer)
		error ("cannot convert from pointer to base class %qT to "
		       "pointer to derived class %qT because the base is "
		       "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
	      else
		error ("cannot convert from base class %qT to derived "
		       "class %qT because the base is virtual",
		       BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
	    }	      
	  else
	    {
	      if (want_pointer)
		error ("cannot convert from pointer to base class %qT to "
		       "pointer to derived class %qT via virtual base %qT",
		       BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
		       BINFO_TYPE (v_binfo));
	      else
		error ("cannot convert from base class %qT to derived "
		       "class %qT via virtual base %qT", BINFO_TYPE (binfo),
		       BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
	    }
	}
      return error_mark_node;
    }

  bool uneval = (cp_unevaluated_operand != 0
		 || processing_template_decl
		 || in_template_function ());

  /* For a non-pointer simple base reference, express it as a COMPONENT_REF
     without taking its address (and so causing lambda capture, 91933).  */
  if (code == PLUS_EXPR && !v_binfo && !want_pointer && !has_empty && !uneval)
    return build_simple_base_path (expr, binfo);

  if (!want_pointer)
    {
      rvalue = !lvalue_p (expr);
      /* This must happen before the call to save_expr.  */
      expr = cp_build_addr_expr (expr, complain);
    }
  else
    expr = mark_rvalue_use (expr);

  offset = BINFO_OFFSET (binfo);
  fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
  target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
  /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
     cv-unqualified.  Extract the cv-qualifiers from EXPR so that the
     expression returned matches the input.  */
  target_type = cp_build_qualified_type
    (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
  ptr_target_type = build_pointer_type (target_type);

  /* Do we need to look in the vtable for the real offset?  */
  virtual_access = (v_binfo && fixed_type_p <= 0);

  /* Don't bother with the calculations inside sizeof; they'll ICE if the
     source type is incomplete and the pointer value doesn't matter.  In a
     template (even in instantiate_non_dependent_expr), we don't have vtables
     set up properly yet, and the value doesn't matter there either; we're
     just interested in the result of overload resolution.  */
  if (uneval)
    {
      expr = build_nop (ptr_target_type, expr);
      goto indout;
    }

  if (!COMPLETE_TYPE_P (probe))
    {
      if (complain & tf_error)
	error ("cannot convert from %qT to base class %qT because %qT is "
	       "incomplete", BINFO_TYPE (d_binfo), BINFO_TYPE (binfo),
	       BINFO_TYPE (d_binfo));
      return error_mark_node;
    }

  /* If we're in an NSDMI, we don't have the full constructor context yet
     that we need for converting to a virtual base, so just build a stub
     CONVERT_EXPR and expand it later in bot_replace.  */
  if (virtual_access && fixed_type_p < 0
      && current_scope () != current_function_decl)
    {
      expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
      CONVERT_EXPR_VBASE_PATH (expr) = true;
      goto indout;
    }

  /* Do we need to check for a null pointer?  */
  if (want_pointer && !nonnull)
    {
      /* If we know the conversion will not actually change the value
	 of EXPR, then we can avoid testing the expression for NULL.
	 We have to avoid generating a COMPONENT_REF for a base class
	 field, because other parts of the compiler know that such
	 expressions are always non-NULL.  */
      if (!virtual_access && integer_zerop (offset))
	return build_nop (ptr_target_type, expr);
      null_test = error_mark_node;
    }

  /* Protect against multiple evaluation if necessary.  */
  if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
    expr = save_expr (expr);

  /* Now that we've saved expr, build the real null test.  */
  if (null_test)
    {
      tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
      null_test = build2_loc (input_location, NE_EXPR, boolean_type_node,
			      expr, zero);
      /* This is a compiler generated comparison, don't emit
	 e.g. -Wnonnull-compare warning for it.  */
      TREE_NO_WARNING (null_test) = 1;
    }

  /* If this is a simple base reference, express it as a COMPONENT_REF.  */
  if (code == PLUS_EXPR && !virtual_access
      /* We don't build base fields for empty bases, and they aren't very
	 interesting to the optimizers anyway.  */
      && !has_empty)
    {
      expr = cp_build_fold_indirect_ref (expr);
      expr = build_simple_base_path (expr, binfo);
      if (rvalue && lvalue_p (expr))
	expr = move (expr);
      if (want_pointer)
	expr = build_address (expr);
      target_type = TREE_TYPE (expr);
      goto out;
    }

  if (virtual_access)
    {
      /* Going via virtual base V_BINFO.  We need the static offset
	 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
	 V_BINFO.  That offset is an entry in D_BINFO's vtable.  */
      tree v_offset;

      if (fixed_type_p < 0 && in_base_initializer)
	{
	  /* In a base member initializer, we cannot rely on the
	     vtable being set up.  We have to indirect via the
	     vtt_parm.  */
	  tree t;

	  t = TREE_TYPE (TYPE_VFIELD (current_class_type));
	  t = build_pointer_type (t);
	  v_offset = fold_convert (t, current_vtt_parm);
	  v_offset = cp_build_fold_indirect_ref (v_offset);
	}
      else
	{
	  tree t = expr;
	  if (sanitize_flags_p (SANITIZE_VPTR)
	      && fixed_type_p == 0)
	    {
	      t = cp_ubsan_maybe_instrument_cast_to_vbase (input_location,
							   probe, expr);
	      if (t == NULL_TREE)
		t = expr;
	    }
	  v_offset = build_vfield_ref (cp_build_fold_indirect_ref (t),
	  TREE_TYPE (TREE_TYPE (expr)));
	}

      if (v_offset == error_mark_node)
	return error_mark_node;

      v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
      v_offset = build1 (NOP_EXPR,
			 build_pointer_type (ptrdiff_type_node),
			 v_offset);
      v_offset = cp_build_fold_indirect_ref (v_offset);
      TREE_CONSTANT (v_offset) = 1;

      offset = convert_to_integer (ptrdiff_type_node,
				   size_diffop_loc (input_location, offset,
						BINFO_OFFSET (v_binfo)));

      if (!integer_zerop (offset))
	v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);

      if (fixed_type_p < 0)
	/* Negative fixed_type_p means this is a constructor or destructor;
	   virtual base layout is fixed in in-charge [cd]tors, but not in
	   base [cd]tors.  */
	offset = build_if_in_charge
	  (convert_to_integer (ptrdiff_type_node, BINFO_OFFSET (binfo)),
	   v_offset);
      else
	offset = v_offset;
    }

  if (want_pointer)
    target_type = ptr_target_type;

  expr = build1 (NOP_EXPR, ptr_target_type, expr);

  if (!integer_zerop (offset))
    {
      offset = fold_convert (sizetype, offset);
      if (code == MINUS_EXPR)
	offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
      expr = fold_build_pointer_plus (expr, offset);
    }
  else
    null_test = NULL;

 indout:
  if (!want_pointer)
    {
      expr = cp_build_fold_indirect_ref (expr);
      if (rvalue)
	expr = move (expr);
    }

 out:
  if (null_test)
    expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
			    build_zero_cst (target_type));

  return expr;
}

/* Subroutine of build_base_path; EXPR and BINFO are as in that function.
   Perform a derived-to-base conversion by recursively building up a
   sequence of COMPONENT_REFs to the appropriate base fields.  */

static tree
build_simple_base_path (tree expr, tree binfo)
{
  tree type = BINFO_TYPE (binfo);
  tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
  tree field;

  if (d_binfo == NULL_TREE)
    {
      tree temp;

      gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);

      /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
	 into `(*(a ?  &b : &c)).x', and so on.  A COND_EXPR is only
	 an lvalue in the front end; only _DECLs and _REFs are lvalues
	 in the back end.  */
      temp = unary_complex_lvalue (ADDR_EXPR, expr);
      if (temp)
	expr = cp_build_fold_indirect_ref (temp);

      return expr;
    }

  /* Recurse.  */
  expr = build_simple_base_path (expr, d_binfo);

  for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
       field; field = DECL_CHAIN (field))
    /* Is this the base field created by build_base_field?  */
    if (TREE_CODE (field) == FIELD_DECL
	&& DECL_FIELD_IS_BASE (field)
	&& TREE_TYPE (field) == type
	/* If we're looking for a field in the most-derived class,
	   also check the field offset; we can have two base fields
	   of the same type if one is an indirect virtual base and one
	   is a direct non-virtual base.  */
	&& (BINFO_INHERITANCE_CHAIN (d_binfo)
	    || tree_int_cst_equal (byte_position (field),
				   BINFO_OFFSET (binfo))))
      {
	/* We don't use build_class_member_access_expr here, as that
	   has unnecessary checks, and more importantly results in
	   recursive calls to dfs_walk_once.  */
	int type_quals = cp_type_quals (TREE_TYPE (expr));

	expr = build3 (COMPONENT_REF,
		       cp_build_qualified_type (type, type_quals),
		       expr, field, NULL_TREE);
	/* Mark the expression const or volatile, as appropriate.
	   Even though we've dealt with the type above, we still have
	   to mark the expression itself.  */
	if (type_quals & TYPE_QUAL_CONST)
	  TREE_READONLY (expr) = 1;
	if (type_quals & TYPE_QUAL_VOLATILE)
	  TREE_THIS_VOLATILE (expr) = 1;

	return expr;
      }

  /* Didn't find the base field?!?  */
  gcc_unreachable ();
}

/* Convert OBJECT to the base TYPE.  OBJECT is an expression whose
   type is a class type or a pointer to a class type.  In the former
   case, TYPE is also a class type; in the latter it is another
   pointer type.  If CHECK_ACCESS is true, an error message is emitted
   if TYPE is inaccessible.  If OBJECT has pointer type, the value is
   assumed to be non-NULL.  */

tree
convert_to_base (tree object, tree type, bool check_access, bool nonnull,
		 tsubst_flags_t complain)
{
  tree binfo;
  tree object_type;

  if (TYPE_PTR_P (TREE_TYPE (object)))
    {
      object_type = TREE_TYPE (TREE_TYPE (object));
      type = TREE_TYPE (type);
    }
  else
    object_type = TREE_TYPE (object);

  binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
		       NULL, complain);
  if (!binfo || binfo == error_mark_node)
    return error_mark_node;

  return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
}

/* EXPR is an expression with unqualified class type.  BASE is a base
   binfo of that class type.  Returns EXPR, converted to the BASE
   type.  This function assumes that EXPR is the most derived class;
   therefore virtual bases can be found at their static offsets.  */

tree
convert_to_base_statically (tree expr, tree base)
{
  tree expr_type;

  expr_type = TREE_TYPE (expr);
  if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
    {
      /* If this is a non-empty base, use a COMPONENT_REF.  */
      if (!is_empty_class (BINFO_TYPE (base)))
	return build_simple_base_path (expr, base);

      /* We use fold_build2 and fold_convert below to simplify the trees
	 provided to the optimizers.  It is not safe to call these functions
	 when processing a template because they do not handle C++-specific
	 trees.  */
      gcc_assert (!processing_template_decl);
      expr = cp_build_addr_expr (expr, tf_warning_or_error);
      if (!integer_zerop (BINFO_OFFSET (base)))
        expr = fold_build_pointer_plus_loc (input_location,
					    expr, BINFO_OFFSET (base));
      expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
      expr = build_fold_indirect_ref_loc (input_location, expr);
    }

  return expr;
}


tree
build_vfield_ref (tree datum, tree type)
{
  tree vfield, vcontext;

  if (datum == error_mark_node
      /* Can happen in case of duplicate base types (c++/59082).  */
      || !TYPE_VFIELD (type))
    return error_mark_node;

  /* First, convert to the requested type.  */
  if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
    datum = convert_to_base (datum, type, /*check_access=*/false,
			     /*nonnull=*/true, tf_warning_or_error);

  /* Second, the requested type may not be the owner of its own vptr.
     If not, convert to the base class that owns it.  We cannot use
     convert_to_base here, because VCONTEXT may appear more than once
     in the inheritance hierarchy of TYPE, and thus direct conversion
     between the types may be ambiguous.  Following the path back up
     one step at a time via primary bases avoids the problem.  */
  vfield = TYPE_VFIELD (type);
  vcontext = DECL_CONTEXT (vfield);
  while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
    {
      datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
      type = TREE_TYPE (datum);
    }

  return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
}

/* Given an object INSTANCE, return an expression which yields the
   vtable element corresponding to INDEX.  There are many special
   cases for INSTANCE which we take care of here, mainly to avoid
   creating extra tree nodes when we don't have to.  */

tree
build_vtbl_ref (tree instance, tree idx)
{
  tree aref;
  tree vtbl = NULL_TREE;

  /* Try to figure out what a reference refers to, and
     access its virtual function table directly.  */

  int cdtorp = 0;
  tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);

  tree basetype = non_reference (TREE_TYPE (instance));

  if (fixed_type && !cdtorp)
    {
      tree binfo = lookup_base (fixed_type, basetype,
				ba_unique, NULL, tf_none);
      if (binfo && binfo != error_mark_node)
	vtbl = unshare_expr (BINFO_VTABLE (binfo));
    }

  if (!vtbl)
    vtbl = build_vfield_ref (instance, basetype);

  aref = build_array_ref (input_location, vtbl, idx);
  TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);

  return aref;
}

/* Given a stable object pointer INSTANCE_PTR, return an expression which
   yields a function pointer corresponding to vtable element INDEX.  */

tree
build_vfn_ref (tree instance_ptr, tree idx)
{
  tree aref;

  aref = build_vtbl_ref (cp_build_fold_indirect_ref (instance_ptr), idx);

  /* When using function descriptors, the address of the
     vtable entry is treated as a function pointer.  */
  if (TARGET_VTABLE_USES_DESCRIPTORS)
    aref = build1 (NOP_EXPR, TREE_TYPE (aref),
		   cp_build_addr_expr (aref, tf_warning_or_error));

  /* Remember this as a method reference, for later devirtualization.  */
  aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);

  return aref;
}

/* Return the name of the virtual function table (as an IDENTIFIER_NODE)
   for the given TYPE.  */

static tree
get_vtable_name (tree type)
{
  return mangle_vtbl_for_type (type);
}

/* DECL is an entity associated with TYPE, like a virtual table or an
   implicitly generated constructor.  Determine whether or not DECL
   should have external or internal linkage at the object file
   level.  This routine does not deal with COMDAT linkage and other
   similar complexities; it simply sets TREE_PUBLIC if it possible for
   entities in other translation units to contain copies of DECL, in
   the abstract.  */

void
set_linkage_according_to_type (tree /*type*/, tree decl)
{
  TREE_PUBLIC (decl) = 1;
  determine_visibility (decl);
}

/* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
   (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
   Use NAME for the name of the vtable, and VTABLE_TYPE for its type.  */

static tree
build_vtable (tree class_type, tree name, tree vtable_type)
{
  tree decl;

  decl = build_lang_decl (VAR_DECL, name, vtable_type);
  /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
     now to avoid confusion in mangle_decl.  */
  SET_DECL_ASSEMBLER_NAME (decl, name);
  DECL_CONTEXT (decl) = class_type;
  DECL_ARTIFICIAL (decl) = 1;
  TREE_STATIC (decl) = 1;
  TREE_READONLY (decl) = 1;
  DECL_VIRTUAL_P (decl) = 1;
  SET_DECL_ALIGN (decl, TARGET_VTABLE_ENTRY_ALIGN);
  DECL_USER_ALIGN (decl) = true;
  DECL_VTABLE_OR_VTT_P (decl) = 1;
  set_linkage_according_to_type (class_type, decl);
  /* The vtable has not been defined -- yet.  */
  DECL_EXTERNAL (decl) = 1;
  DECL_NOT_REALLY_EXTERN (decl) = 1;

  /* Mark the VAR_DECL node representing the vtable itself as a
     "gratuitous" one, thereby forcing dwarfout.c to ignore it.  It
     is rather important that such things be ignored because any
     effort to actually generate DWARF for them will run into
     trouble when/if we encounter code like:

     #pragma interface
     struct S { virtual void member (); };

     because the artificial declaration of the vtable itself (as
     manufactured by the g++ front end) will say that the vtable is
     a static member of `S' but only *after* the debug output for
     the definition of `S' has already been output.  This causes
     grief because the DWARF entry for the definition of the vtable
     will try to refer back to an earlier *declaration* of the
     vtable as a static member of `S' and there won't be one.  We
     might be able to arrange to have the "vtable static member"
     attached to the member list for `S' before the debug info for
     `S' get written (which would solve the problem) but that would
     require more intrusive changes to the g++ front end.  */
  DECL_IGNORED_P (decl) = 1;

  return decl;
}

/* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
   or even complete.  If this does not exist, create it.  If COMPLETE is
   nonzero, then complete the definition of it -- that will render it
   impossible to actually build the vtable, but is useful to get at those
   which are known to exist in the runtime.  */

tree
get_vtable_decl (tree type, int complete)
{
  tree decl;

  if (CLASSTYPE_VTABLES (type))
    return CLASSTYPE_VTABLES (type);

  decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
  CLASSTYPE_VTABLES (type) = decl;

  if (complete)
    {
      DECL_EXTERNAL (decl) = 1;
      cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
    }

  return decl;
}

/* Build the primary virtual function table for TYPE.  If BINFO is
   non-NULL, build the vtable starting with the initial approximation
   that it is the same as the one which is the head of the association
   list.  Returns a nonzero value if a new vtable is actually
   created.  */

static int
build_primary_vtable (tree binfo, tree type)
{
  tree decl;
  tree virtuals;

  decl = get_vtable_decl (type, /*complete=*/0);

  if (binfo)
    {
      if (BINFO_NEW_VTABLE_MARKED (binfo))
	/* We have already created a vtable for this base, so there's
	   no need to do it again.  */
	return 0;

      virtuals = copy_list (BINFO_VIRTUALS (binfo));
      TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
      DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
      DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
    }
  else
    {
      gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
      virtuals = NULL_TREE;
    }

  /* Initialize the association list for this type, based
     on our first approximation.  */
  BINFO_VTABLE (TYPE_BINFO (type)) = decl;
  BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
  SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
  return 1;
}

/* Give BINFO a new virtual function table which is initialized
   with a skeleton-copy of its original initialization.  The only
   entry that changes is the `delta' entry, so we can really
   share a lot of structure.

   FOR_TYPE is the most derived type which caused this table to
   be needed.

   Returns nonzero if we haven't met BINFO before.

   The order in which vtables are built (by calling this function) for
   an object must remain the same, otherwise a binary incompatibility
   can result.  */

static int
build_secondary_vtable (tree binfo)
{
  if (BINFO_NEW_VTABLE_MARKED (binfo))
    /* We already created a vtable for this base.  There's no need to
       do it again.  */
    return 0;

  /* Remember that we've created a vtable for this BINFO, so that we
     don't try to do so again.  */
  SET_BINFO_NEW_VTABLE_MARKED (binfo);

  /* Make fresh virtual list, so we can smash it later.  */
  BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));

  /* Secondary vtables are laid out as part of the same structure as
     the primary vtable.  */
  BINFO_VTABLE (binfo) = NULL_TREE;
  return 1;
}

/* Create a new vtable for BINFO which is the hierarchy dominated by
   T. Return nonzero if we actually created a new vtable.  */

static int
make_new_vtable (tree t, tree binfo)
{
  if (binfo == TYPE_BINFO (t))
    /* In this case, it is *type*'s vtable we are modifying.  We start
       with the approximation that its vtable is that of the
       immediate base class.  */
    return build_primary_vtable (binfo, t);
  else
    /* This is our very own copy of `basetype' to play with.  Later,
       we will fill in all the virtual functions that override the
       virtual functions in these base classes which are not defined
       by the current type.  */
    return build_secondary_vtable (binfo);
}

/* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
   (which is in the hierarchy dominated by T) list FNDECL as its
   BV_FN.  DELTA is the required constant adjustment from the `this'
   pointer where the vtable entry appears to the `this' required when
   the function is actually called.  */

static void
modify_vtable_entry (tree t,
		     tree binfo,
		     tree fndecl,
		     tree delta,
		     tree *virtuals)
{
  tree v;

  v = *virtuals;

  if (fndecl != BV_FN (v)
      || !tree_int_cst_equal (delta, BV_DELTA (v)))
    {
      /* We need a new vtable for BINFO.  */
      if (make_new_vtable (t, binfo))
	{
	  /* If we really did make a new vtable, we also made a copy
	     of the BINFO_VIRTUALS list.  Now, we have to find the
	     corresponding entry in that list.  */
	  *virtuals = BINFO_VIRTUALS (binfo);
	  while (BV_FN (*virtuals) != BV_FN (v))
	    *virtuals = TREE_CHAIN (*virtuals);
	  v = *virtuals;
	}

      BV_DELTA (v) = delta;
      BV_VCALL_INDEX (v) = NULL_TREE;
      BV_FN (v) = fndecl;
    }
}


/* Add method METHOD to class TYPE.  If VIA_USING indicates whether
   METHOD is being injected via a using_decl.  Returns true if the
   method could be added to the method vec.  */

bool
add_method (tree type, tree method, bool via_using)
{
  if (method == error_mark_node)
    return false;

  gcc_assert (!DECL_EXTERN_C_P (method));

  tree *slot = find_member_slot (type, DECL_NAME (method));
  tree current_fns = slot ? *slot : NULL_TREE;

  /* See below.  */
  int losem = -1;

  /* Check to see if we've already got this method.  */
  for (ovl_iterator iter (current_fns); iter; ++iter)
    {
      tree fn = *iter;
      tree fn_type;
      tree method_type;
      tree parms1;
      tree parms2;

      if (TREE_CODE (fn) != TREE_CODE (method))
	continue;

      /* Two using-declarations can coexist, we'll complain about ambiguity in
	 overload resolution.  */
      if (via_using && iter.using_p ()
	  /* Except handle inherited constructors specially.  */
	  && ! DECL_CONSTRUCTOR_P (fn))
	continue;

      /* [over.load] Member function declarations with the
	 same name and the same parameter types cannot be
	 overloaded if any of them is a static member
	 function declaration.

	 [over.load] Member function declarations with the same name and
	 the same parameter-type-list as well as member function template
	 declarations with the same name, the same parameter-type-list, and
	 the same template parameter lists cannot be overloaded if any of
	 them, but not all, have a ref-qualifier.

	 [namespace.udecl] When a using-declaration brings names
	 from a base class into a derived class scope, member
	 functions in the derived class override and/or hide member
	 functions with the same name and parameter types in a base
	 class (rather than conflicting).  */
      fn_type = TREE_TYPE (fn);
      method_type = TREE_TYPE (method);
      parms1 = TYPE_ARG_TYPES (fn_type);
      parms2 = TYPE_ARG_TYPES (method_type);

      /* Compare the quals on the 'this' parm.  Don't compare
	 the whole types, as used functions are treated as
	 coming from the using class in overload resolution.  */
      if (! DECL_STATIC_FUNCTION_P (fn)
	  && ! DECL_STATIC_FUNCTION_P (method)
	  /* Either both or neither need to be ref-qualified for
	     differing quals to allow overloading.  */
	  && (FUNCTION_REF_QUALIFIED (fn_type)
	      == FUNCTION_REF_QUALIFIED (method_type))
	  && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
	      || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
	  continue;

      /* For templates, the return type and template parameters
	 must be identical.  */
      if (TREE_CODE (fn) == TEMPLATE_DECL
	  && (!same_type_p (TREE_TYPE (fn_type),
			    TREE_TYPE (method_type))
	      || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
				       DECL_TEMPLATE_PARMS (method))))
	continue;

      if (! DECL_STATIC_FUNCTION_P (fn))
	parms1 = TREE_CHAIN (parms1);
      if (! DECL_STATIC_FUNCTION_P (method))
	parms2 = TREE_CHAIN (parms2);

      /* Bring back parameters omitted from an inherited ctor.  */
      if (ctor_omit_inherited_parms (fn))
	parms1 = FUNCTION_FIRST_USER_PARMTYPE (DECL_ORIGIN (fn));
      if (ctor_omit_inherited_parms (method))
	parms2 = FUNCTION_FIRST_USER_PARMTYPE (DECL_ORIGIN (method));

      if (compparms (parms1, parms2)
	  && (!DECL_CONV_FN_P (fn)
	      || same_type_p (TREE_TYPE (fn_type),
			      TREE_TYPE (method_type))))
	{
          if (!equivalently_constrained (fn, method))
	    {
	      if (processing_template_decl)
		/* We can't check satisfaction in dependent context, wait until
		   the class is instantiated.  */
		continue;

	      special_function_kind sfk = special_memfn_p (method);

	      if (sfk == sfk_none
		  || DECL_INHERITED_CTOR (fn)
		  || TREE_CODE (fn) == TEMPLATE_DECL)
		/* Member function templates and non-special member functions
		   coexist if they are not equivalently constrained.  A member
		   function is not hidden by an inherited constructor.  */
		continue;

	      /* P0848: For special member functions, deleted, unsatisfied, or
		 less constrained overloads are ineligible.  We implement this
		 by removing them from CLASSTYPE_MEMBER_VEC.  Destructors don't
		 use the notion of eligibility, and the selected destructor can
		 be deleted, but removing unsatisfied or less constrained
		 overloads has the same effect as overload resolution.  */
	      bool dtor = (sfk == sfk_destructor);
	      if (losem == -1)
		losem = ((!dtor && DECL_DELETED_FN (method))
			 || !constraints_satisfied_p (method));
	      bool losef = ((!dtor && DECL_DELETED_FN (fn))
			    || !constraints_satisfied_p (fn));
	      int win;
	      if (losem || losef)
		win = losem - losef;
	      else
		win = more_constrained (fn, method);
	      if (win > 0)
		/* Leave FN in the method vec, discard METHOD.  */
		return false;
	      else if (win < 0)
		{
		  /* Remove FN, add METHOD.  */
		  current_fns = iter.remove_node (current_fns);
		  continue;
		}
	      else
		/* Let them coexist for now.  */
		continue;
	    }

	  /* If these are versions of the same function, process and
	     move on.  */
	  if (TREE_CODE (fn) == FUNCTION_DECL
	      && maybe_version_functions (method, fn, true))
	    continue;

	  if (DECL_INHERITED_CTOR (method))
	    {
	      if (DECL_INHERITED_CTOR (fn))
		{
		  tree basem = DECL_INHERITED_CTOR_BASE (method);
		  tree basef = DECL_INHERITED_CTOR_BASE (fn);
		  if (flag_new_inheriting_ctors)
		    {
		      if (basem == basef)
			{
			  /* Inheriting the same constructor along different
			     paths, combine them.  */
			  SET_DECL_INHERITED_CTOR
			    (fn, ovl_make (DECL_INHERITED_CTOR (method),
					   DECL_INHERITED_CTOR (fn)));
			  /* And discard the new one.  */
			  return false;
			}
		      else
			/* Inherited ctors can coexist until overload
			   resolution.  */
			continue;
		    }
		  error_at (DECL_SOURCE_LOCATION (method),
			    "%q#D conflicts with version inherited from %qT",
			    method, basef);
		  inform (DECL_SOURCE_LOCATION (fn),
			  "version inherited from %qT declared here",
			  basef);
		}
	      /* Otherwise defer to the other function.  */
	      return false;
	    }

	  if (via_using)
	    /* Defer to the local function.  */
	    return false;
	  else if (flag_new_inheriting_ctors
		   && DECL_INHERITED_CTOR (fn))
	    {
	      /* Remove the inherited constructor.  */
	      current_fns = iter.remove_node (current_fns);
	      continue;
	    }
	  else
	    {
	      error_at (DECL_SOURCE_LOCATION (method),
			"%q#D cannot be overloaded with %q#D", method, fn);
	      inform (DECL_SOURCE_LOCATION (fn),
		      "previous declaration %q#D", fn);
	      return false;
	    }
	}
    }

  current_fns = ovl_insert (method, current_fns, via_using);

  if (!COMPLETE_TYPE_P (type) && !DECL_CONV_FN_P (method)
      && !push_class_level_binding (DECL_NAME (method), current_fns))
    return false;

  if (!slot)
    slot = add_member_slot (type, DECL_NAME (method));

  /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc.  */
  grok_special_member_properties (method);

  *slot = current_fns;

  return true;
}

/* Subroutines of finish_struct.  */

/* Change the access of FDECL to ACCESS in T.  Return 1 if change was
   legit, otherwise return 0.  */

static int
alter_access (tree t, tree fdecl, tree access)
{
  tree elem;

  retrofit_lang_decl (fdecl);

  gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));

  elem = purpose_member (t, DECL_ACCESS (fdecl));
  if (elem)
    {
      if (TREE_VALUE (elem) != access)
	{
	  if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
	    error ("conflicting access specifications for method"
		   " %q+D, ignored", TREE_TYPE (fdecl));
	  else
	    error ("conflicting access specifications for field %qE, ignored",
		   DECL_NAME (fdecl));
	}
      else
	{
	  /* They're changing the access to the same thing they changed
	     it to before.  That's OK.  */
	  ;
	}
    }
  else
    {
      perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
				     tf_warning_or_error);
      DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
      return 1;
    }
  return 0;
}

/* Return the access node for DECL's access in its enclosing class.  */

tree
declared_access (tree decl)
{
  return (TREE_PRIVATE (decl) ? access_private_node
	  : TREE_PROTECTED (decl) ? access_protected_node
	  : access_public_node);
}

/* Process the USING_DECL, which is a member of T.  */

static void
handle_using_decl (tree using_decl, tree t)
{
  tree decl = USING_DECL_DECLS (using_decl);
  tree name = DECL_NAME (using_decl);
  tree access = declared_access (using_decl);
  tree flist = NULL_TREE;
  tree old_value;

  gcc_assert (!processing_template_decl && decl);

  old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
			     tf_warning_or_error);
  if (old_value)
    {
      old_value = OVL_FIRST (old_value);

      if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
	/* OK */;
      else
	old_value = NULL_TREE;
    }

  cp_emit_debug_info_for_using (decl, t);

  if (is_overloaded_fn (decl))
    flist = decl;

  if (! old_value)
    ;
  else if (is_overloaded_fn (old_value))
    {
      if (flist)
	/* It's OK to use functions from a base when there are functions with
	   the same name already present in the current class.  */;
      else
	{
	  error_at (DECL_SOURCE_LOCATION (using_decl), "%qD invalid in %q#T "
		    "because of local method %q#D with same name",
		    using_decl, t, old_value);
	  inform (DECL_SOURCE_LOCATION (old_value),
		  "local method %q#D declared here", old_value);
	  return;
	}
    }
  else if (!DECL_ARTIFICIAL (old_value))
    {
      error_at (DECL_SOURCE_LOCATION (using_decl), "%qD invalid in %q#T "
		"because of local member %q#D with same name",
		using_decl, t, old_value);
      inform (DECL_SOURCE_LOCATION (old_value),
	      "local member %q#D declared here", old_value);
      return;
    }

  /* Make type T see field decl FDECL with access ACCESS.  */
  if (flist)
    for (ovl_iterator iter (flist); iter; ++iter)
      {
	add_method (t, *iter, true);
	alter_access (t, *iter, access);
      }
  else
    alter_access (t, decl, access);
}

/* Data structure for find_abi_tags_r, below.  */

struct abi_tag_data
{
  tree t;		// The type that we're checking for missing tags.
  tree subob;		// The subobject of T that we're getting tags from.
  tree tags; // error_mark_node for diagnostics, or a list of missing tags.
};

/* Subroutine of find_abi_tags_r. Handle a single TAG found on the class TP
   in the context of P.  TAG can be either an identifier (the DECL_NAME of
   a tag NAMESPACE_DECL) or a STRING_CST (a tag attribute).  */

static void
check_tag (tree tag, tree id, tree *tp, abi_tag_data *p)
{
  if (!IDENTIFIER_MARKED (id))
    {
      if (p->tags != error_mark_node)
	{
	  /* We're collecting tags from template arguments or from
	     the type of a variable or function return type.  */
	  p->tags = tree_cons (NULL_TREE, tag, p->tags);

	  /* Don't inherit this tag multiple times.  */
	  IDENTIFIER_MARKED (id) = true;

	  if (TYPE_P (p->t))
	    {
	      /* Tags inherited from type template arguments are only used
		 to avoid warnings.  */
	      ABI_TAG_IMPLICIT (p->tags) = true;
	      return;
	    }
	  /* For functions and variables we want to warn, too.  */
	}

      /* Otherwise we're diagnosing missing tags.  */
      if (TREE_CODE (p->t) == FUNCTION_DECL)
	{
	  auto_diagnostic_group d;
	  if (warning (OPT_Wabi_tag, "%qD inherits the %E ABI tag "
		       "that %qT (used in its return type) has",
		       p->t, tag, *tp))
	    inform (location_of (*tp), "%qT declared here", *tp);
	}
      else if (VAR_P (p->t))
	{
	  auto_diagnostic_group d;
	  if (warning (OPT_Wabi_tag, "%qD inherits the %E ABI tag "
		       "that %qT (used in its type) has", p->t, tag, *tp))
	    inform (location_of (*tp), "%qT declared here", *tp);
	}
      else if (TYPE_P (p->subob))
	{
	  auto_diagnostic_group d;
	  if (warning (OPT_Wabi_tag, "%qT does not have the %E ABI tag "
		       "that base %qT has", p->t, tag, p->subob))
	    inform (location_of (p->subob), "%qT declared here",
		    p->subob);
	}
      else
	{
	  auto_diagnostic_group d;
	  if (warning (OPT_Wabi_tag, "%qT does not have the %E ABI tag "
		       "that %qT (used in the type of %qD) has",
		       p->t, tag, *tp, p->subob))
	    {
	      inform (location_of (p->subob), "%qD declared here",
		      p->subob);
	      inform (location_of (*tp), "%qT declared here", *tp);
	    }
	}
    }
}

/* Find all the ABI tags in the attribute list ATTR and either call
   check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val.  */

static void
mark_or_check_attr_tags (tree attr, tree *tp, abi_tag_data *p, bool val)
{
  if (!attr)
    return;
  for (; (attr = lookup_attribute ("abi_tag", attr));
       attr = TREE_CHAIN (attr))
    for (tree list = TREE_VALUE (attr); list;
	 list = TREE_CHAIN (list))
      {
	tree tag = TREE_VALUE (list);
	tree id = get_identifier (TREE_STRING_POINTER (tag));
	if (tp)
	  check_tag (tag, id, tp, p);
	else
	  IDENTIFIER_MARKED (id) = val;
      }
}

/* Find all the ABI tags on T and its enclosing scopes and either call
   check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val.  */

static void
mark_or_check_tags (tree t, tree *tp, abi_tag_data *p, bool val)
{
  while (t != global_namespace)
    {
      tree attr;
      if (TYPE_P (t))
	{
	  attr = TYPE_ATTRIBUTES (t);
	  t = CP_TYPE_CONTEXT (t);
	}
      else
	{
	  attr = DECL_ATTRIBUTES (t);
	  t = CP_DECL_CONTEXT (t);
	}
      mark_or_check_attr_tags (attr, tp, p, val);
    }
}

/* walk_tree callback for check_abi_tags: if the type at *TP involves any
   types with ABI tags, add the corresponding identifiers to the VEC in
   *DATA and set IDENTIFIER_MARKED.  */

static tree
find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
{
  if (TYPE_P (*tp) && *walk_subtrees == 1 && flag_abi_version != 14)
    /* Tell cp_walk_subtrees to look though typedefs. [PR98481] */
    *walk_subtrees = 2;

  if (!OVERLOAD_TYPE_P (*tp))
    return NULL_TREE;

  /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
     anyway, but let's make sure of it.  */
  *walk_subtrees = false;

  abi_tag_data *p = static_cast<struct abi_tag_data*>(data);

  mark_or_check_tags (*tp, tp, p, false);

  return NULL_TREE;
}

/* walk_tree callback for mark_abi_tags: if *TP is a class, set
   IDENTIFIER_MARKED on its ABI tags.  */

static tree
mark_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
{
  if (TYPE_P (*tp) && *walk_subtrees == 1 && flag_abi_version != 14)
    /* Tell cp_walk_subtrees to look though typedefs.  */
    *walk_subtrees = 2;

  if (!OVERLOAD_TYPE_P (*tp))
    return NULL_TREE;

  /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
     anyway, but let's make sure of it.  */
  *walk_subtrees = false;

  bool *valp = static_cast<bool*>(data);

  mark_or_check_tags (*tp, NULL, NULL, *valp);

  return NULL_TREE;
}

/* Set IDENTIFIER_MARKED on all the ABI tags on T and its enclosing
   scopes.  */

static void
mark_abi_tags (tree t, bool val)
{
  mark_or_check_tags (t, NULL, NULL, val);
  if (DECL_P (t))
    {
      if (DECL_LANG_SPECIFIC (t) && DECL_USE_TEMPLATE (t)
	  && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (t)))
	{
	  /* Template arguments are part of the signature.  */
	  tree level = INNERMOST_TEMPLATE_ARGS (DECL_TI_ARGS (t));
	  for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
	    {
	      tree arg = TREE_VEC_ELT (level, j);
	      cp_walk_tree_without_duplicates (&arg, mark_abi_tags_r, &val);
	    }
	}
      if (TREE_CODE (t) == FUNCTION_DECL)
	/* A function's parameter types are part of the signature, so
	   we don't need to inherit any tags that are also in them.  */
	for (tree arg = FUNCTION_FIRST_USER_PARMTYPE (t); arg;
	     arg = TREE_CHAIN (arg))
	  cp_walk_tree_without_duplicates (&TREE_VALUE (arg),
					   mark_abi_tags_r, &val);
    }
}

/* Check that T has all the ABI tags that subobject SUBOB has, or
   warn if not.  If T is a (variable or function) declaration, also
   return any missing tags, and add them to T if JUST_CHECKING is false.  */

static tree
check_abi_tags (tree t, tree subob, bool just_checking = false)
{
  bool inherit = DECL_P (t);

  if (!inherit && !warn_abi_tag)
    return NULL_TREE;

  tree decl = TYPE_P (t) ? TYPE_NAME (t) : t;
  if (!TREE_PUBLIC (decl))
    /* No need to worry about things local to this TU.  */
    return NULL_TREE;

  mark_abi_tags (t, true);

  tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
  struct abi_tag_data data = { t, subob, error_mark_node };
  if (inherit)
    data.tags = NULL_TREE;

  cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);

  if (!(inherit && data.tags))
    /* We don't need to do anything with data.tags.  */;
  else if (just_checking)
    for (tree t = data.tags; t; t = TREE_CHAIN (t))
      {
	tree id = get_identifier (TREE_STRING_POINTER (TREE_VALUE (t)));
	IDENTIFIER_MARKED (id) = false;
      }
  else
    {
      tree attr = lookup_attribute ("abi_tag", DECL_ATTRIBUTES (t));
      if (attr)
	TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
      else
	DECL_ATTRIBUTES (t)
	  = tree_cons (abi_tag_identifier, data.tags, DECL_ATTRIBUTES (t));
    }

  mark_abi_tags (t, false);

  return data.tags;
}

/* Check that DECL has all the ABI tags that are used in parts of its type
   that are not reflected in its mangled name.  */

void
check_abi_tags (tree decl)
{
  if (VAR_P (decl))
    check_abi_tags (decl, TREE_TYPE (decl));
  else if (TREE_CODE (decl) == FUNCTION_DECL
	   && !DECL_CONV_FN_P (decl)
	   && !mangle_return_type_p (decl))
    check_abi_tags (decl, TREE_TYPE (TREE_TYPE (decl)));
}

/* Return any ABI tags that are used in parts of the type of DECL
   that are not reflected in its mangled name.  This function is only
   used in backward-compatible mangling for ABI <11.  */

tree
missing_abi_tags (tree decl)
{
  if (VAR_P (decl))
    return check_abi_tags (decl, TREE_TYPE (decl), true);
  else if (TREE_CODE (decl) == FUNCTION_DECL
	   /* Don't check DECL_CONV_FN_P here like we do in check_abi_tags, so
	      that we can use this function for setting need_abi_warning
	      regardless of the current flag_abi_version.  */
	   && !mangle_return_type_p (decl))
    return check_abi_tags (decl, TREE_TYPE (TREE_TYPE (decl)), true);
  else
    return NULL_TREE;
}

void
inherit_targ_abi_tags (tree t)
{
  if (!CLASS_TYPE_P (t)
      || CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
    return;

  mark_abi_tags (t, true);

  tree args = CLASSTYPE_TI_ARGS (t);
  struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
  for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
    {
      tree level = TMPL_ARGS_LEVEL (args, i+1);
      for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
	{
	  tree arg = TREE_VEC_ELT (level, j);
	  data.subob = arg;
	  cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
	}
    }

  // If we found some tags on our template arguments, add them to our
  // abi_tag attribute.
  if (data.tags)
    {
      tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
      if (attr)
	TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
      else
	TYPE_ATTRIBUTES (t)
	  = tree_cons (abi_tag_identifier, data.tags, TYPE_ATTRIBUTES (t));
    }

  mark_abi_tags (t, false);
}

/* Return true, iff class T has a non-virtual destructor that is
   accessible from outside the class heirarchy (i.e. is public, or
   there's a suitable friend.  */

static bool
accessible_nvdtor_p (tree t)
{
  tree dtor = CLASSTYPE_DESTRUCTOR (t);

  /* An implicitly declared destructor is always public.  And,
     if it were virtual, we would have created it by now.  */
  if (!dtor)
    return true;

  if (DECL_VINDEX (dtor))
    return false; /* Virtual */
  
  if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
    return true;  /* Public */

  if (CLASSTYPE_FRIEND_CLASSES (t)
      || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
    return true;   /* Has friends */

  return false;
}

/* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
   and NO_CONST_ASN_REF_P.  Also set flag bits in T based on
   properties of the bases.  */

static void
check_bases (tree t,
	     int* cant_have_const_ctor_p,
	     int* no_const_asn_ref_p)
{
  int i;
  bool seen_non_virtual_nearly_empty_base_p = 0;
  int seen_tm_mask = 0;
  tree base_binfo;
  tree binfo;
  tree field = NULL_TREE;

  if (!CLASSTYPE_NON_STD_LAYOUT (t))
    for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
      if (TREE_CODE (field) == FIELD_DECL)
	break;

  for (binfo = TYPE_BINFO (t), i = 0;
       BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
    {
      tree basetype = TREE_TYPE (base_binfo);

      gcc_assert (COMPLETE_TYPE_P (basetype));

      if (CLASSTYPE_FINAL (basetype))
        error ("cannot derive from %<final%> base %qT in derived type %qT",
               basetype, t);

      /* If any base class is non-literal, so is the derived class.  */
      if (!CLASSTYPE_LITERAL_P (basetype))
        CLASSTYPE_LITERAL_P (t) = false;

      /* If the base class doesn't have copy constructors or
	 assignment operators that take const references, then the
	 derived class cannot have such a member automatically
	 generated.  */
      if (TYPE_HAS_COPY_CTOR (basetype)
	  && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
	*cant_have_const_ctor_p = 1;
      if (TYPE_HAS_COPY_ASSIGN (basetype)
	  && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
	*no_const_asn_ref_p = 1;

      if (BINFO_VIRTUAL_P (base_binfo))
	/* A virtual base does not effect nearly emptiness.  */
	;
      else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
	{
	  if (seen_non_virtual_nearly_empty_base_p)
	    /* And if there is more than one nearly empty base, then the
	       derived class is not nearly empty either.  */
	    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
	  else
	    /* Remember we've seen one.  */
	    seen_non_virtual_nearly_empty_base_p = 1;
	}
      else if (!is_empty_class (basetype))
	/* If the base class is not empty or nearly empty, then this
	   class cannot be nearly empty.  */
	CLASSTYPE_NEARLY_EMPTY_P (t) = 0;

      /* A lot of properties from the bases also apply to the derived
	 class.  */
      TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
      TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
	|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
      TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
	|= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
	    || !TYPE_HAS_COPY_ASSIGN (basetype));
      TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
					 || !TYPE_HAS_COPY_CTOR (basetype));
      TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
	|= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
      TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
      TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
      CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
	|= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
      TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
				    || TYPE_HAS_COMPLEX_DFLT (basetype));
      SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
	(t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
	 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
      SET_CLASSTYPE_REF_FIELDS_NEED_INIT
	(t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
	 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
      if (TYPE_HAS_MUTABLE_P (basetype))
	CLASSTYPE_HAS_MUTABLE (t) = 1;

      /*  A standard-layout class is a class that:
	  ...
	  * has no non-standard-layout base classes,  */
      CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
      if (!CLASSTYPE_NON_STD_LAYOUT (t))
	{
	  tree basefield;
	  /* ...has no base classes of the same type as the first non-static
	     data member...  */
	  if (field && DECL_CONTEXT (field) == t
	      && (same_type_ignoring_top_level_qualifiers_p
		  (TREE_TYPE (field), basetype)))
	    CLASSTYPE_NON_STD_LAYOUT (t) = 1;
	  /* DR 1813:
	     ...has at most one base class subobject of any given type...  */
	  else if (CLASSTYPE_REPEATED_BASE_P (t))
	    CLASSTYPE_NON_STD_LAYOUT (t) = 1;
	  else
	    /* ...either has no non-static data members in the most-derived
	       class and at most one base class with non-static data
	       members, or has no base classes with non-static data
	       members.  FIXME This was reworded in DR 1813.  */
	    for (basefield = TYPE_FIELDS (basetype); basefield;
		 basefield = DECL_CHAIN (basefield))
	      if (TREE_CODE (basefield) == FIELD_DECL
		  && !(DECL_FIELD_IS_BASE (basefield)
		       && integer_zerop (DECL_SIZE (basefield))))
		{
		  if (field)
		    CLASSTYPE_NON_STD_LAYOUT (t) = 1;
		  else
		    field = basefield;
		  break;
		}
	}

      /* Don't bother collecting tm attributes if transactional memory
	 support is not enabled.  */
      if (flag_tm)
	{
	  tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
	  if (tm_attr)
	    seen_tm_mask |= tm_attr_to_mask (tm_attr);
	}

      check_abi_tags (t, basetype);
    }

  /* If one of the base classes had TM attributes, and the current class
     doesn't define its own, then the current class inherits one.  */
  if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
    {
      tree tm_attr = tm_mask_to_attr (least_bit_hwi (seen_tm_mask));
      TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
    }
}

/* Determine all the primary bases within T.  Sets BINFO_PRIMARY_BASE_P for
   those that are primaries.  Sets BINFO_LOST_PRIMARY_P for those
   that have had a nearly-empty virtual primary base stolen by some
   other base in the hierarchy.  Determines CLASSTYPE_PRIMARY_BASE for
   T.  */

static void
determine_primary_bases (tree t)
{
  unsigned i;
  tree primary = NULL_TREE;
  tree type_binfo = TYPE_BINFO (t);
  tree base_binfo;

  /* Determine the primary bases of our bases.  */
  for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
       base_binfo = TREE_CHAIN (base_binfo))
    {
      tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));

      /* See if we're the non-virtual primary of our inheritance
	 chain.  */
      if (!BINFO_VIRTUAL_P (base_binfo))
	{
	  tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
	  tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));

	  if (parent_primary
	      && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
				    BINFO_TYPE (parent_primary)))
	    /* We are the primary binfo.  */
	    BINFO_PRIMARY_P (base_binfo) = 1;
	}
      /* Determine if we have a virtual primary base, and mark it so.
       */
      if (primary && BINFO_VIRTUAL_P (primary))
	{
	  tree this_primary = copied_binfo (primary, base_binfo);

	  if (BINFO_PRIMARY_P (this_primary))
	    /* Someone already claimed this base.  */
	    BINFO_LOST_PRIMARY_P (base_binfo) = 1;
	  else
	    {
	      tree delta;

	      BINFO_PRIMARY_P (this_primary) = 1;
	      BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;

	      /* A virtual binfo might have been copied from within
		 another hierarchy. As we're about to use it as a
		 primary base, make sure the offsets match.  */
	      delta = size_diffop_loc (input_location,
				   fold_convert (ssizetype,
					    BINFO_OFFSET (base_binfo)),
				   fold_convert (ssizetype,
					    BINFO_OFFSET (this_primary)));

	      propagate_binfo_offsets (this_primary, delta);
	    }
	}
    }

  /* First look for a dynamic direct non-virtual base.  */
  for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
    {
      tree basetype = BINFO_TYPE (base_binfo);

      if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
	{
	  primary = base_binfo;
	  goto found;
	}
    }

  /* A "nearly-empty" virtual base class can be the primary base
     class, if no non-virtual polymorphic base can be found.  Look for
     a nearly-empty virtual dynamic base that is not already a primary
     base of something in the hierarchy.  If there is no such base,
     just pick the first nearly-empty virtual base.  */

  for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
       base_binfo = TREE_CHAIN (base_binfo))
    if (BINFO_VIRTUAL_P (base_binfo)
	&& CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
      {
	if (!BINFO_PRIMARY_P (base_binfo))
	  {
	    /* Found one that is not primary.  */
	    primary = base_binfo;
	    goto found;
	  }
	else if (!primary)
	  /* Remember the first candidate.  */
	  primary = base_binfo;
      }

 found:
  /* If we've got a primary base, use it.  */
  if (primary)
    {
      tree basetype = BINFO_TYPE (primary);

      CLASSTYPE_PRIMARY_BINFO (t) = primary;
      if (BINFO_PRIMARY_P (primary))
	/* We are stealing a primary base.  */
	BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
      BINFO_PRIMARY_P (primary) = 1;
      if (BINFO_VIRTUAL_P (primary))
	{
	  tree delta;

	  BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
	  /* A virtual binfo might have been copied from within
	     another hierarchy. As we're about to use it as a primary
	     base, make sure the offsets match.  */
	  delta = size_diffop_loc (input_location, ssize_int (0),
			       fold_convert (ssizetype, BINFO_OFFSET (primary)));

	  propagate_binfo_offsets (primary, delta);
	}

      primary = TYPE_BINFO (basetype);

      TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
      BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
      BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
    }
}

/* Update the variant types of T.  */

void
fixup_type_variants (tree t)
{
  tree variants;

  if (!t)
    return;

  for (variants = TYPE_NEXT_VARIANT (t);
       variants;
       variants = TYPE_NEXT_VARIANT (variants))
    {
      /* These fields are in the _TYPE part of the node, not in
	 the TYPE_LANG_SPECIFIC component, so they are not shared.  */
      TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
      TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
      TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
	= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);

      TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
      CLASSTYPE_FINAL (variants) = CLASSTYPE_FINAL (t);

      TYPE_BINFO (variants) = TYPE_BINFO (t);

      /* Copy whatever these are holding today.  */
      TYPE_VFIELD (variants) = TYPE_VFIELD (t);
      TYPE_FIELDS (variants) = TYPE_FIELDS (t);
    }
}

/* KLASS is a class that we're applying may_alias to after the body is
   parsed.  Fixup any POINTER_TO and REFERENCE_TO types.  The
   canonical type(s) will be implicitly updated.  */

static void
fixup_may_alias (tree klass)
{
  tree t, v;

  for (t = TYPE_POINTER_TO (klass); t; t = TYPE_NEXT_PTR_TO (t))
    for (v = TYPE_MAIN_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
      TYPE_REF_CAN_ALIAS_ALL (v) = true;
  for (t = TYPE_REFERENCE_TO (klass); t; t = TYPE_NEXT_REF_TO (t))
    for (v = TYPE_MAIN_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
      TYPE_REF_CAN_ALIAS_ALL (v) = true;
}

/* Early variant fixups: we apply attributes at the beginning of the class
   definition, and we need to fix up any variants that have already been
   made via elaborated-type-specifier so that check_qualified_type works.  */

void
fixup_attribute_variants (tree t)
{
  tree variants;

  if (!t)
    return;

  tree attrs = TYPE_ATTRIBUTES (t);
  unsigned align = TYPE_ALIGN (t);
  bool user_align = TYPE_USER_ALIGN (t);
  bool may_alias = lookup_attribute ("may_alias", attrs);
  bool packed = TYPE_PACKED (t);

  if (may_alias)
    fixup_may_alias (t);

  for (variants = TYPE_NEXT_VARIANT (t);
       variants;
       variants = TYPE_NEXT_VARIANT (variants))
    {
      /* These are the two fields that check_qualified_type looks at and
	 are affected by attributes.  */
      TYPE_ATTRIBUTES (variants) = attrs;
      unsigned valign = align;
      if (TYPE_USER_ALIGN (variants))
	valign = MAX (valign, TYPE_ALIGN (variants));
      else
	TYPE_USER_ALIGN (variants) = user_align;
      SET_TYPE_ALIGN (variants, valign);
      TYPE_PACKED (variants) = packed;
      if (may_alias)
	fixup_may_alias (variants);
    }
}

/* Set memoizing fields and bits of T (and its variants) for later
   use.  */

static void
finish_struct_bits (tree t)
{
  /* Fix up variants (if any).  */
  fixup_type_variants (t);

  if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
    /* For a class w/o baseclasses, 'finish_struct' has set
       CLASSTYPE_PURE_VIRTUALS correctly (by definition).
       Similarly for a class whose base classes do not have vtables.
       When neither of these is true, we might have removed abstract
       virtuals (by providing a definition), added some (by declaring
       new ones), or redeclared ones from a base class.  We need to
       recalculate what's really an abstract virtual at this point (by
       looking in the vtables).  */
    get_pure_virtuals (t);

  /* If this type has a copy constructor or a destructor, force its
     mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
     nonzero.  This will cause it to be passed by invisible reference
     and prevent it from being returned in a register.  */
  if (type_has_nontrivial_copy_init (t)
      || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
    {
      tree variants;
      SET_DECL_MODE (TYPE_MAIN_DECL (t), BLKmode);
      for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
	{
	  SET_TYPE_MODE (variants, BLKmode);
	  TREE_ADDRESSABLE (variants) = 1;
	}
    }
}

/* Issue warnings about T having private constructors, but no friends,
   and so forth.

   HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
   static members.  HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
   non-private static member functions.  */

static void
maybe_warn_about_overly_private_class (tree t)
{
  int has_member_fn = 0;
  int has_nonprivate_method = 0;
  bool nonprivate_ctor = false;

  if (!warn_ctor_dtor_privacy
      /* If the class has friends, those entities might create and
	 access instances, so we should not warn.  */
      || (CLASSTYPE_FRIEND_CLASSES (t)
	  || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
      /* We will have warned when the template was declared; there's
	 no need to warn on every instantiation.  */
      || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
    /* There's no reason to even consider warning about this
       class.  */
    return;

  /* We only issue one warning, if more than one applies, because
     otherwise, on code like:

     class A {
       // Oops - forgot `public:'
       A();
       A(const A&);
       ~A();
     };

     we warn several times about essentially the same problem.  */

  /* Check to see if all (non-constructor, non-destructor) member
     functions are private.  (Since there are no friends or
     non-private statics, we can't ever call any of the private member
     functions.)  */
  for (tree fn = TYPE_FIELDS (t); fn; fn = DECL_CHAIN (fn))
    if (TREE_CODE (fn) == USING_DECL
	&& DECL_NAME (fn) == ctor_identifier
	&& !TREE_PRIVATE (fn))
      nonprivate_ctor = true;
    else if (!DECL_DECLARES_FUNCTION_P (fn))
      /* Not a function.  */;
    else if (DECL_ARTIFICIAL (fn))
      /* We're not interested in compiler-generated methods; they don't
	 provide any way to call private members.  */;
    else if (!TREE_PRIVATE (fn))
      {
	if (DECL_STATIC_FUNCTION_P (fn))
	  /* A non-private static member function is just like a
	     friend; it can create and invoke private member
	     functions, and be accessed without a class
	     instance.  */
	  return;

	has_nonprivate_method = 1;
	/* Keep searching for a static member function.  */
      }
    else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
      has_member_fn = 1;

  if (!has_nonprivate_method && has_member_fn)
    {
      /* There are no non-private methods, and there's at least one
	 private member function that isn't a constructor or
	 destructor.  (If all the private members are
	 constructors/destructors we want to use the code below that
	 issues error messages specifically referring to
	 constructors/destructors.)  */
      unsigned i;
      tree binfo = TYPE_BINFO (t);

      for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
	if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
	  {
	    has_nonprivate_method = 1;
	    break;
	  }
      if (!has_nonprivate_method)
	{
	  warning (OPT_Wctor_dtor_privacy,
		   "all member functions in class %qT are private", t);
	  return;
	}
    }

  /* Even if some of the member functions are non-private, the class
     won't be useful for much if all the constructors or destructors
     are private: such an object can never be created or destroyed.  */
  if (tree dtor = CLASSTYPE_DESTRUCTOR (t))
    if (TREE_PRIVATE (dtor))
      {
	warning (OPT_Wctor_dtor_privacy,
		 "%q#T only defines a private destructor and has no friends",
		 t);
	return;
      }

  /* Warn about classes that have private constructors and no friends.  */
  if (TYPE_HAS_USER_CONSTRUCTOR (t)
      /* Implicitly generated constructors are always public.  */
      && !CLASSTYPE_LAZY_DEFAULT_CTOR (t))
    {
      tree copy_or_move = NULL_TREE;

      /* If a non-template class does not define a copy
	 constructor, one is defined for it, enabling it to avoid
	 this warning.  For a template class, this does not
	 happen, and so we would normally get a warning on:

	   template <class T> class C { private: C(); };

	 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR.  All
	 complete non-template or fully instantiated classes have this
	 flag set.  */
      if (!TYPE_HAS_COPY_CTOR (t))
	nonprivate_ctor = true;
      else
	for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t));
	     !nonprivate_ctor && iter; ++iter)
	  if (TREE_PRIVATE (*iter))
	    continue;
	  else if (copy_fn_p (*iter) || move_fn_p (*iter))
	    /* Ideally, we wouldn't count any constructor that takes
	       an argument of the class type as a parameter, because
	       such things cannot be used to construct an instance of
	       the class unless you already have one.  */
	    copy_or_move = *iter;
	  else
	    nonprivate_ctor = true;

      if (!nonprivate_ctor)
	{
	  bool w = warning (OPT_Wctor_dtor_privacy,
			    "%q#T only defines private constructors and has "
			    "no friends", t);
	  if (w && copy_or_move)
	    inform (DECL_SOURCE_LOCATION (copy_or_move),
		    "%q#D is public, but requires an existing %q#T object",
		    copy_or_move, t);
	  return;
	}
    }
}

/* Make BINFO's vtable have N entries, including RTTI entries,
   vbase and vcall offsets, etc.  Set its type and call the back end
   to lay it out.  */

static void
layout_vtable_decl (tree binfo, int n)
{
  tree atype;
  tree vtable;

  atype = build_array_of_n_type (vtable_entry_type, n);
  layout_type (atype);

  /* We may have to grow the vtable.  */
  vtable = get_vtbl_decl_for_binfo (binfo);
  if (!same_type_p (TREE_TYPE (vtable), atype))
    {
      TREE_TYPE (vtable) = atype;
      DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
      layout_decl (vtable, 0);
    }
}

/* True iff FNDECL and BASE_FNDECL (both non-static member functions)
   have the same signature.  */

int
same_signature_p (const_tree fndecl, const_tree base_fndecl)
{
  /* One destructor overrides another if they are the same kind of
     destructor.  */
  if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
      && special_function_p (base_fndecl) == special_function_p (fndecl))
    return 1;
  /* But a non-destructor never overrides a destructor, nor vice
     versa, nor do different kinds of destructors override
     one-another.  For example, a complete object destructor does not
     override a deleting destructor.  */
  if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
    return 0;

  if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
      || (DECL_CONV_FN_P (fndecl)
	  && DECL_CONV_FN_P (base_fndecl)
	  && same_type_p (DECL_CONV_FN_TYPE (fndecl),
			  DECL_CONV_FN_TYPE (base_fndecl))))
    {
      tree fntype = TREE_TYPE (fndecl);
      tree base_fntype = TREE_TYPE (base_fndecl);
      if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
	  && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
	  && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
			FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
	return 1;
    }
  return 0;
}

/* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
   subobject.  */

static bool
base_derived_from (tree derived, tree base)
{
  tree probe;

  for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
    {
      if (probe == derived)
	return true;
      else if (BINFO_VIRTUAL_P (probe))
	/* If we meet a virtual base, we can't follow the inheritance
	   any more.  See if the complete type of DERIVED contains
	   such a virtual base.  */
	return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
		!= NULL_TREE);
    }
  return false;
}

struct find_final_overrider_data {
  /* The function for which we are trying to find a final overrider.  */
  tree fn;
  /* The base class in which the function was declared.  */
  tree declaring_base;
  /* The candidate overriders.  */
  tree candidates;
  /* Path to most derived.  */
  vec<tree> path;
};

/* Add the overrider along the current path to FFOD->CANDIDATES.
   Returns true if an overrider was found; false otherwise.  */

static bool
dfs_find_final_overrider_1 (tree binfo,
			    find_final_overrider_data *ffod,
			    unsigned depth)
{
  tree method;

  /* If BINFO is not the most derived type, try a more derived class.
     A definition there will overrider a definition here.  */
  if (depth)
    {
      depth--;
      if (dfs_find_final_overrider_1
	  (ffod->path[depth], ffod, depth))
	return true;
    }

  method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
  if (method)
    {
      tree *candidate = &ffod->candidates;

      /* Remove any candidates overridden by this new function.  */
      while (*candidate)
	{
	  /* If *CANDIDATE overrides METHOD, then METHOD
	     cannot override anything else on the list.  */
	  if (base_derived_from (TREE_VALUE (*candidate), binfo))
	    return true;
	  /* If METHOD overrides *CANDIDATE, remove *CANDIDATE.  */
	  if (base_derived_from (binfo, TREE_VALUE (*candidate)))
	    *candidate = TREE_CHAIN (*candidate);
	  else
	    candidate = &TREE_CHAIN (*candidate);
	}

      /* Add the new function.  */
      ffod->candidates = tree_cons (method, binfo, ffod->candidates);
      return true;
    }

  return false;
}

/* Called from find_final_overrider via dfs_walk.  */

static tree
dfs_find_final_overrider_pre (tree binfo, void *data)
{
  find_final_overrider_data *ffod = (find_final_overrider_data *) data;

  if (binfo == ffod->declaring_base)
    dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
  ffod->path.safe_push (binfo);

  return NULL_TREE;
}

static tree
dfs_find_final_overrider_post (tree /*binfo*/, void *data)
{
  find_final_overrider_data *ffod = (find_final_overrider_data *) data;
  ffod->path.pop ();

  return NULL_TREE;
}

/* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
   FN and whose TREE_VALUE is the binfo for the base where the
   overriding occurs.  BINFO (in the hierarchy dominated by the binfo
   DERIVED) is the base object in which FN is declared.  */

static tree
find_final_overrider (tree derived, tree binfo, tree fn)
{
  find_final_overrider_data ffod;

  /* Getting this right is a little tricky.  This is valid:

       struct S { virtual void f (); };
       struct T { virtual void f (); };
       struct U : public S, public T { };

     even though calling `f' in `U' is ambiguous.  But,

       struct R { virtual void f(); };
       struct S : virtual public R { virtual void f (); };
       struct T : virtual public R { virtual void f (); };
       struct U : public S, public T { };

     is not -- there's no way to decide whether to put `S::f' or
     `T::f' in the vtable for `R'.

     The solution is to look at all paths to BINFO.  If we find
     different overriders along any two, then there is a problem.  */
  if (DECL_THUNK_P (fn))
    fn = THUNK_TARGET (fn);

  /* Determine the depth of the hierarchy.  */
  ffod.fn = fn;
  ffod.declaring_base = binfo;
  ffod.candidates = NULL_TREE;
  ffod.path.create (30);

  dfs_walk_all (derived, dfs_find_final_overrider_pre,
		dfs_find_final_overrider_post, &ffod);

  ffod.path.release ();

  /* If there was no winner, issue an error message.  */
  if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
    return error_mark_node;

  return ffod.candidates;
}

/* Return the index of the vcall offset for FN when TYPE is used as a
   virtual base.  */

static tree
get_vcall_index (tree fn, tree type)
{
  vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
  tree_pair_p p;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
    if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
	|| same_signature_p (fn, p->purpose))
      return p->value;

  /* There should always be an appropriate index.  */
  gcc_unreachable ();
}

/* Given a DECL_VINDEX of a virtual function found in BINFO, return the final
   overrider at that index in the vtable.  This should only be used when we
   know that BINFO is correct for the dynamic type of the object.  */

tree
lookup_vfn_in_binfo (tree idx, tree binfo)
{
  int ix = tree_to_shwi (idx);
  if (TARGET_VTABLE_USES_DESCRIPTORS)
    ix /= MAX (TARGET_VTABLE_USES_DESCRIPTORS, 1);
  while (BINFO_PRIMARY_P (binfo))
    /* BINFO_VIRTUALS in a primary base isn't accurate, find the derived
       class that actually owns the vtable.  */
    binfo = BINFO_INHERITANCE_CHAIN (binfo);
  tree virtuals = BINFO_VIRTUALS (binfo);
  return TREE_VALUE (chain_index (ix, virtuals));
}

/* Update an entry in the vtable for BINFO, which is in the hierarchy
   dominated by T.  FN is the old function; VIRTUALS points to the
   corresponding position in the new BINFO_VIRTUALS list.  IX is the index
   of that entry in the list.  */

static void
update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
			    unsigned ix)
{
  tree b;
  tree overrider;
  tree delta;
  tree virtual_base;
  tree first_defn;
  tree overrider_fn, overrider_target;
  tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
  tree over_return, base_return;
  bool lost = false;

  /* Find the nearest primary base (possibly binfo itself) which defines
     this function; this is the class the caller will convert to when
     calling FN through BINFO.  */
  for (b = binfo; ; b = get_primary_binfo (b))
    {
      gcc_assert (b);
      if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
	break;

      /* The nearest definition is from a lost primary.  */
      if (BINFO_LOST_PRIMARY_P (b))
	lost = true;
    }
  first_defn = b;

  /* Find the final overrider.  */
  overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
  if (overrider == error_mark_node)
    {
      error ("no unique final overrider for %qD in %qT", target_fn, t);
      return;
    }
  overrider_target = overrider_fn = TREE_PURPOSE (overrider);

  /* Check for adjusting covariant return types.  */
  over_return = TREE_TYPE (TREE_TYPE (overrider_target));
  base_return = TREE_TYPE (TREE_TYPE (target_fn));

  if (INDIRECT_TYPE_P (over_return)
      && TREE_CODE (over_return) == TREE_CODE (base_return)
      && CLASS_TYPE_P (TREE_TYPE (over_return))
      && CLASS_TYPE_P (TREE_TYPE (base_return))
      /* If the overrider is invalid, don't even try.  */
      && !DECL_INVALID_OVERRIDER_P (overrider_target))
    {
      /* If FN is a covariant thunk, we must figure out the adjustment
	 to the final base FN was converting to. As OVERRIDER_TARGET might
	 also be converting to the return type of FN, we have to
	 combine the two conversions here.  */
      tree fixed_offset, virtual_offset;

      over_return = TREE_TYPE (over_return);
      base_return = TREE_TYPE (base_return);

      if (DECL_THUNK_P (fn))
	{
	  gcc_assert (DECL_RESULT_THUNK_P (fn));
	  fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
	  virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
	}
      else
	fixed_offset = virtual_offset = NULL_TREE;

      if (virtual_offset)
	/* Find the equivalent binfo within the return type of the
	   overriding function. We will want the vbase offset from
	   there.  */
	virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
					  over_return);
      else if (!same_type_ignoring_top_level_qualifiers_p
	       (over_return, base_return))
	{
	  /* There was no existing virtual thunk (which takes
	     precedence).  So find the binfo of the base function's
	     return type within the overriding function's return type.
	     Fortunately we know the covariancy is valid (it
	     has already been checked), so we can just iterate along
	     the binfos, which have been chained in inheritance graph
	     order.  Of course it is lame that we have to repeat the
	     search here anyway -- we should really be caching pieces
	     of the vtable and avoiding this repeated work.  */
	  tree thunk_binfo = NULL_TREE;
	  tree base_binfo = TYPE_BINFO (base_return);

	  /* Find the base binfo within the overriding function's
	     return type.  We will always find a thunk_binfo, except
	     when the covariancy is invalid (which we will have
	     already diagnosed).  */
	  if (base_binfo)
	    for (thunk_binfo = TYPE_BINFO (over_return); thunk_binfo;
		 thunk_binfo = TREE_CHAIN (thunk_binfo))
	      if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
				     BINFO_TYPE (base_binfo)))
		break;
	  gcc_assert (thunk_binfo || errorcount);

	  /* See if virtual inheritance is involved.  */
	  for (virtual_offset = thunk_binfo;
	       virtual_offset;
	       virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
	    if (BINFO_VIRTUAL_P (virtual_offset))
	      break;

	  if (virtual_offset
	      || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
	    {
	      tree offset = fold_convert (ssizetype, BINFO_OFFSET (thunk_binfo));

	      if (virtual_offset)
		{
		  /* We convert via virtual base.  Adjust the fixed
		     offset to be from there.  */
		  offset = 
		    size_diffop (offset,
				 fold_convert (ssizetype,
					  BINFO_OFFSET (virtual_offset)));
		}
	      if (fixed_offset)
		/* There was an existing fixed offset, this must be
		   from the base just converted to, and the base the
		   FN was thunking to.  */
		fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
	      else
		fixed_offset = offset;
	    }
	}

      if (fixed_offset || virtual_offset)
	/* Replace the overriding function with a covariant thunk.  We
	   will emit the overriding function in its own slot as
	   well.  */
	overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
				   fixed_offset, virtual_offset);
    }
  else
    gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
		!DECL_THUNK_P (fn));

  /* If we need a covariant thunk, then we may need to adjust first_defn.
     The ABI specifies that the thunks emitted with a function are
     determined by which bases the function overrides, so we need to be
     sure that we're using a thunk for some overridden base; even if we
     know that the necessary this adjustment is zero, there may not be an
     appropriate zero-this-adjustment thunk for us to use since thunks for
     overriding virtual bases always use the vcall offset.

     Furthermore, just choosing any base that overrides this function isn't
     quite right, as this slot won't be used for calls through a type that
     puts a covariant thunk here.  Calling the function through such a type
     will use a different slot, and that slot is the one that determines
     the thunk emitted for that base.

     So, keep looking until we find the base that we're really overriding
     in this slot: the nearest primary base that doesn't use a covariant
     thunk in this slot.  */
  if (overrider_target != overrider_fn)
    {
      if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
	/* We already know that the overrider needs a covariant thunk.  */
	b = get_primary_binfo (b);
      for (; ; b = get_primary_binfo (b))
	{
	  tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
	  tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
	  if (!DECL_THUNK_P (TREE_VALUE (bv)))
	    break;
	  if (BINFO_LOST_PRIMARY_P (b))
	    lost = true;
	}
      first_defn = b;
    }

  /* Assume that we will produce a thunk that convert all the way to
     the final overrider, and not to an intermediate virtual base.  */
  virtual_base = NULL_TREE;

  /* See if we can convert to an intermediate virtual base first, and then
     use the vcall offset located there to finish the conversion.  */
  for (; b; b = BINFO_INHERITANCE_CHAIN (b))
    {
      /* If we find the final overrider, then we can stop
	 walking.  */
      if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
			     BINFO_TYPE (TREE_VALUE (overrider))))
	break;

      /* If we find a virtual base, and we haven't yet found the
	 overrider, then there is a virtual base between the
	 declaring base (first_defn) and the final overrider.  */
      if (BINFO_VIRTUAL_P (b))
	{
	  virtual_base = b;
	  break;
	}
    }

  /* Compute the constant adjustment to the `this' pointer.  The
     `this' pointer, when this function is called, will point at BINFO
     (or one of its primary bases, which are at the same offset).  */
  if (virtual_base)
    /* The `this' pointer needs to be adjusted from the declaration to
       the nearest virtual base.  */
    delta = size_diffop_loc (input_location,
			 fold_convert (ssizetype, BINFO_OFFSET (virtual_base)),
			 fold_convert (ssizetype, BINFO_OFFSET (first_defn)));
  else if (lost)
    /* If the nearest definition is in a lost primary, we don't need an
       entry in our vtable.  Except possibly in a constructor vtable,
       if we happen to get our primary back.  In that case, the offset
       will be zero, as it will be a primary base.  */
    delta = size_zero_node;
  else
    /* The `this' pointer needs to be adjusted from pointing to
       BINFO to pointing at the base where the final overrider
       appears.  */
    delta = size_diffop_loc (input_location,
			 fold_convert (ssizetype,
				  BINFO_OFFSET (TREE_VALUE (overrider))),
			 fold_convert (ssizetype, BINFO_OFFSET (binfo)));

  modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);

  if (virtual_base)
    BV_VCALL_INDEX (*virtuals)
      = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
  else
    BV_VCALL_INDEX (*virtuals) = NULL_TREE;

  BV_LOST_PRIMARY (*virtuals) = lost;
}

/* Called from modify_all_vtables via dfs_walk.  */

static tree
dfs_modify_vtables (tree binfo, void* data)
{
  tree t = (tree) data;
  tree virtuals;
  tree old_virtuals;
  unsigned ix;

  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
    /* A base without a vtable needs no modification, and its bases
       are uninteresting.  */
    return dfs_skip_bases;

  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
      && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
    /* Don't do the primary vtable, if it's new.  */
    return NULL_TREE;

  if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
    /* There's no need to modify the vtable for a non-virtual primary
       base; we're not going to use that vtable anyhow.  We do still
       need to do this for virtual primary bases, as they could become
       non-primary in a construction vtable.  */
    return NULL_TREE;

  make_new_vtable (t, binfo);

  /* Now, go through each of the virtual functions in the virtual
     function table for BINFO.  Find the final overrider, and update
     the BINFO_VIRTUALS list appropriately.  */
  for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
	 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
       virtuals;
       ix++, virtuals = TREE_CHAIN (virtuals),
	 old_virtuals = TREE_CHAIN (old_virtuals))
    update_vtable_entry_for_fn (t,
				binfo,
				BV_FN (old_virtuals),
				&virtuals, ix);

  return NULL_TREE;
}

/* Update all of the primary and secondary vtables for T.  Create new
   vtables as required, and initialize their RTTI information.  Each
   of the functions in VIRTUALS is declared in T and may override a
   virtual function from a base class; find and modify the appropriate
   entries to point to the overriding functions.  Returns a list, in
   declaration order, of the virtual functions that are declared in T,
   but do not appear in the primary base class vtable, and which
   should therefore be appended to the end of the vtable for T.  */

static tree
modify_all_vtables (tree t, tree virtuals)
{
  tree binfo = TYPE_BINFO (t);
  tree *fnsp;

  /* Mangle the vtable name before entering dfs_walk (c++/51884).  */
  if (TYPE_CONTAINS_VPTR_P (t))
    get_vtable_decl (t, false);

  /* Update all of the vtables.  */
  dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);

  /* Add virtual functions not already in our primary vtable. These
     will be both those introduced by this class, and those overridden
     from secondary bases.  It does not include virtuals merely
     inherited from secondary bases.  */
  for (fnsp = &virtuals; *fnsp; )
    {
      tree fn = TREE_VALUE (*fnsp);

      if (!value_member (fn, BINFO_VIRTUALS (binfo))
	  || DECL_VINDEX (fn) == error_mark_node)
	{
	  /* We don't need to adjust the `this' pointer when
	     calling this function.  */
	  BV_DELTA (*fnsp) = integer_zero_node;
	  BV_VCALL_INDEX (*fnsp) = NULL_TREE;

	  /* This is a function not already in our vtable.  Keep it.  */
	  fnsp = &TREE_CHAIN (*fnsp);
	}
      else
	/* We've already got an entry for this function.  Skip it.  */
	*fnsp = TREE_CHAIN (*fnsp);
    }

  return virtuals;
}

/* Get the base virtual function declarations in T that have the
   indicated NAME.  */

static void
get_basefndecls (tree name, tree t, vec<tree> *base_fndecls)
{
  bool found_decls = false;

  /* Find virtual functions in T with the indicated NAME.  */
  for (ovl_iterator iter (get_class_binding (t, name)); iter; ++iter)
    {
      tree method = *iter;

      if (TREE_CODE (method) == FUNCTION_DECL && DECL_VINDEX (method))
	{
	  base_fndecls->safe_push (method);
	  found_decls = true;
	}
    }

  if (found_decls)
    return;

  int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
  for (int i = 0; i < n_baseclasses; i++)
    {
      tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
      get_basefndecls (name, basetype, base_fndecls);
    }
}

/* If this method overrides a virtual method from a base, then mark
   this member function as being virtual as well.  Do 'final' and
   'override' checks too.  */

void
check_for_override (tree decl, tree ctype)
{
  if (TREE_CODE (decl) == TEMPLATE_DECL)
    /* In [temp.mem] we have:

	 A specialization of a member function template does not
	 override a virtual function from a base class.  */
    return;

  /* IDENTIFIER_VIRTUAL_P indicates whether the name has ever been
     used for a vfunc.  That avoids the expensive look_for_overrides
     call that when we know there's nothing to find.  As conversion
     operators for the same type can have distinct identifiers, we
     cannot optimize those in that way.  */
  if ((IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
       || DECL_CONV_FN_P (decl))
      && look_for_overrides (ctype, decl)
      /* Check staticness after we've checked if we 'override'.  */
      && !DECL_STATIC_FUNCTION_P (decl))
    {
      /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
	 the error_mark_node so that we know it is an overriding
	 function.  */
      DECL_VINDEX (decl) = decl;

      if (warn_override
	  && !DECL_OVERRIDE_P (decl)
	  && !DECL_FINAL_P (decl)
	  && !DECL_DESTRUCTOR_P (decl))
	warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wsuggest_override,
		    "%qD can be marked override", decl);
    }
  else if (DECL_OVERRIDE_P (decl))
    error ("%q+#D marked %<override%>, but does not override", decl);

  if (DECL_VIRTUAL_P (decl))
    {
      /* Remember this identifier is virtual name.  */
      IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = true;

      if (!DECL_VINDEX (decl))
	/* It's a new vfunc.  */
	DECL_VINDEX (decl) = error_mark_node;

      if (DECL_DESTRUCTOR_P (decl))
	TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
    }
  else if (DECL_FINAL_P (decl))
    error ("%q+#D marked %<final%>, but is not virtual", decl);
}

/* Warn about hidden virtual functions that are not overridden in t.
   We know that constructors and destructors don't apply.  */

static void
warn_hidden (tree t)
{
  if (vec<tree, va_gc> *member_vec = CLASSTYPE_MEMBER_VEC (t))
    for (unsigned ix = member_vec->length (); ix--;)
      {
	tree fns = (*member_vec)[ix];

	if (!OVL_P (fns))
	  continue;

	tree name = OVL_NAME (fns);
	auto_vec<tree, 20> base_fndecls;
	tree base_binfo;
	tree binfo;
	unsigned j;

	/* Iterate through all of the base classes looking for possibly
	   hidden functions.  */
	for (binfo = TYPE_BINFO (t), j = 0;
	     BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
	  {
	    tree basetype = BINFO_TYPE (base_binfo);
	    get_basefndecls (name, basetype, &base_fndecls);
	  }

	/* If there are no functions to hide, continue.  */
	if (base_fndecls.is_empty ())
	  continue;

	/* Remove any overridden functions.  */
	for (ovl_iterator iter (fns); iter; ++iter)
	  {
	    tree fndecl = *iter;
	    if (TREE_CODE (fndecl) == FUNCTION_DECL
		&& DECL_VINDEX (fndecl))
	      {
		/* If the method from the base class has the same
		   signature as the method from the derived class, it
		   has been overridden.  */
		for (size_t k = 0; k < base_fndecls.length (); k++)
		  if (base_fndecls[k]
		      && same_signature_p (fndecl, base_fndecls[k]))
		    base_fndecls[k] = NULL_TREE;
	      }
	  }

	/* Now give a warning for all base functions without overriders,
	   as they are hidden.  */
	tree base_fndecl;
	FOR_EACH_VEC_ELT (base_fndecls, j, base_fndecl)
	  if (base_fndecl)
	    {
	      auto_diagnostic_group d;
	      /* Here we know it is a hider, and no overrider exists.  */
	      if (warning_at (location_of (base_fndecl),
			      OPT_Woverloaded_virtual,
			      "%qD was hidden", base_fndecl))
		inform (location_of (fns), "  by %qD", fns);
	    }
      }
}

/* Recursive helper for finish_struct_anon.  */

static void
finish_struct_anon_r (tree field, bool complain)
{
  for (tree elt = TYPE_FIELDS (TREE_TYPE (field)); elt; elt = DECL_CHAIN (elt))
    {
      /* We're generally only interested in entities the user
	 declared, but we also find nested classes by noticing
	 the TYPE_DECL that we create implicitly.  You're
	 allowed to put one anonymous union inside another,
	 though, so we explicitly tolerate that.  We use
	 TYPE_UNNAMED_P rather than ANON_AGGR_TYPE_P so that
	 we also allow unnamed types used for defining fields.  */
      if (DECL_ARTIFICIAL (elt)
	  && (!DECL_IMPLICIT_TYPEDEF_P (elt)
	      || TYPE_UNNAMED_P (TREE_TYPE (elt))))
	continue;

      if (complain
	  && (TREE_CODE (elt) != FIELD_DECL
	      || (TREE_PRIVATE (elt) || TREE_PROTECTED (elt))))
	{
	  /* We already complained about static data members in
	     finish_static_data_member_decl.  */
	  if (!VAR_P (elt))
	    {
	      auto_diagnostic_group d;
	      if (permerror (DECL_SOURCE_LOCATION (elt),
			     TREE_CODE (TREE_TYPE (field)) == UNION_TYPE
			     ? "%q#D invalid; an anonymous union may "
			     "only have public non-static data members"
			     : "%q#D invalid; an anonymous struct may "
			     "only have public non-static data members", elt))
		{
		  static bool hint;
		  if (flag_permissive && !hint)
		    {
		      hint = true;
		      inform (DECL_SOURCE_LOCATION (elt),
			      "this flexibility is deprecated and will be "
			      "removed");
		    }
		}
	    }
	}

      TREE_PRIVATE (elt) = TREE_PRIVATE (field);
      TREE_PROTECTED (elt) = TREE_PROTECTED (field);

      /* Recurse into the anonymous aggregates to correctly handle
	 access control (c++/24926):

	 class A {
	   union {
	     union {
	       int i;
	     };
	   };
	 };

	 int j=A().i;  */
      if (DECL_NAME (elt) == NULL_TREE
	  && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
	finish_struct_anon_r (elt, /*complain=*/false);
    }
}

/* Check for things that are invalid.  There are probably plenty of other
   things we should check for also.  */

static void
finish_struct_anon (tree t)
{
  for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
    {
      if (TREE_STATIC (field))
	continue;
      if (TREE_CODE (field) != FIELD_DECL)
	continue;

      if (DECL_NAME (field) == NULL_TREE
	  && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
	finish_struct_anon_r (field, /*complain=*/true);
    }
}

/* Add T to CLASSTYPE_DECL_LIST of current_class_type which
   will be used later during class template instantiation.
   When FRIEND_P is zero, T can be a static member data (VAR_DECL),
   a non-static member data (FIELD_DECL), a member function
   (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
   a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
   When FRIEND_P is nonzero, T is either a friend class
   (RECORD_TYPE, TEMPLATE_DECL) or a friend function
   (FUNCTION_DECL, TEMPLATE_DECL).  */

void
maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
{
  /* Save some memory by not creating TREE_LIST if TYPE is not template.  */
  if (CLASSTYPE_TEMPLATE_INFO (type))
    CLASSTYPE_DECL_LIST (type)
      = tree_cons (friend_p ? NULL_TREE : type,
		   t, CLASSTYPE_DECL_LIST (type));
}

/* This function is called from declare_virt_assop_and_dtor via
   dfs_walk_all.

   DATA is a type that direcly or indirectly inherits the base
   represented by BINFO.  If BINFO contains a virtual assignment [copy
   assignment or move assigment] operator or a virtual constructor,
   declare that function in DATA if it hasn't been already declared.  */

static tree
dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
{
  tree bv, fn, t = (tree)data;
  tree opname = assign_op_identifier;

  gcc_assert (t && CLASS_TYPE_P (t));
  gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);

  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
    /* A base without a vtable needs no modification, and its bases
       are uninteresting.  */
    return dfs_skip_bases;

  if (BINFO_PRIMARY_P (binfo))
    /* If this is a primary base, then we have already looked at the
       virtual functions of its vtable.  */
    return NULL_TREE;

  for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
    {
      fn = BV_FN (bv);

      if (DECL_NAME (fn) == opname)
	{
	  if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
	    lazily_declare_fn (sfk_copy_assignment, t);
	  if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
	    lazily_declare_fn (sfk_move_assignment, t);
	}
      else if (DECL_DESTRUCTOR_P (fn)
	       && CLASSTYPE_LAZY_DESTRUCTOR (t))
	lazily_declare_fn (sfk_destructor, t);
    }

  return NULL_TREE;
}

/* If the class type T has a direct or indirect base that contains a
   virtual assignment operator or a virtual destructor, declare that
   function in T if it hasn't been already declared.  */

static void
declare_virt_assop_and_dtor (tree t)
{
  if (!(TYPE_POLYMORPHIC_P (t)
	&& (CLASSTYPE_LAZY_COPY_ASSIGN (t)
	    || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
	    || CLASSTYPE_LAZY_DESTRUCTOR (t))))
    return;

  dfs_walk_all (TYPE_BINFO (t),
		dfs_declare_virt_assop_and_dtor,
		NULL, t);
}

/* Declare the inheriting constructor for class T inherited from base
   constructor CTOR with the parameter array PARMS of size NPARMS.  */

static void
one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
{
  gcc_assert (TYPE_MAIN_VARIANT (t) == t);

  /* We don't declare an inheriting ctor that would be a default,
     copy or move ctor for derived or base.  */
  if (nparms == 0)
    return;
  if (nparms == 1
      && TYPE_REF_P (parms[0]))
    {
      tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
      if (parm == t || parm == DECL_CONTEXT (ctor))
	return;
    }

  tree parmlist = void_list_node;
  for (int i = nparms - 1; i >= 0; i--)
    parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
  tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
				   t, false, ctor, parmlist);

  if (add_method (t, fn, false))
    {
      DECL_CHAIN (fn) = TYPE_FIELDS (t);
      TYPE_FIELDS (t) = fn;
    }
}

/* Declare all the inheriting constructors for class T inherited from base
   constructor CTOR.  */

static void
one_inherited_ctor (tree ctor, tree t, tree using_decl)
{
  tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);

  if (flag_new_inheriting_ctors)
    {
      ctor = implicitly_declare_fn (sfk_inheriting_constructor,
				    t, /*const*/false, ctor, parms);
      add_method (t, ctor, using_decl != NULL_TREE);
      return;
    }

  tree *new_parms = XALLOCAVEC (tree, list_length (parms));
  int i = 0;
  for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
    {
      if (TREE_PURPOSE (parms))
	one_inheriting_sig (t, ctor, new_parms, i);
      new_parms[i++] = TREE_VALUE (parms);
    }
  one_inheriting_sig (t, ctor, new_parms, i);
  if (parms == NULL_TREE)
    {
      auto_diagnostic_group d;
      if (warning (OPT_Winherited_variadic_ctor,
		   "the ellipsis in %qD is not inherited", ctor))
	inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
    }
}

/* Create default constructors, assignment operators, and so forth for
   the type indicated by T, if they are needed.  CANT_HAVE_CONST_CTOR,
   and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
   the class cannot have a default constructor, copy constructor
   taking a const reference argument, or an assignment operator taking
   a const reference, respectively.  */

static void
add_implicitly_declared_members (tree t, tree* access_decls,
				 int cant_have_const_cctor,
				 int cant_have_const_assignment)
{
  /* Destructor.  */
  if (!CLASSTYPE_DESTRUCTOR (t))
    /* In general, we create destructors lazily.  */
    CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;

  bool move_ok = false;
  if (cxx_dialect >= cxx11 && CLASSTYPE_LAZY_DESTRUCTOR (t)
      && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
      && !classtype_has_move_assign_or_move_ctor_p (t, false))
    move_ok = true;

  /* [class.ctor]

     If there is no user-declared constructor for a class, a default
     constructor is implicitly declared.  */
  if (! TYPE_HAS_USER_CONSTRUCTOR (t))
    {
      TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
      CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
      if (cxx_dialect >= cxx11)
	TYPE_HAS_CONSTEXPR_CTOR (t)
	  /* Don't force the declaration to get a hard answer; if the
	     definition would have made the class non-literal, it will still be
	     non-literal because of the base or member in question, and that
	     gives a better diagnostic.  */
	  = type_maybe_constexpr_default_constructor (t);
    }

  /* [class.ctor]

     If a class definition does not explicitly declare a copy
     constructor, one is declared implicitly.  */
  if (! TYPE_HAS_COPY_CTOR (t))
    {
      TYPE_HAS_COPY_CTOR (t) = 1;
      TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
      CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
      if (move_ok)
	CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
    }

  /* If there is no assignment operator, one will be created if and
     when it is needed.  For now, just record whether or not the type
     of the parameter to the assignment operator will be a const or
     non-const reference.  */
  if (!TYPE_HAS_COPY_ASSIGN (t))
    {
      TYPE_HAS_COPY_ASSIGN (t) = 1;
      TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
      CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
      if (move_ok && !LAMBDA_TYPE_P (t))
	CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
    }

  /* We can't be lazy about declaring functions that might override
     a virtual function from a base class.  */
  declare_virt_assop_and_dtor (t);

  /* If the class definition does not explicitly declare an == operator
     function, but declares a defaulted three-way comparison operator function,
     an == operator function is declared implicitly.  */
  if (!classtype_has_op (t, EQ_EXPR))
    if (tree space = classtype_has_defaulted_op (t, SPACESHIP_EXPR))
      {
	tree eq = implicitly_declare_fn (sfk_comparison, t, false, space,
					 NULL_TREE);
	if (DECL_FRIEND_P (space))
	  do_friend (NULL_TREE, DECL_NAME (eq), eq,
		     NULL_TREE, NO_SPECIAL, true);
	else
	  {
	    add_method (t, eq, false);
	    DECL_CHAIN (eq) = TYPE_FIELDS (t);
	    TYPE_FIELDS (t) = eq;
	  }
	maybe_add_class_template_decl_list (t, eq, DECL_FRIEND_P (space));
      }

  while (*access_decls)
    {
      tree using_decl = TREE_VALUE (*access_decls);
      tree decl = USING_DECL_DECLS (using_decl);
      if (DECL_NAME (using_decl) == ctor_identifier)
	{
	  /* declare, then remove the decl */
	  tree ctor_list = decl;
	  location_t loc = input_location;
	  input_location = DECL_SOURCE_LOCATION (using_decl);
	  for (ovl_iterator iter (ctor_list); iter; ++iter)
	    one_inherited_ctor (*iter, t, using_decl);
	  *access_decls = TREE_CHAIN (*access_decls);
	  input_location = loc;
	}
      else
	access_decls = &TREE_CHAIN (*access_decls);
    }
}

/* Cache of enum_min_precision values.  */
static GTY((deletable)) hash_map<tree, int> *enum_to_min_precision;

/* Return the minimum precision of a bit-field needed to store all
   enumerators of ENUMERAL_TYPE TYPE.  */

static int
enum_min_precision (tree type)
{
  type = TYPE_MAIN_VARIANT (type);
  /* For unscoped enums without fixed underlying type and without mode
     attribute we can just use precision of the underlying type.  */
  if (UNSCOPED_ENUM_P (type)
      && !ENUM_FIXED_UNDERLYING_TYPE_P (type)
      && !lookup_attribute ("mode", TYPE_ATTRIBUTES (type)))
    return TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type));

  if (enum_to_min_precision == NULL)
    enum_to_min_precision = hash_map<tree, int>::create_ggc (37);

  bool existed;
  int &prec = enum_to_min_precision->get_or_insert (type, &existed);
  if (existed)
    return prec;

  tree minnode, maxnode;
  if (TYPE_VALUES (type))
    {
      minnode = maxnode = NULL_TREE;
      for (tree values = TYPE_VALUES (type);
	   values; values = TREE_CHAIN (values))
	{
	  tree decl = TREE_VALUE (values);
	  tree value = DECL_INITIAL (decl);
	  if (value == error_mark_node)
	    value = integer_zero_node;
	  if (!minnode)
	    minnode = maxnode = value;
	  else if (tree_int_cst_lt (maxnode, value))
	    maxnode = value;
	  else if (tree_int_cst_lt (value, minnode))
	    minnode = value;
	}
    }
  else
    minnode = maxnode = integer_zero_node;

  signop sgn = tree_int_cst_sgn (minnode) >= 0 ? UNSIGNED : SIGNED;
  int lowprec = tree_int_cst_min_precision (minnode, sgn);
  int highprec = tree_int_cst_min_precision (maxnode, sgn);
  prec = MAX (lowprec, highprec);
  return prec;
}

/* FIELD is a bit-field.  We are finishing the processing for its
   enclosing type.  Issue any appropriate messages and set appropriate
   flags.  Returns false if an error has been diagnosed.  */

static bool
check_bitfield_decl (tree field)
{
  tree type = TREE_TYPE (field);
  tree w;

  /* Extract the declared width of the bitfield, which has been
     temporarily stashed in DECL_BIT_FIELD_REPRESENTATIVE by grokbitfield.  */
  w = DECL_BIT_FIELD_REPRESENTATIVE (field);
  gcc_assert (w != NULL_TREE);
  /* Remove the bit-field width indicator so that the rest of the
     compiler does not treat that value as a qualifier.  */
  DECL_BIT_FIELD_REPRESENTATIVE (field) = NULL_TREE;

  /* Detect invalid bit-field type.  */
  if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
    {
      error_at (DECL_SOURCE_LOCATION (field),
		"bit-field %q#D with non-integral type %qT", field, type);
      w = error_mark_node;
    }
  else
    {
      location_t loc = input_location;
      /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs.  */
      STRIP_NOPS (w);

      /* detect invalid field size.  */
      input_location = DECL_SOURCE_LOCATION (field);
      w = cxx_constant_value (w);
      input_location = loc;

      if (TREE_CODE (w) != INTEGER_CST)
	{
	  error ("bit-field %q+D width not an integer constant", field);
	  w = error_mark_node;
	}
      else if (tree_int_cst_sgn (w) < 0)
	{
	  error ("negative width in bit-field %q+D", field);
	  w = error_mark_node;
	}
      else if (integer_zerop (w) && DECL_NAME (field) != 0)
	{
	  error ("zero width for bit-field %q+D", field);
	  w = error_mark_node;
	}
      else if ((TREE_CODE (type) != ENUMERAL_TYPE
		&& TREE_CODE (type) != BOOLEAN_TYPE
		&& compare_tree_int (w, TYPE_PRECISION (type)) > 0)
	       || ((TREE_CODE (type) == ENUMERAL_TYPE
		    || TREE_CODE (type) == BOOLEAN_TYPE)
		   && tree_int_cst_lt (TYPE_SIZE (type), w)))
	warning_at (DECL_SOURCE_LOCATION (field), 0,
		    "width of %qD exceeds its type", field);
      else if (TREE_CODE (type) == ENUMERAL_TYPE)
	{
	  int prec = enum_min_precision (type);
	  if (compare_tree_int (w, prec) < 0)
	    warning_at (DECL_SOURCE_LOCATION (field), 0,
			"%qD is too small to hold all values of %q#T",
			field, type);
	}
    }

  if (w != error_mark_node)
    {
      DECL_SIZE (field) = fold_convert (bitsizetype, w);
      DECL_BIT_FIELD (field) = 1;
      return true;
    }
  else
    {
      /* Non-bit-fields are aligned for their type.  */
      DECL_BIT_FIELD (field) = 0;
      CLEAR_DECL_C_BIT_FIELD (field);
      return false;
    }
}

/* FIELD is a non bit-field.  We are finishing the processing for its
   enclosing type T.  Issue any appropriate messages and set appropriate
   flags.  */

static bool
check_field_decl (tree field,
		  tree t,
		  int* cant_have_const_ctor,
		  int* no_const_asn_ref)
{
  tree type = strip_array_types (TREE_TYPE (field));
  bool any_default_members = false;

  /* In C++98 an anonymous union cannot contain any fields which would change
     the settings of CANT_HAVE_CONST_CTOR and friends.  */
  if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
    ;
  /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
     structs.  So, we recurse through their fields here.  */
  else if (ANON_AGGR_TYPE_P (type))
    {
      for (tree fields = TYPE_FIELDS (type); fields;
	   fields = DECL_CHAIN (fields))
	if (TREE_CODE (fields) == FIELD_DECL)
	  any_default_members |= check_field_decl (fields, t,
						   cant_have_const_ctor,
						   no_const_asn_ref);
    }
  /* Check members with class type for constructors, destructors,
     etc.  */
  else if (CLASS_TYPE_P (type))
    {
      /* Never let anything with uninheritable virtuals
	 make it through without complaint.  */
      abstract_virtuals_error (field, type);

      if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
	{
	  static bool warned;
	  int oldcount = errorcount;
	  if (TYPE_NEEDS_CONSTRUCTING (type))
	    error ("member %q+#D with constructor not allowed in union",
		   field);
	  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
	    error ("member %q+#D with destructor not allowed in union", field);
	  if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
	    error ("member %q+#D with copy assignment operator not allowed in union",
		   field);
	  if (!warned && errorcount > oldcount)
	    {
	      inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
		      "only available with %<-std=c++11%> or %<-std=gnu++11%>");
	      warned = true;
	    }
	}
      else
	{
	  TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
	  TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
	    |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
	  TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
	    |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
		|| !TYPE_HAS_COPY_ASSIGN (type));
	  TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
					     || !TYPE_HAS_COPY_CTOR (type));
	  TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
	  TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
	  TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
					|| TYPE_HAS_COMPLEX_DFLT (type));
	}

      if (TYPE_HAS_COPY_CTOR (type)
	  && !TYPE_HAS_CONST_COPY_CTOR (type))
	*cant_have_const_ctor = 1;

      if (TYPE_HAS_COPY_ASSIGN (type)
	  && !TYPE_HAS_CONST_COPY_ASSIGN (type))
	*no_const_asn_ref = 1;
    }

  check_abi_tags (t, field);

  if (DECL_INITIAL (field) != NULL_TREE)
    /* `build_class_init_list' does not recognize
       non-FIELD_DECLs.  */
    any_default_members = true;

  return any_default_members;
}

/* Check the data members (both static and non-static), class-scoped
   typedefs, etc., appearing in the declaration of T.  Issue
   appropriate diagnostics.  Sets ACCESS_DECLS to a list (in
   declaration order) of access declarations; each TREE_VALUE in this
   list is a USING_DECL.

   In addition, set the following flags:

     EMPTY_P
       The class is empty, i.e., contains no non-static data members.

     CANT_HAVE_CONST_CTOR_P
       This class cannot have an implicitly generated copy constructor
       taking a const reference.

     CANT_HAVE_CONST_ASN_REF
       This class cannot have an implicitly generated assignment
       operator taking a const reference.

   All of these flags should be initialized before calling this
   function.   */

static void
check_field_decls (tree t, tree *access_decls,
		   int *cant_have_const_ctor_p,
		   int *no_const_asn_ref_p)
{
  int cant_pack = 0;

  /* Assume there are no access declarations.  */
  *access_decls = NULL_TREE;
  /* Effective C has things to say about classes with pointer members.  */
  tree pointer_member = NULL_TREE;
  /* Default initialized members affect the whole class.  */
  tree default_init_member = NULL_TREE;
  /* Lack of any non-static data member of non-volatile literal
     type affects a union.  */
  bool found_nv_literal_p = false;
  /* Standard layout requires all FIELDS have same access.  */
  int field_access = -1;

  for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
    {
      tree type = TREE_TYPE (field);

      switch (TREE_CODE (field))
	{
	default:
	  gcc_unreachable ();

	case USING_DECL:
	  /* Save the access declarations for our caller.  */
	  *access_decls = tree_cons (NULL_TREE, field, *access_decls);
	  break;

	case TYPE_DECL:
	case TEMPLATE_DECL:
	  break;

	case FUNCTION_DECL:
	  /* FIXME: We should fold in the checking from check_methods.  */
	  break;

	case CONST_DECL:
	  DECL_NONLOCAL (field) = 1;
	  break;
	  
	case VAR_DECL:
	  if (TREE_CODE (t) == UNION_TYPE
	      && cxx_dialect < cxx11)
	    {
	      /* [class.union]

		 (C++98) If a union contains a static data member,
		 ... the program is ill-formed.  */
	      if (cxx_dialect < cxx11)
		error ("in C++98 %q+D may not be static because it is "
		       "a member of a union", field);
	    }
	  goto data_member;
	  
	case FIELD_DECL:
	  if (TREE_CODE (t) == UNION_TYPE)
	    {
	      /* [class.union]

		 If a union contains ... or a [non-static data] member
		 of reference type, the program is ill-formed.  */
	      if (TYPE_REF_P (type))
		error ("non-static data member %q+D in a union may not "
		       "have reference type %qT", field, type);
	    }

	data_member:
	  /* Common VAR_DECL & FIELD_DECL processing.  */
	  DECL_CONTEXT (field) = t;
	  DECL_NONLOCAL (field) = 1;

	  /* Template instantiation can cause this.  Perhaps this
	     should be a specific instantiation check?  */
	  if (TREE_CODE (type) == FUNCTION_TYPE)
	    {
	      error ("data member %q+D invalidly declared function type", field);
	      type = build_pointer_type (type);
	      TREE_TYPE (field) = type;
	    }
	  else if (TREE_CODE (type) == METHOD_TYPE)
	    {
	      error ("data member %q+D invalidly declared method type", field);
	      type = build_pointer_type (type);
	      TREE_TYPE (field) = type;
	    }

	  break;
	}

      if (TREE_CODE (field) != FIELD_DECL)
	continue;

      if (type == error_mark_node)
	continue;

      /* If it is not a union and at least one non-static data member is
	 non-literal, the whole class becomes non-literal.  Per Core/1453,
	 volatile non-static data members and base classes are also not allowed.
	 If it is a union, we might set CLASSTYPE_LITERAL_P after we've seen all
	 members.
	 Note: if the type is incomplete we will complain later on.  */
      if (COMPLETE_TYPE_P (type))
	{
	  if (!literal_type_p (type) || CP_TYPE_VOLATILE_P (type))
	    CLASSTYPE_LITERAL_P (t) = false;
	  else
	    found_nv_literal_p = true;
	}

      int this_field_access = (TREE_PROTECTED (field) ? 1
			       : TREE_PRIVATE (field) ? 2 : 0);
      if (field_access != this_field_access)
	{
	  /* A standard-layout class is a class that:

	     ... has the same access control (Clause 11) for all
	     non-static data members, */
	  if (field_access < 0)
	    field_access = this_field_access;
	  else
	    CLASSTYPE_NON_STD_LAYOUT (t) = 1;

	  /* Aggregates must be public.  */
	  if (this_field_access)
	    CLASSTYPE_NON_AGGREGATE (t) = 1;
	}

      /* If this is of reference type, check if it needs an init.  */
      if (TYPE_REF_P (type))
	{
	  CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
	  CLASSTYPE_NON_STD_LAYOUT (t) = 1;
	  if (DECL_INITIAL (field) == NULL_TREE)
	    SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
	  if (cxx_dialect < cxx11)
	    {
	      /* ARM $12.6.2: [A member initializer list] (or, for an
		 aggregate, initialization by a brace-enclosed list) is the
		 only way to initialize nonstatic const and reference
		 members.  */
	      TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
	      TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
	    }
	}

      type = strip_array_types (type);

      if (TYPE_PACKED (t))
	{
	  if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
	    {
	      warning_at (DECL_SOURCE_LOCATION (field), 0,
			  "ignoring packed attribute because of"
			  " unpacked non-POD field %q#D", field);
	      cant_pack = 1;
	    }
	  else if (DECL_C_BIT_FIELD (field)
		   || TYPE_ALIGN (TREE_TYPE (field)) > BITS_PER_UNIT)
	    DECL_PACKED (field) = 1;
	}

      if (DECL_C_BIT_FIELD (field)
	  && integer_zerop (DECL_BIT_FIELD_REPRESENTATIVE (field)))
	/* We don't treat zero-width bitfields as making a class
	   non-empty.  */
	;
      else if (field_poverlapping_p (field)
	       && is_empty_class (TREE_TYPE (field)))
	/* Empty data members also don't make a class non-empty.  */
	CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
      else
	{
	  /* The class is non-empty.  */
	  CLASSTYPE_EMPTY_P (t) = 0;
	  /* The class is not even nearly empty.  */
	  CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
	  /* If one of the data members contains an empty class, so
	     does T.  */
	  if (CLASS_TYPE_P (type)
	      && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
	    CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
	}

      /* This is used by -Weffc++ (see below). Warn only for pointers
	 to members which might hold dynamic memory. So do not warn
	 for pointers to functions or pointers to members.  */
      if (TYPE_PTR_P (type)
	  && !TYPE_PTRFN_P (type))
	pointer_member = field;

      if (CLASS_TYPE_P (type))
	{
	  if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
	    SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
	  if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
	    SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
	}

      if (DECL_MUTABLE_P (field) || TYPE_HAS_MUTABLE_P (type))
	CLASSTYPE_HAS_MUTABLE (t) = 1;

      if (DECL_MUTABLE_P (field))
	{
	  if (TYPE_REF_P (type))
	    error ("member %q+D cannot be declared as a %<mutable%> "
		   "reference", field);
	  else if (CP_TYPE_CONST_P (type))
	    error ("member %q+D cannot be declared both %<const%> "
		   "and %<mutable%>", field);
	}

      if (! layout_pod_type_p (type))
	/* DR 148 now allows pointers to members (which are POD themselves),
	   to be allowed in POD structs.  */
	CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;

      if (field_poverlapping_p (field))
	/* A potentially-overlapping non-static data member makes the class
	   non-layout-POD.  */
	CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;

      if (!std_layout_type_p (type))
	CLASSTYPE_NON_STD_LAYOUT (t) = 1;

      if (! zero_init_p (type))
	CLASSTYPE_NON_ZERO_INIT_P (t) = 1;

      /* We set DECL_C_BIT_FIELD in grokbitfield.
	 If the type and width are valid, we'll also set DECL_BIT_FIELD.  */
      if (DECL_C_BIT_FIELD (field))
	check_bitfield_decl (field);

      if (check_field_decl (field, t,
			    cant_have_const_ctor_p, no_const_asn_ref_p))
	{
	  if (default_init_member
	      && TREE_CODE (t) == UNION_TYPE)
	    {
	      error ("multiple fields in union %qT initialized", t);
	      inform (DECL_SOURCE_LOCATION (default_init_member),
		      "initialized member %q+D declared here",
		      default_init_member);
	    }
	  default_init_member = field;
	}

      /* Now that we've removed bit-field widths from DECL_INITIAL,
	 anything left in DECL_INITIAL is an NSDMI that makes the class
	 non-aggregate in C++11.  */
      if (DECL_INITIAL (field) && cxx_dialect < cxx14)
	CLASSTYPE_NON_AGGREGATE (t) = true;

      if (CP_TYPE_CONST_P (type))
	{
	  /* If any field is const, the structure type is pseudo-const.  */
	  C_TYPE_FIELDS_READONLY (t) = 1;
	  if (DECL_INITIAL (field) == NULL_TREE)
	    SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
	  if (cxx_dialect < cxx11)
	    {
	      /* ARM $12.6.2: [A member initializer list] (or, for an
		 aggregate, initialization by a brace-enclosed list) is the
		 only way to initialize nonstatic const and reference
		 members.  */
	      TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
	      TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
	    }
	}
      /* A field that is pseudo-const makes the structure likewise.  */
      else if (CLASS_TYPE_P (type))
	{
	  C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
	  SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
	    CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
	    | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
	}

      /* Core issue 80: A nonstatic data member is required to have a
	 different name from the class iff the class has a
	 user-declared constructor.  */
      if (constructor_name_p (DECL_NAME (field), t)
	  && TYPE_HAS_USER_CONSTRUCTOR (t))
	permerror (DECL_SOURCE_LOCATION (field),
		   "field %q#D with same name as class", field);
    }

  /* Per CWG 2096, a type is a literal type if it is a union, and at least
     one of its non-static data members is of non-volatile literal type.  */
  if (TREE_CODE (t) == UNION_TYPE && found_nv_literal_p)
    CLASSTYPE_LITERAL_P (t) = true;

  /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
     it should also define a copy constructor and an assignment operator to
     implement the correct copy semantic (deep vs shallow, etc.). As it is
     not feasible to check whether the constructors do allocate dynamic memory
     and store it within members, we approximate the warning like this:

     -- Warn only if there are members which are pointers
     -- Warn only if there is a non-trivial constructor (otherwise,
	there cannot be memory allocated).
     -- Warn only if there is a non-trivial destructor. We assume that the
	user at least implemented the cleanup correctly, and a destructor
	is needed to free dynamic memory.

     This seems enough for practical purposes.  */
  if (warn_ecpp
      && pointer_member
      && TYPE_HAS_USER_CONSTRUCTOR (t)
      && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
      && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
    {
      if (warning (OPT_Weffc__, "%q#T has pointer data members", t))
	{
	  if (! TYPE_HAS_COPY_CTOR (t))
	    {
	      warning (OPT_Weffc__,
		       "  but does not declare %<%T(const %T&)%>", t, t);
	      if (!TYPE_HAS_COPY_ASSIGN (t))
		warning (OPT_Weffc__, "  or %<operator=(const %T&)%>", t);
	    }
	  else if (! TYPE_HAS_COPY_ASSIGN (t))
	    warning (OPT_Weffc__,
		     "  but does not declare %<operator=(const %T&)%>", t);
	  inform (DECL_SOURCE_LOCATION (pointer_member),
		  "pointer member %q+D declared here", pointer_member);
	}
    }

  /* Non-static data member initializers make the default constructor
     non-trivial.  */
  if (default_init_member)
    {
      TYPE_NEEDS_CONSTRUCTING (t) = true;
      TYPE_HAS_COMPLEX_DFLT (t) = true;
    }

  /* If any of the fields couldn't be packed, unset TYPE_PACKED.  */
  if (cant_pack)
    TYPE_PACKED (t) = 0;

  /* Check anonymous struct/anonymous union fields.  */
  finish_struct_anon (t);

  /* We've built up the list of access declarations in reverse order.
     Fix that now.  */
  *access_decls = nreverse (*access_decls);
}

/* If TYPE is an empty class type, records its OFFSET in the table of
   OFFSETS.  */

static int
record_subobject_offset (tree type, tree offset, splay_tree offsets)
{
  splay_tree_node n;

  if (!is_empty_class (type))
    return 0;

  /* Record the location of this empty object in OFFSETS.  */
  n = splay_tree_lookup (offsets, (splay_tree_key) offset);
  if (!n)
    n = splay_tree_insert (offsets,
			   (splay_tree_key) offset,
			   (splay_tree_value) NULL_TREE);
  n->value = ((splay_tree_value)
	      tree_cons (NULL_TREE,
			 type,
			 (tree) n->value));

  return 0;
}

/* Returns nonzero if TYPE is an empty class type and there is
   already an entry in OFFSETS for the same TYPE as the same OFFSET.  */

static int
check_subobject_offset (tree type, tree offset, splay_tree offsets)
{
  splay_tree_node n;
  tree t;

  if (!is_empty_class (type))
    return 0;

  /* Record the location of this empty object in OFFSETS.  */
  n = splay_tree_lookup (offsets, (splay_tree_key) offset);
  if (!n)
    return 0;

  for (t = (tree) n->value; t; t = TREE_CHAIN (t))
    if (same_type_p (TREE_VALUE (t), type))
      return 1;

  return 0;
}

/* Walk through all the subobjects of TYPE (located at OFFSET).  Call
   F for every subobject, passing it the type, offset, and table of
   OFFSETS.  If VBASES_P is one, then virtual non-primary bases should
   be traversed.

   If MAX_OFFSET is non-NULL, then subobjects with an offset greater
   than MAX_OFFSET will not be walked.

   If F returns a nonzero value, the traversal ceases, and that value
   is returned.  Otherwise, returns zero.  */

static int
walk_subobject_offsets (tree type,
			subobject_offset_fn f,
			tree offset,
			splay_tree offsets,
			tree max_offset,
			int vbases_p)
{
  int r = 0;
  tree type_binfo = NULL_TREE;

  /* If this OFFSET is bigger than the MAX_OFFSET, then we should
     stop.  */
  if (max_offset && tree_int_cst_lt (max_offset, offset))
    return 0;

  if (type == error_mark_node)
    return 0;

  if (!TYPE_P (type))
    {
      type_binfo = type;
      type = BINFO_TYPE (type);
    }

  if (CLASS_TYPE_P (type))
    {
      tree field;
      tree binfo;
      int i;

      /* Avoid recursing into objects that are not interesting.  */
      if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
	return 0;

      /* Record the location of TYPE.  */
      r = (*f) (type, offset, offsets);
      if (r)
	return r;

      /* Iterate through the direct base classes of TYPE.  */
      if (!type_binfo)
	type_binfo = TYPE_BINFO (type);
      for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
	{
	  tree binfo_offset;

	  if (BINFO_VIRTUAL_P (binfo))
	    continue;

	  tree orig_binfo;
	  /* We cannot rely on BINFO_OFFSET being set for the base
	     class yet, but the offsets for direct non-virtual
	     bases can be calculated by going back to the TYPE.  */
	  orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
	  binfo_offset = size_binop (PLUS_EXPR,
				     offset,
				     BINFO_OFFSET (orig_binfo));

	  r = walk_subobject_offsets (binfo,
				      f,
				      binfo_offset,
				      offsets,
				      max_offset,
				      /*vbases_p=*/0);
	  if (r)
	    return r;
	}

      if (CLASSTYPE_VBASECLASSES (type))
	{
	  unsigned ix;
	  vec<tree, va_gc> *vbases;

	  /* Iterate through the virtual base classes of TYPE.  In G++
	     3.2, we included virtual bases in the direct base class
	     loop above, which results in incorrect results; the
	     correct offsets for virtual bases are only known when
	     working with the most derived type.  */
	  if (vbases_p)
	    for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
		 vec_safe_iterate (vbases, ix, &binfo); ix++)
	      {
		r = walk_subobject_offsets (binfo,
					    f,
					    size_binop (PLUS_EXPR,
							offset,
							BINFO_OFFSET (binfo)),
					    offsets,
					    max_offset,
					    /*vbases_p=*/0);
		if (r)
		  return r;
	      }
	  else
	    {
	      /* We still have to walk the primary base, if it is
		 virtual.  (If it is non-virtual, then it was walked
		 above.)  */
	      tree vbase = get_primary_binfo (type_binfo);

	      if (vbase && BINFO_VIRTUAL_P (vbase)
		  && BINFO_PRIMARY_P (vbase)
		  && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
		{
		  r = (walk_subobject_offsets
		       (vbase, f, offset,
			offsets, max_offset, /*vbases_p=*/0));
		  if (r)
		    return r;
		}
	    }
	}

      /* Iterate through the fields of TYPE.  */
      for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL
	    && TREE_TYPE (field) != error_mark_node
	    && !DECL_ARTIFICIAL (field))
	  {
	    tree field_offset;

	    field_offset = byte_position (field);

	    r = walk_subobject_offsets (TREE_TYPE (field),
					f,
					size_binop (PLUS_EXPR,
						    offset,
						    field_offset),
					offsets,
					max_offset,
					/*vbases_p=*/1);
	    if (r)
	      return r;
	  }
    }
  else if (TREE_CODE (type) == ARRAY_TYPE)
    {
      tree element_type = strip_array_types (type);
      tree domain = TYPE_DOMAIN (type);
      tree index;

      /* Avoid recursing into objects that are not interesting.  */
      if (!CLASS_TYPE_P (element_type)
	  || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type)
	  || !domain
	  || integer_minus_onep (TYPE_MAX_VALUE (domain)))
	return 0;

      /* Step through each of the elements in the array.  */
      for (index = size_zero_node;
	   !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
	   index = size_binop (PLUS_EXPR, index, size_one_node))
	{
	  r = walk_subobject_offsets (TREE_TYPE (type),
				      f,
				      offset,
				      offsets,
				      max_offset,
				      /*vbases_p=*/1);
	  if (r)
	    return r;
	  offset = size_binop (PLUS_EXPR, offset,
			       TYPE_SIZE_UNIT (TREE_TYPE (type)));
	  /* If this new OFFSET is bigger than the MAX_OFFSET, then
	     there's no point in iterating through the remaining
	     elements of the array.  */
	  if (max_offset && tree_int_cst_lt (max_offset, offset))
	    break;
	}
    }

  return 0;
}

/* Return true iff FIELD_DECL DECL is potentially overlapping.  */

static bool
field_poverlapping_p (tree decl)
{
  /* Base fields are actually potentially overlapping, but C++ bases go through
     a different code path based on binfos, and ObjC++ base fields are laid out
     in objc-act, so we don't want layout_class_type to mess with them.  */
  if (DECL_FIELD_IS_BASE (decl))
    {
      gcc_checking_assert (c_dialect_objc ());
      return false;
    }

  return lookup_attribute ("no_unique_address",
			   DECL_ATTRIBUTES (decl));
}

/* Record all of the empty subobjects of DECL_OR_BINFO.  */

static void
record_subobject_offsets (tree decl_or_binfo,
			  splay_tree offsets)
{
  tree type, offset;
  bool overlapping, vbases_p;

  if (DECL_P (decl_or_binfo))
    {
      tree decl = decl_or_binfo;
      type = TREE_TYPE (decl);
      offset = byte_position (decl);
      overlapping = field_poverlapping_p (decl);
      vbases_p = true;
    }
  else
    {
      type = BINFO_TYPE (decl_or_binfo);
      offset = BINFO_OFFSET (decl_or_binfo);
      overlapping = true;
      vbases_p = false;
    }

  tree max_offset;
  /* If recording subobjects for a non-static data member or a
     non-empty base class, we do not need to record offsets beyond
     the size of the biggest empty class.  Additional data members
     will go at the end of the class.  Additional base classes will go
     either at offset zero (if empty, in which case they cannot
     overlap with offsets past the size of the biggest empty class) or
     at the end of the class.

     However, if we are placing an empty base class, then we must record
     all offsets, as either the empty class is at offset zero (where
     other empty classes might later be placed) or at the end of the
     class (where other objects might then be placed, so other empty
     subobjects might later overlap).  */
  if (!overlapping
      || !is_empty_class (type))
    max_offset = sizeof_biggest_empty_class;
  else
    max_offset = NULL_TREE;
  walk_subobject_offsets (type, record_subobject_offset, offset,
			  offsets, max_offset, vbases_p);
}

/* Returns nonzero if any of the empty subobjects of TYPE (located at
   OFFSET) conflict with entries in OFFSETS.  If VBASES_P is nonzero,
   virtual bases of TYPE are examined.  */

static int
layout_conflict_p (tree type,
		   tree offset,
		   splay_tree offsets,
		   int vbases_p)
{
  splay_tree_node max_node;

  /* Get the node in OFFSETS that indicates the maximum offset where
     an empty subobject is located.  */
  max_node = splay_tree_max (offsets);
  /* If there aren't any empty subobjects, then there's no point in
     performing this check.  */
  if (!max_node)
    return 0;

  return walk_subobject_offsets (type, check_subobject_offset, offset,
				 offsets, (tree) (max_node->key),
				 vbases_p);
}

/* DECL is a FIELD_DECL corresponding either to a base subobject of a
   non-static data member of the type indicated by RLI.  BINFO is the
   binfo corresponding to the base subobject, OFFSETS maps offsets to
   types already located at those offsets.  This function determines
   the position of the DECL.  */

static void
layout_nonempty_base_or_field (record_layout_info rli,
			       tree decl,
			       tree binfo,
			       splay_tree offsets)
{
  tree offset = NULL_TREE;
  bool field_p;
  tree type;

  if (binfo)
    {
      /* For the purposes of determining layout conflicts, we want to
	 use the class type of BINFO; TREE_TYPE (DECL) will be the
	 CLASSTYPE_AS_BASE version, which does not contain entries for
	 zero-sized bases.  */
      type = TREE_TYPE (binfo);
      field_p = false;
    }
  else
    {
      type = TREE_TYPE (decl);
      field_p = true;
    }

  /* Try to place the field.  It may take more than one try if we have
     a hard time placing the field without putting two objects of the
     same type at the same address.  */
  while (1)
    {
      struct record_layout_info_s old_rli = *rli;

      /* Place this field.  */
      place_field (rli, decl);
      offset = byte_position (decl);

      /* We have to check to see whether or not there is already
	 something of the same type at the offset we're about to use.
	 For example, consider:

	   struct S {};
	   struct T : public S { int i; };
	   struct U : public S, public T {};

	 Here, we put S at offset zero in U.  Then, we can't put T at
	 offset zero -- its S component would be at the same address
	 as the S we already allocated.  So, we have to skip ahead.
	 Since all data members, including those whose type is an
	 empty class, have nonzero size, any overlap can happen only
	 with a direct or indirect base-class -- it can't happen with
	 a data member.  */
      /* In a union, overlap is permitted; all members are placed at
	 offset zero.  */
      if (TREE_CODE (rli->t) == UNION_TYPE)
	break;
      if (layout_conflict_p (field_p ? type : binfo, offset,
			     offsets, field_p))
	{
	  /* Strip off the size allocated to this field.  That puts us
	     at the first place we could have put the field with
	     proper alignment.  */
	  *rli = old_rli;

	  /* Bump up by the alignment required for the type.  */
	  rli->bitpos
	    = size_binop (PLUS_EXPR, rli->bitpos,
			  bitsize_int (binfo
				       ? CLASSTYPE_ALIGN (type)
				       : TYPE_ALIGN (type)));
	  normalize_rli (rli);
	}
      else if (TREE_CODE (type) == NULLPTR_TYPE
	       && warn_abi && abi_version_crosses (9))
	{
	  /* Before ABI v9, we were giving nullptr_t alignment of 1; if
	     the offset wasn't aligned like a pointer when we started to
	     layout this field, that affects its position.  */
	  tree pos = rli_size_unit_so_far (&old_rli);
	  if (int_cst_value (pos) % TYPE_ALIGN_UNIT (ptr_type_node) != 0)
	    {
	      if (abi_version_at_least (9))
		warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wabi,
			    "alignment of %qD increased in %<-fabi-version=9%> "
			    "(GCC 5.2)", decl);
	      else
		warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wabi, "alignment "
			    "of %qD will increase in %<-fabi-version=9%>",
			    decl);
	    }
	  break;
	}
      else
	/* There was no conflict.  We're done laying out this field.  */
	break;
    }

  /* Now that we know where it will be placed, update its
     BINFO_OFFSET.  */
  if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
    /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
       this point because their BINFO_OFFSET is copied from another
       hierarchy.  Therefore, we may not need to add the entire
       OFFSET.  */
    propagate_binfo_offsets (binfo,
			     size_diffop_loc (input_location,
					  fold_convert (ssizetype, offset),
					  fold_convert (ssizetype,
						   BINFO_OFFSET (binfo))));
}

/* Returns true if TYPE is empty and OFFSET is nonzero.  */

static int
empty_base_at_nonzero_offset_p (tree type,
				tree offset,
				splay_tree /*offsets*/)
{
  return is_empty_class (type) && !integer_zerop (offset);
}

/* Layout the empty base BINFO.  EOC indicates the byte currently just
   past the end of the class, and should be correctly aligned for a
   class of the type indicated by BINFO; OFFSETS gives the offsets of
   the empty bases allocated so far. T is the most derived
   type.  Return nonzero iff we added it at the end.  */

static bool
layout_empty_base_or_field (record_layout_info rli, tree binfo_or_decl,
			    splay_tree offsets)
{
  tree alignment;
  bool atend = false;
  tree binfo = NULL_TREE;
  tree decl = NULL_TREE;
  tree type;
  if (TREE_CODE (binfo_or_decl) == TREE_BINFO)
    {
      binfo = binfo_or_decl;
      type = BINFO_TYPE (binfo);
    }
  else
    {
      decl = binfo_or_decl;
      type = TREE_TYPE (decl);
    }

  /* On some platforms (ARM), even empty classes will not be
     byte-aligned.  */
  tree eoc = round_up_loc (input_location,
			   rli_size_unit_so_far (rli),
			   CLASSTYPE_ALIGN_UNIT (type));

  /* This routine should only be used for empty classes.  */
  gcc_assert (is_empty_class (type));

  if (decl && DECL_USER_ALIGN (decl))
    alignment = size_int (DECL_ALIGN_UNIT (decl));
  else
    alignment = size_int (CLASSTYPE_ALIGN_UNIT (type));

  /* This is an empty base class.  We first try to put it at offset
     zero.  */
  tree offset = size_zero_node;
  if (TREE_CODE (rli->t) != UNION_TYPE
      && layout_conflict_p (type,
			    offset,
			    offsets,
			    /*vbases_p=*/0))
    {
      /* That didn't work.  Now, we move forward from the next
	 available spot in the class.  */
      atend = true;
      offset = eoc;
      while (1)
	{
	  if (!layout_conflict_p (type,
				  offset,
				  offsets,
				  /*vbases_p=*/0))
	    /* We finally found a spot where there's no overlap.  */
	    break;

	  /* There's overlap here, too.  Bump along to the next spot.  */
	  offset = size_binop (PLUS_EXPR, offset, alignment);
	}
    }

  if (decl && DECL_USER_ALIGN (decl))
    {
      rli->record_align = MAX (rli->record_align, DECL_ALIGN (decl));
      if (warn_packed)
	rli->unpacked_align = MAX (rli->unpacked_align, DECL_ALIGN (decl));
      TYPE_USER_ALIGN (rli->t) = 1;
    }
  else if (CLASSTYPE_USER_ALIGN (type))
    {
      rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (type));
      if (warn_packed)
	rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (type));
      TYPE_USER_ALIGN (rli->t) = 1;
    }

  if (binfo)
    /* Adjust BINFO_OFFSET (binfo) to be exactly OFFSET.  */
    propagate_binfo_offsets (binfo,
			     size_diffop (offset, BINFO_OFFSET (binfo)));
  else
    {
      DECL_FIELD_OFFSET (decl) = offset;
      DECL_FIELD_BIT_OFFSET (decl) = bitsize_zero_node;
      SET_DECL_OFFSET_ALIGN (decl, BITS_PER_UNIT);
    }

  return atend;
}

/* Build the FIELD_DECL for BASETYPE as a base of T, add it to the chain of
   fields at NEXT_FIELD, and return it.  */

static tree
build_base_field_1 (tree t, tree binfo, tree access, tree *&next_field)
{
  /* Create the FIELD_DECL.  */
  tree basetype = BINFO_TYPE (binfo);
  gcc_assert (CLASSTYPE_AS_BASE (basetype));
  tree decl = build_decl (input_location,
			  FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
  DECL_ARTIFICIAL (decl) = 1;
  DECL_IGNORED_P (decl) = 1;
  DECL_FIELD_CONTEXT (decl) = t;
  if (is_empty_class (basetype))
    /* CLASSTYPE_SIZE is one byte, but the field needs to have size zero.  */
    DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = size_zero_node;
  else
    {
      DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
      DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
    }
  SET_DECL_ALIGN (decl, CLASSTYPE_ALIGN (basetype));
  DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
  SET_DECL_MODE (decl, TYPE_MODE (basetype));
  DECL_FIELD_IS_BASE (decl) = 1;

  if (access == access_private_node)
    TREE_PRIVATE (decl) = true;
  else if (access == access_protected_node)
    TREE_PROTECTED (decl) = true;

  /* Add the new FIELD_DECL to the list of fields for T.  */
  DECL_CHAIN (decl) = *next_field;
  *next_field = decl;
  next_field = &DECL_CHAIN (decl);

  return decl;
}

/* Layout the base given by BINFO in the class indicated by RLI.
   *BASE_ALIGN is a running maximum of the alignments of
   any base class.  OFFSETS gives the location of empty base
   subobjects.  T is the most derived type.  Return nonzero if the new
   object cannot be nearly-empty.  A new FIELD_DECL is inserted at
   *NEXT_FIELD, unless BINFO is for an empty base class.

   Returns the location at which the next field should be inserted.  */

static tree *
build_base_field (record_layout_info rli, tree binfo, tree access,
		  splay_tree offsets, tree *next_field)
{
  tree t = rli->t;
  tree basetype = BINFO_TYPE (binfo);

  if (!COMPLETE_TYPE_P (basetype))
    /* This error is now reported in xref_tag, thus giving better
       location information.  */
    return next_field;

  /* Place the base class.  */
  if (!is_empty_class (basetype))
    {
      tree decl;

      /* The containing class is non-empty because it has a non-empty
	 base class.  */
      CLASSTYPE_EMPTY_P (t) = 0;

      /* Create the FIELD_DECL.  */
      decl = build_base_field_1 (t, binfo, access, next_field);

      /* Try to place the field.  It may take more than one try if we
	 have a hard time placing the field without putting two
	 objects of the same type at the same address.  */
      layout_nonempty_base_or_field (rli, decl, binfo, offsets);
    }
  else
    {
      bool atend = layout_empty_base_or_field (rli, binfo, offsets);
      /* A nearly-empty class "has no proper base class that is empty,
	 not morally virtual, and at an offset other than zero."  */
      if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
	{
	  if (atend)
	    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
	  /* The check above (used in G++ 3.2) is insufficient because
	     an empty class placed at offset zero might itself have an
	     empty base at a nonzero offset.  */
	  else if (walk_subobject_offsets (basetype,
					   empty_base_at_nonzero_offset_p,
					   size_zero_node,
					   /*offsets=*/NULL,
					   /*max_offset=*/NULL_TREE,
					   /*vbases_p=*/true))
	    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
	}

      /* We used to not create a FIELD_DECL for empty base classes because of
	 back end issues with overlapping FIELD_DECLs, but that doesn't seem to
	 be a problem anymore.  We need them to handle initialization of C++17
	 aggregate bases.  */
      if (cxx_dialect >= cxx17 && !BINFO_VIRTUAL_P (binfo))
	{
	  tree decl = build_base_field_1 (t, binfo, access, next_field);
	  DECL_FIELD_OFFSET (decl) = BINFO_OFFSET (binfo);
	  DECL_FIELD_BIT_OFFSET (decl) = bitsize_zero_node;
	  SET_DECL_OFFSET_ALIGN (decl, BITS_PER_UNIT);
	  DECL_FIELD_ABI_IGNORED (decl) = 1;
	}

      /* An empty virtual base causes a class to be non-empty
	 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
	 here because that was already done when the virtual table
	 pointer was created.  */
    }

  /* Record the offsets of BINFO and its base subobjects.  */
  record_subobject_offsets (binfo, offsets);

  return next_field;
}

/* Layout all of the non-virtual base classes.  Record empty
   subobjects in OFFSETS.  T is the most derived type.  Return nonzero
   if the type cannot be nearly empty.  The fields created
   corresponding to the base classes will be inserted at
   *NEXT_FIELD.  */

static void
build_base_fields (record_layout_info rli,
		   splay_tree offsets, tree *next_field)
{
  /* Chain to hold all the new FIELD_DECLs which stand in for base class
     subobjects.  */
  tree t = rli->t;
  tree binfo = TYPE_BINFO (t);
  int n_baseclasses = BINFO_N_BASE_BINFOS (binfo);

  /* The primary base class is always allocated first.  */
  const tree primary_binfo = CLASSTYPE_PRIMARY_BINFO (t);
  if (primary_binfo)
    {
      /* We need to walk BINFO_BASE_BINFO to find the access of the primary
	 base, if it is direct.  Indirect base fields are private.  */
      tree primary_access = access_private_node;
      for (int i = 0; i < n_baseclasses; ++i)
	{
	  tree base_binfo = BINFO_BASE_BINFO (binfo, i);
	  if (base_binfo == primary_binfo)
	    {
	      primary_access = BINFO_BASE_ACCESS (binfo, i);
	      break;
	    }
	}
      next_field = build_base_field (rli, primary_binfo,
				     primary_access,
				     offsets, next_field);
    }

  /* Now allocate the rest of the bases.  */
  for (int i = 0; i < n_baseclasses; ++i)
    {
      tree base_binfo = BINFO_BASE_BINFO (binfo, i);

      /* The primary base was already allocated above, so we don't
	 need to allocate it again here.  */
      if (base_binfo == primary_binfo)
       continue;

      /* Virtual bases are added at the end (a primary virtual base
	 will have already been added).  */
      if (BINFO_VIRTUAL_P (base_binfo))
	continue;

      next_field = build_base_field (rli, base_binfo,
				     BINFO_BASE_ACCESS (binfo, i),
				     offsets, next_field);
    }
}

/* Go through the TYPE_FIELDS of T issuing any appropriate
   diagnostics, figuring out which methods override which other
   methods, and so forth.  */

static void
check_methods (tree t)
{
  for (tree x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
    if (DECL_DECLARES_FUNCTION_P (x))
      {
	check_for_override (x, t);

	if (DECL_PURE_VIRTUAL_P (x)
	    && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
	  error ("initializer specified for non-virtual method %q+D", x);
	/* The name of the field is the original field name
	   Save this in auxiliary field for later overloading.  */
	if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
	  {
	    TYPE_POLYMORPHIC_P (t) = 1;
	    if (DECL_PURE_VIRTUAL_P (x))
	      vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
	  }

	if (!DECL_VIRTUAL_P (x)
	    && lookup_attribute ("transaction_safe_dynamic",
				 DECL_ATTRIBUTES (x)))
	  error_at (DECL_SOURCE_LOCATION (x),
		    "%<transaction_safe_dynamic%> may only be specified for "
		    "a virtual function");
      }

  /* Check whether the eligible special member functions (P0848) are
     user-provided.  add_method arranged that the CLASSTYPE_MEMBER_VEC only
     has the eligible ones; TYPE_FIELDS also contains ineligible overloads,
     which is why this needs to be separate from the loop above.  */

  if (tree dtor = CLASSTYPE_DESTRUCTOR (t))
    {
      if (TREE_CODE (dtor) == OVERLOAD)
	{
	  /* P0848: At the end of the definition of a class, overload
	     resolution is performed among the prospective destructors declared
	     in that class with an empty argument list to select the destructor
	     for the class, also known as the selected destructor. The program
	     is ill-formed if overload resolution fails. */
	  auto_diagnostic_group d;
	  error_at (location_of (t), "destructor for %qT is ambiguous", t);
	  print_candidates (dtor);
	}
      else if (user_provided_p (dtor))
	TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = true;
    }

  for (ovl_iterator i (CLASSTYPE_CONSTRUCTORS (t)); i; ++i)
    {
      tree fn = *i;
      if (!user_provided_p (fn))
	/* Might be trivial.  */;
      else if (copy_fn_p (fn))
	TYPE_HAS_COMPLEX_COPY_CTOR (t) = true;
      else if (move_fn_p (fn))
	TYPE_HAS_COMPLEX_MOVE_CTOR (t) = true;
    }

  for (ovl_iterator i (get_class_binding_direct (t, assign_op_identifier));
       i; ++i)
    {
      tree fn = *i;
      if (!user_provided_p (fn))
	/* Might be trivial.  */;
      else if (copy_fn_p (fn))
	TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = true;
      else if (move_fn_p (fn))
	TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = true;
    }
}

tree
copy_fndecl_with_name (tree fn, tree name)
{
  /* Copy the function.  */
  tree clone = copy_decl (fn);
  /* Reset the function name.  */
  DECL_NAME (clone) = name;

  if (flag_concepts)
    /* Clone constraints.  */
    if (tree ci = get_constraints (fn))
      set_constraints (clone, copy_node (ci));

  SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
  /* There's no pending inline data for this function.  */
  DECL_PENDING_INLINE_INFO (clone) = NULL;
  DECL_PENDING_INLINE_P (clone) = 0;

  /* The base-class destructor is not virtual.  */
  if (name == base_dtor_identifier)
    {
      DECL_VIRTUAL_P (clone) = 0;
      DECL_VINDEX (clone) = NULL_TREE;
    }
  else if (IDENTIFIER_OVL_OP_P (name))
    {
      const ovl_op_info_t *ovl_op = IDENTIFIER_OVL_OP_INFO (name);
      DECL_OVERLOADED_OPERATOR_CODE_RAW (clone) = ovl_op->ovl_op_code;
    }

  if (DECL_VIRTUAL_P (clone))
    IDENTIFIER_VIRTUAL_P (name) = true;

  bool ctor_omit_inherited_parms_p = ctor_omit_inherited_parms (clone);
  if (ctor_omit_inherited_parms_p)
    gcc_assert (DECL_HAS_IN_CHARGE_PARM_P (clone));

  /* If there was an in-charge parameter, drop it from the function
     type.  */
  if (DECL_HAS_IN_CHARGE_PARM_P (clone))
    {
      tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
      tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
      /* Skip the `this' parameter.  */
      parmtypes = TREE_CHAIN (parmtypes);
      /* Skip the in-charge parameter.  */
      parmtypes = TREE_CHAIN (parmtypes);
      /* And the VTT parm, in a complete [cd]tor.  */
      if (DECL_HAS_VTT_PARM_P (fn)
	  && ! DECL_NEEDS_VTT_PARM_P (clone))
	parmtypes = TREE_CHAIN (parmtypes);
      if (ctor_omit_inherited_parms_p)
	{
	  /* If we're omitting inherited parms, that just leaves the VTT.  */
	  gcc_assert (DECL_NEEDS_VTT_PARM_P (clone));
	  parmtypes = tree_cons (NULL_TREE, vtt_parm_type, void_list_node);
	}
      TREE_TYPE (clone)
	= build_method_type_directly (basetype,
				      TREE_TYPE (TREE_TYPE (clone)),
				      parmtypes);
      TREE_TYPE (clone)
	= cp_build_type_attribute_variant (TREE_TYPE (clone),
					   TYPE_ATTRIBUTES (TREE_TYPE (fn)));
      TREE_TYPE (clone)
	= cxx_copy_lang_qualifiers (TREE_TYPE (clone), TREE_TYPE (fn));
    }

  /* Copy the function parameters.  */
  DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
  /* Remove the in-charge parameter.  */
  if (DECL_HAS_IN_CHARGE_PARM_P (clone))
    {
      DECL_CHAIN (DECL_ARGUMENTS (clone))
	= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
      DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
    }
  /* And the VTT parm, in a complete [cd]tor.  */
  if (DECL_HAS_VTT_PARM_P (fn))
    {
      if (DECL_NEEDS_VTT_PARM_P (clone))
	DECL_HAS_VTT_PARM_P (clone) = 1;
      else
	{
	  DECL_CHAIN (DECL_ARGUMENTS (clone))
	    = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
	  DECL_HAS_VTT_PARM_P (clone) = 0;
	}
    }

  /* A base constructor inheriting from a virtual base doesn't get the
     arguments.  */
  if (ctor_omit_inherited_parms_p)
    DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone))) = NULL_TREE;

  for (tree parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
    {
      DECL_CONTEXT (parms) = clone;
      cxx_dup_lang_specific_decl (parms);
    }

  /* Create the RTL for this function.  */
  SET_DECL_RTL (clone, NULL);
  rest_of_decl_compilation (clone, namespace_bindings_p (), at_eof);

  return clone;
}

/* FN is a constructor or destructor.  Clone the declaration to create
   a specialized in-charge or not-in-charge version, as indicated by
   NAME.  */

static tree
build_clone (tree fn, tree name)
{
  /* Copy the function.  */
  tree clone = copy_decl (fn);
  /* Reset the function name.  */
  DECL_NAME (clone) = name;
  /* Remember where this function came from.  */
  DECL_ABSTRACT_ORIGIN (clone) = fn;

  /* Make it easy to find the CLONE given the FN.  Note the
     template_result of a template will be chained this way too.  */
  DECL_CHAIN (clone) = DECL_CHAIN (fn);
  DECL_CHAIN (fn) = clone;

  /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT.  */
  if (TREE_CODE (clone) == TEMPLATE_DECL)
    {
      tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
      DECL_TEMPLATE_RESULT (clone) = result;

      DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
      DECL_TI_TEMPLATE (result) = clone;

      TREE_TYPE (clone) = TREE_TYPE (result);
      return clone;
    }

  if (flag_concepts)
    /* Clone constraints.  */
    if (tree ci = get_constraints (fn))
      set_constraints (clone, copy_node (ci));

  SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
  DECL_CLONED_FUNCTION (clone) = fn;
  /* There's no pending inline data for this function.  */
  DECL_PENDING_INLINE_INFO (clone) = NULL;
  DECL_PENDING_INLINE_P (clone) = 0;

  /* The base-class destructor is not virtual.  */
  if (name == base_dtor_identifier)
    {
      DECL_VIRTUAL_P (clone) = 0;
      DECL_VINDEX (clone) = NULL_TREE;
    }

  bool ctor_omit_inherited_parms_p = ctor_omit_inherited_parms (clone);
  if (ctor_omit_inherited_parms_p)
    gcc_assert (DECL_HAS_IN_CHARGE_PARM_P (clone));

  /* If there was an in-charge parameter, drop it from the function
     type.  */
  if (DECL_HAS_IN_CHARGE_PARM_P (clone))
    {
      tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
      tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
      /* Skip the `this' parameter.  */
      parmtypes = TREE_CHAIN (parmtypes);
      /* Skip the in-charge parameter.  */
      parmtypes = TREE_CHAIN (parmtypes);
      /* And the VTT parm, in a complete [cd]tor.  */
      if (DECL_HAS_VTT_PARM_P (fn)
	  && ! DECL_NEEDS_VTT_PARM_P (clone))
	parmtypes = TREE_CHAIN (parmtypes);
      if (ctor_omit_inherited_parms_p)
	{
	  /* If we're omitting inherited parms, that just leaves the VTT.  */
	  gcc_assert (DECL_NEEDS_VTT_PARM_P (clone));
	  parmtypes = tree_cons (NULL_TREE, vtt_parm_type, void_list_node);
	}
      TREE_TYPE (clone)
	= build_method_type_directly (basetype,
				      TREE_TYPE (TREE_TYPE (clone)),
				      parmtypes);
      TREE_TYPE (clone)
	= cp_build_type_attribute_variant (TREE_TYPE (clone),
					   TYPE_ATTRIBUTES (TREE_TYPE (fn)));
      TREE_TYPE (clone)
	= cxx_copy_lang_qualifiers (TREE_TYPE (clone), TREE_TYPE (fn));
    }

  /* Copy the function parameters.  */
  DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
  /* Remove the in-charge parameter.  */
  if (DECL_HAS_IN_CHARGE_PARM_P (clone))
    {
      DECL_CHAIN (DECL_ARGUMENTS (clone))
	= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
      DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
    }
  /* And the VTT parm, in a complete [cd]tor.  */
  if (DECL_HAS_VTT_PARM_P (fn))
    {
      if (DECL_NEEDS_VTT_PARM_P (clone))
	DECL_HAS_VTT_PARM_P (clone) = 1;
      else
	{
	  DECL_CHAIN (DECL_ARGUMENTS (clone))
	    = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
	  DECL_HAS_VTT_PARM_P (clone) = 0;
	}
    }

  /* A base constructor inheriting from a virtual base doesn't get the
     arguments.  */
  if (ctor_omit_inherited_parms_p)
    DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone))) = NULL_TREE;

  for (tree parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
    {
      DECL_CONTEXT (parms) = clone;
      cxx_dup_lang_specific_decl (parms);
    }

  /* Create the RTL for this function.  */
  SET_DECL_RTL (clone, NULL);
  rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);

  return clone;
}

/* Build the clones of FN, return the number of clones built.  These
   will be inserted onto DECL_CHAIN of FN.  */

unsigned
build_clones (tree fn)
{
  unsigned count = 0;

  if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
    {
      /* For each constructor, we need two variants: an in-charge version
	 and a not-in-charge version.  */
      build_clone (fn, complete_ctor_identifier);
      build_clone (fn, base_ctor_identifier);
      count += 2;
    }
  else
    {
      gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));

      /* For each destructor, we need three variants: an in-charge
	 version, a not-in-charge version, and an in-charge deleting
	 version.  We clone the deleting version first because that
	 means it will go second on the TYPE_FIELDS list -- and that
	 corresponds to the correct layout order in the virtual
	 function table.

	 For a non-virtual destructor, we do not build a deleting
	 destructor.  */
      if (DECL_VIRTUAL_P (fn))
	{
	  build_clone (fn, deleting_dtor_identifier);
	  count++;
	}
      build_clone (fn, complete_dtor_identifier);
      build_clone (fn, base_dtor_identifier);
      count += 2;
    }

  return count;
}

/* Produce declarations for all appropriate clones of FN.  If
   UPDATE_METHODS is true, the clones are added to the
   CLASSTYPE_MEMBER_VEC.  */

void
clone_function_decl (tree fn, bool update_methods)
{
  /* Avoid inappropriate cloning.  */
  if (DECL_CHAIN (fn)
      && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
    return;

  unsigned count = build_clones (fn);

  /* Note that this is an abstract function that is never emitted.  */
  DECL_ABSTRACT_P (fn) = true;

  if (update_methods)
    for (tree clone = fn; count--;)
      {
	clone = DECL_CHAIN (clone);
	add_method (DECL_CONTEXT (clone), clone, false);
      }
}

/* DECL is an in charge constructor, which is being defined. This will
   have had an in class declaration, from whence clones were
   declared. An out-of-class definition can specify additional default
   arguments. As it is the clones that are involved in overload
   resolution, we must propagate the information from the DECL to its
   clones.  */

void
adjust_clone_args (tree decl)
{
  tree clone;

  for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
       clone = DECL_CHAIN (clone))
    {
      tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
      tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
      tree decl_parms, clone_parms;

      /* Skip the 'this' parameter.  */
      orig_clone_parms = TREE_CHAIN (orig_clone_parms);
      orig_decl_parms = TREE_CHAIN (orig_decl_parms);

      if (DECL_HAS_IN_CHARGE_PARM_P (decl))
	orig_decl_parms = TREE_CHAIN (orig_decl_parms);
      if (DECL_HAS_VTT_PARM_P (decl))
	orig_decl_parms = TREE_CHAIN (orig_decl_parms);

      clone_parms = orig_clone_parms;
      if (DECL_HAS_VTT_PARM_P (clone))
	clone_parms = TREE_CHAIN (clone_parms);

      for (decl_parms = orig_decl_parms; decl_parms;
	   decl_parms = TREE_CHAIN (decl_parms),
	     clone_parms = TREE_CHAIN (clone_parms))
	{
	  if (clone_parms == void_list_node)
	    {
	      gcc_assert (decl_parms == clone_parms
			  || ctor_omit_inherited_parms (clone));
	      break;
	    }

	  gcc_checking_assert (same_type_p (TREE_VALUE (decl_parms),
					    TREE_VALUE (clone_parms)));

	  if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
	    {
	      /* A default parameter has been added. Adjust the
		 clone's parameters.  */
	      clone_parms = orig_decl_parms;

	      if (DECL_HAS_VTT_PARM_P (clone))
		{
		  clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
					   TREE_VALUE (orig_clone_parms),
					   clone_parms);
		  TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
		}

	      tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
	      tree type
		= build_method_type_directly (basetype,
					      TREE_TYPE (TREE_TYPE (clone)),
					      clone_parms);
	      if (tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone)))
		type = cp_build_type_attribute_variant (type, attrs);
	      type = cxx_copy_lang_qualifiers (type, TREE_TYPE (clone));
	      TREE_TYPE (clone) = type;

	      clone_parms = NULL_TREE;
	      break;
	    }
	}
      gcc_assert (!clone_parms || clone_parms == void_list_node);
    }
}

/* For each of the constructors and destructors in T, create an
   in-charge and not-in-charge variant.  */

static void
clone_constructors_and_destructors (tree t)
{
  /* While constructors can be via a using declaration, at this point
     we no longer need to know that.  */
  for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
    clone_function_decl (*iter, /*update_methods=*/true);

  if (tree dtor = CLASSTYPE_DESTRUCTOR (t))
    clone_function_decl (dtor, /*update_methods=*/true);
}

/* Deduce noexcept for a destructor DTOR.  */

void
deduce_noexcept_on_destructor (tree dtor)
{
  if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
    TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor),
						noexcept_deferred_spec);
}

/* Subroutine of set_one_vmethod_tm_attributes.  Search base classes
   of TYPE for virtual functions which FNDECL overrides.  Return a
   mask of the tm attributes found therein.  */

static int
look_for_tm_attr_overrides (tree type, tree fndecl)
{
  tree binfo = TYPE_BINFO (type);
  tree base_binfo;
  int ix, found = 0;

  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
    {
      tree o, basetype = BINFO_TYPE (base_binfo);

      if (!TYPE_POLYMORPHIC_P (basetype))
	continue;

      o = look_for_overrides_here (basetype, fndecl);
      if (o)
	{
	  if (lookup_attribute ("transaction_safe_dynamic",
				DECL_ATTRIBUTES (o)))
	    /* transaction_safe_dynamic is not inherited.  */;
	  else
	    found |= tm_attr_to_mask (find_tm_attribute
				      (TYPE_ATTRIBUTES (TREE_TYPE (o))));
	}
      else
	found |= look_for_tm_attr_overrides (basetype, fndecl);
    }

  return found;
}

/* Subroutine of set_method_tm_attributes.  Handle the checks and
   inheritance for one virtual method FNDECL.  */

static void
set_one_vmethod_tm_attributes (tree type, tree fndecl)
{
  tree tm_attr;
  int found, have;

  found = look_for_tm_attr_overrides (type, fndecl);

  /* If FNDECL doesn't actually override anything (i.e. T is the
     class that first declares FNDECL virtual), then we're done.  */
  if (found == 0)
    return;

  tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
  have = tm_attr_to_mask (tm_attr);

  /* Intel STM Language Extension 3.0, Section 4.2 table 4:
     tm_pure must match exactly, otherwise no weakening of
     tm_safe > tm_callable > nothing.  */
  /* ??? The tm_pure attribute didn't make the transition to the
     multivendor language spec.  */
  if (have == TM_ATTR_PURE)
    {
      if (found != TM_ATTR_PURE)
	{
	  found &= -found;
	  goto err_override;
	}
    }
  /* If the overridden function is tm_pure, then FNDECL must be.  */
  else if (found == TM_ATTR_PURE && tm_attr)
    goto err_override;
  /* Look for base class combinations that cannot be satisfied.  */
  else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
    {
      found &= ~TM_ATTR_PURE;
      found &= -found;
      error_at (DECL_SOURCE_LOCATION (fndecl),
		"method overrides both %<transaction_pure%> and %qE methods",
		tm_mask_to_attr (found));
    }
  /* If FNDECL did not declare an attribute, then inherit the most
     restrictive one.  */
  else if (tm_attr == NULL)
    {
      apply_tm_attr (fndecl, tm_mask_to_attr (least_bit_hwi (found)));
    }
  /* Otherwise validate that we're not weaker than a function
     that is being overridden.  */
  else
    {
      found &= -found;
      if (found <= TM_ATTR_CALLABLE && have > found)
	goto err_override;
    }
  return;

 err_override:
  error_at (DECL_SOURCE_LOCATION (fndecl),
	    "method declared %qE overriding %qE method",
	    tm_attr, tm_mask_to_attr (found));
}

/* For each of the methods in T, propagate a class-level tm attribute.  */

static void
set_method_tm_attributes (tree t)
{
  tree class_tm_attr, fndecl;

  /* Don't bother collecting tm attributes if transactional memory
     support is not enabled.  */
  if (!flag_tm)
    return;

  /* Process virtual methods first, as they inherit directly from the
     base virtual function and also require validation of new attributes.  */
  if (TYPE_CONTAINS_VPTR_P (t))
    {
      tree vchain;
      for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
	   vchain = TREE_CHAIN (vchain))
	{
	  fndecl = BV_FN (vchain);
	  if (DECL_THUNK_P (fndecl))
	    fndecl = THUNK_TARGET (fndecl);
	  set_one_vmethod_tm_attributes (t, fndecl);
	}
    }

  /* If the class doesn't have an attribute, nothing more to do.  */
  class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
  if (class_tm_attr == NULL)
    return;

  /* Any method that does not yet have a tm attribute inherits
     the one from the class.  */
  for (fndecl = TYPE_FIELDS (t); fndecl; fndecl = DECL_CHAIN (fndecl))
    if (DECL_DECLARES_FUNCTION_P (fndecl)
	&& !find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
      apply_tm_attr (fndecl, class_tm_attr);
}

/* Returns true if FN is a default constructor.  */

bool
default_ctor_p (const_tree fn)
{
  return (DECL_CONSTRUCTOR_P (fn)
	  && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)));
}

/* Returns true iff class T has a user-provided constructor that can be called
   with more than zero arguments.  */

bool
type_has_user_nondefault_constructor (tree t)
{
  if (!TYPE_HAS_USER_CONSTRUCTOR (t))
    return false;

  for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
    {
      tree fn = *iter;
      if (user_provided_p (fn)
	  && (TREE_CODE (fn) == TEMPLATE_DECL
	      || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
		  != NULL_TREE)))
	return true;
    }

  return false;
}

/* Returns the defaulted constructor if T has one. Otherwise, returns
   NULL_TREE.  */

tree
in_class_defaulted_default_constructor (tree t)
{
  if (!TYPE_HAS_USER_CONSTRUCTOR (t))
    return NULL_TREE;

  for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
    {
      tree fn = *iter;

      if (DECL_DEFAULTED_IN_CLASS_P (fn)
	  && default_ctor_p (fn))
	return fn;
    }

  return NULL_TREE;
}

/* Returns true iff FN is a user-provided function, i.e. user-declared
   and not defaulted at its first declaration.  */

bool
user_provided_p (tree fn)
{
  fn = STRIP_TEMPLATE (fn);
  return (!DECL_ARTIFICIAL (fn)
	  && !(DECL_INITIALIZED_IN_CLASS_P (fn)
	       && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
}

/* Returns true iff class T has a user-provided constructor.  */

bool
type_has_user_provided_constructor (tree t)
{
  if (!CLASS_TYPE_P (t))
    return false;

  if (!TYPE_HAS_USER_CONSTRUCTOR (t))
    return false;

  for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
    if (user_provided_p (*iter))
      return true;

  return false;
}

/* Returns true iff class T has a user-provided or explicit constructor.  */

bool
type_has_user_provided_or_explicit_constructor (tree t)
{
  if (!CLASS_TYPE_P (t))
    return false;

  if (!TYPE_HAS_USER_CONSTRUCTOR (t))
    return false;

  for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
    {
      tree fn = *iter;
      if (user_provided_p (fn) || DECL_NONCONVERTING_P (fn))
	return true;
    }

  return false;
}

/* Returns true iff class T has a non-user-provided (i.e. implicitly
   declared or explicitly defaulted in the class body) default
   constructor.  */

bool
type_has_non_user_provided_default_constructor (tree t)
{
  if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (t))
    return false;
  if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
    return true;

  for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
    {
      tree fn = *iter;
      if (TREE_CODE (fn) == FUNCTION_DECL
	  && default_ctor_p (fn)
	  && !user_provided_p (fn))
	return true;
    }

  return false;
}

/* TYPE is being used as a virtual base, and has a non-trivial move
   assignment.  Return true if this is due to there being a user-provided
   move assignment in TYPE or one of its subobjects; if there isn't, then
   multiple move assignment can't cause any harm.  */

bool
vbase_has_user_provided_move_assign (tree type)
{
  /* Does the type itself have a user-provided move assignment operator?  */
  if (!CLASSTYPE_LAZY_MOVE_ASSIGN (type))
    for (ovl_iterator iter (get_class_binding_direct
			    (type, assign_op_identifier));
	 iter; ++iter)
      if (user_provided_p (*iter) && move_fn_p (*iter))
	return true;

  /* Do any of its bases?  */
  tree binfo = TYPE_BINFO (type);
  tree base_binfo;
  for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
      return true;

  /* Or non-static data members?  */
  for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    {
      if (TREE_CODE (field) == FIELD_DECL
	  && CLASS_TYPE_P (TREE_TYPE (field))
	  && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
	return true;
    }

  /* Seems not.  */
  return false;
}

/* If default-initialization leaves part of TYPE uninitialized, returns
   a DECL for the field or TYPE itself (DR 253).  */

tree
default_init_uninitialized_part (tree type)
{
  tree t, r, binfo;
  int i;

  type = strip_array_types (type);
  if (!CLASS_TYPE_P (type))
    return type;
  if (!type_has_non_user_provided_default_constructor (type))
    return NULL_TREE;
  for (binfo = TYPE_BINFO (type), i = 0;
       BINFO_BASE_ITERATE (binfo, i, t); ++i)
    {
      r = default_init_uninitialized_part (BINFO_TYPE (t));
      if (r)
	return r;
    }
  for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
    if (TREE_CODE (t) == FIELD_DECL
	&& !DECL_ARTIFICIAL (t)
	&& !DECL_INITIAL (t))
      {
	r = default_init_uninitialized_part (TREE_TYPE (t));
	if (r)
	  return DECL_P (r) ? r : t;
      }

  return NULL_TREE;
}

/* Returns true iff for class T, a trivial synthesized default constructor
   would be constexpr.  */

bool
trivial_default_constructor_is_constexpr (tree t)
{
  /* A defaulted trivial default constructor is constexpr
     if there is nothing to initialize.  */
  gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
  /* A class with a vptr doesn't have a trivial default ctor.
     In C++20, a class can have transient uninitialized members, e.g.:

       struct S { int i; constexpr S() = default; };

     should work.  */
  return (cxx_dialect >= cxx2a
	  || is_really_empty_class (t, /*ignore_vptr*/true));
}

/* Returns true iff class T has a constexpr default constructor.  */

bool
type_has_constexpr_default_constructor (tree t)
{
  tree fns;

  if (!CLASS_TYPE_P (t))
    {
      /* The caller should have stripped an enclosing array.  */
      gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
      return false;
    }
  if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
    {
      if (!TYPE_HAS_COMPLEX_DFLT (t))
	return trivial_default_constructor_is_constexpr (t);
      /* Non-trivial, we need to check subobject constructors.  */
      lazily_declare_fn (sfk_constructor, t);
    }
  fns = locate_ctor (t);
  return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
}

/* Returns true iff class T has a constexpr default constructor or has an
   implicitly declared default constructor that we can't tell if it's constexpr
   without forcing a lazy declaration (which might cause undesired
   instantiations).  */

static bool
type_maybe_constexpr_default_constructor (tree t)
{
  if (CLASS_TYPE_P (t) && CLASSTYPE_LAZY_DEFAULT_CTOR (t)
      && TYPE_HAS_COMPLEX_DFLT (t))
    /* Assume it's constexpr.  */
    return true;
  return type_has_constexpr_default_constructor (t);
}

/* Returns true iff class T has a constexpr destructor.  */

bool
type_has_constexpr_destructor (tree t)
{
  tree fns;

  if (CLASSTYPE_LAZY_DESTRUCTOR (t))
    /* Non-trivial, we need to check subobject destructors.  */
    lazily_declare_fn (sfk_destructor, t);
  fns = CLASSTYPE_DESTRUCTOR (t);
  return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
}

/* Returns true iff class T has a constexpr destructor or has an
   implicitly declared destructor that we can't tell if it's constexpr
   without forcing a lazy declaration (which might cause undesired
   instantiations).  */

static bool
type_maybe_constexpr_destructor (tree t)
{
  if (CLASS_TYPE_P (t) && CLASSTYPE_LAZY_DESTRUCTOR (t))
    /* Assume it's constexpr.  */
    return true;
  return type_has_constexpr_destructor (t);
}

/* Returns true iff class TYPE has a virtual destructor.  */

bool
type_has_virtual_destructor (tree type)
{
  tree dtor;

  if (!CLASS_TYPE_P (type))
    return false;

  gcc_assert (COMPLETE_TYPE_P (type));
  dtor = CLASSTYPE_DESTRUCTOR (type);
  return (dtor && DECL_VIRTUAL_P (dtor));
}

/* Returns true iff T, a class, has a move-assignment or
   move-constructor.  Does not lazily declare either.
   If USER_P is false, any move function will do.  If it is true, the
   move function must be user-declared.

   Note that user-declared here is different from "user-provided",
   which doesn't include functions that are defaulted in the
   class.  */

bool
classtype_has_move_assign_or_move_ctor_p (tree t, bool user_p)
{
  gcc_assert (user_p
	      || (!CLASSTYPE_LAZY_MOVE_CTOR (t)
		  && !CLASSTYPE_LAZY_MOVE_ASSIGN (t)));

  if (!CLASSTYPE_LAZY_MOVE_CTOR (t))
    for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
      if ((!user_p || !DECL_ARTIFICIAL (*iter)) && move_fn_p (*iter))
	return true;

  if (!CLASSTYPE_LAZY_MOVE_ASSIGN (t))
    for (ovl_iterator iter (get_class_binding_direct
			    (t, assign_op_identifier));
	 iter; ++iter)
      if ((!user_p || !DECL_ARTIFICIAL (*iter))
	  && DECL_CONTEXT (*iter) == t
	  && move_fn_p (*iter))
	return true;
  
  return false;
}

/* True iff T has a move constructor that is not deleted.  */

bool
classtype_has_non_deleted_move_ctor (tree t)
{
  if (CLASSTYPE_LAZY_MOVE_CTOR (t))
    lazily_declare_fn (sfk_move_constructor, t);
  for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
    if (move_fn_p (*iter) && !DECL_DELETED_FN (*iter))
      return true;
  return false;
}

/* True iff T has a copy constructor that is not deleted.  */

bool
classtype_has_non_deleted_copy_ctor (tree t)
{
  if (CLASSTYPE_LAZY_COPY_CTOR (t))
    lazily_declare_fn (sfk_copy_constructor, t);
  for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
    if (copy_fn_p (*iter) && !DECL_DELETED_FN (*iter))
      return true;
  return false;
}

/* If T, a class, has a user-provided copy constructor, copy assignment
   operator, or destructor, returns that function.  Otherwise, null.  */

tree
classtype_has_depr_implicit_copy (tree t)
{
  if (!CLASSTYPE_LAZY_COPY_CTOR (t))
    for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
      {
	tree fn = *iter;
	if (user_provided_p (fn) && copy_fn_p (fn))
	  return fn;
      }

  if (!CLASSTYPE_LAZY_COPY_ASSIGN (t))
    for (ovl_iterator iter (get_class_binding_direct
			    (t, assign_op_identifier));
	 iter; ++iter)
      {
	tree fn = *iter;
	if (user_provided_p (fn) && copy_fn_p (fn))
	  return fn;
      }

  if (!CLASSTYPE_LAZY_DESTRUCTOR (t))
    {
      tree fn = CLASSTYPE_DESTRUCTOR (t);
      if (user_provided_p (fn))
	return fn;
    }

  return NULL_TREE;
}

/* True iff T has a member or friend declaration of operator OP.  */

bool
classtype_has_op (tree t, tree_code op)
{
  tree name = ovl_op_identifier (op);
  if (get_class_binding (t, name))
    return true;
  for (tree f = DECL_FRIENDLIST (TYPE_MAIN_DECL (t)); f; f = TREE_CHAIN (f))
    if (FRIEND_NAME (f) == name)
      return true;
  return false;
}


/* If T has a defaulted member or friend declaration of OP, return it.  */

tree
classtype_has_defaulted_op (tree t, tree_code op)
{
  tree name = ovl_op_identifier (op);
  for (ovl_iterator oi (get_class_binding (t, name)); oi; ++oi)
    {
      tree fn = *oi;
      if (DECL_DEFAULTED_FN (fn))
	return fn;
    }
  for (tree f = DECL_FRIENDLIST (TYPE_MAIN_DECL (t)); f; f = TREE_CHAIN (f))
    if (FRIEND_NAME (f) == name)
      for (tree l = FRIEND_DECLS (f); l; l = TREE_CHAIN (l))
	{
	  tree fn = TREE_VALUE (l);
	  if (DECL_DEFAULTED_FN (fn))
	    return fn;
	}
  return NULL_TREE;
}

/* Nonzero if we need to build up a constructor call when initializing an
   object of this class, either because it has a user-declared constructor
   or because it doesn't have a default constructor (so we need to give an
   error if no initializer is provided).  Use TYPE_NEEDS_CONSTRUCTING when
   what you care about is whether or not an object can be produced by a
   constructor (e.g. so we don't set TREE_READONLY on const variables of
   such type); use this function when what you care about is whether or not
   to try to call a constructor to create an object.  The latter case is
   the former plus some cases of constructors that cannot be called.  */

bool
type_build_ctor_call (tree t)
{
  tree inner;
  if (TYPE_NEEDS_CONSTRUCTING (t))
    return true;
  inner = strip_array_types (t);
  if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
    return false;
  if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
    return true;
  if (cxx_dialect < cxx11)
    return false;
  /* A user-declared constructor might be private, and a constructor might
     be trivial but deleted.  */
  for (ovl_iterator iter (get_class_binding (inner, complete_ctor_identifier));
       iter; ++iter)
    {
      tree fn = *iter;
      if (!DECL_ARTIFICIAL (fn)
	  || TREE_DEPRECATED (fn)
	  || DECL_DELETED_FN (fn))
	return true;
    }
  return false;
}

/* Like type_build_ctor_call, but for destructors.  */

bool
type_build_dtor_call (tree t)
{
  tree inner;
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
    return true;
  inner = strip_array_types (t);
  if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
      || !COMPLETE_TYPE_P (inner))
    return false;
  if (cxx_dialect < cxx11)
    return false;
  /* A user-declared destructor might be private, and a destructor might
     be trivial but deleted.  */
  for (ovl_iterator iter (get_class_binding (inner, complete_dtor_identifier));
       iter; ++iter)
    {
      tree fn = *iter;
      if (!DECL_ARTIFICIAL (fn)
	  || TREE_DEPRECATED (fn)
	  || DECL_DELETED_FN (fn))
	return true;
    }
  return false;
}

/* Remove all zero-width bit-fields from T.  */

static void
remove_zero_width_bit_fields (tree t)
{
  tree *fieldsp;

  fieldsp = &TYPE_FIELDS (t);
  while (*fieldsp)
    {
      if (TREE_CODE (*fieldsp) == FIELD_DECL
	  && DECL_C_BIT_FIELD (*fieldsp)
	  /* We should not be confused by the fact that grokbitfield
	     temporarily sets the width of the bit field into
	     DECL_BIT_FIELD_REPRESENTATIVE (*fieldsp).
	     check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
	     to that width.  */
	  && (DECL_SIZE (*fieldsp) == NULL_TREE
	      || integer_zerop (DECL_SIZE (*fieldsp))))
	*fieldsp = DECL_CHAIN (*fieldsp);
      else
	fieldsp = &DECL_CHAIN (*fieldsp);
    }
}

/* Returns TRUE iff we need a cookie when dynamically allocating an
   array whose elements have the indicated class TYPE.  */

static bool
type_requires_array_cookie (tree type)
{
  tree fns;
  bool has_two_argument_delete_p = false;

  gcc_assert (CLASS_TYPE_P (type));

  /* If there's a non-trivial destructor, we need a cookie.  In order
     to iterate through the array calling the destructor for each
     element, we'll have to know how many elements there are.  */
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
    return true;

  /* If the usual deallocation function is a two-argument whose second
     argument is of type `size_t', then we have to pass the size of
     the array to the deallocation function, so we will need to store
     a cookie.  */
  fns = lookup_fnfields (TYPE_BINFO (type),
			 ovl_op_identifier (false, VEC_DELETE_EXPR),
			 /*protect=*/0);
  /* If there are no `operator []' members, or the lookup is
     ambiguous, then we don't need a cookie.  */
  if (!fns || fns == error_mark_node)
    return false;
  /* Loop through all of the functions.  */
  for (lkp_iterator iter (BASELINK_FUNCTIONS (fns)); iter; ++iter)
    {
      tree fn = *iter;

      /* See if this function is a one-argument delete function.  If
	 it is, then it will be the usual deallocation function.  */
      tree second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
      if (second_parm == void_list_node)
	return false;
      /* Do not consider this function if its second argument is an
	 ellipsis.  */
      if (!second_parm)
	continue;
      /* Otherwise, if we have a two-argument function and the second
	 argument is `size_t', it will be the usual deallocation
	 function -- unless there is one-argument function, too.  */
      if (TREE_CHAIN (second_parm) == void_list_node
	  && same_type_p (TREE_VALUE (second_parm), size_type_node))
	has_two_argument_delete_p = true;
    }

  return has_two_argument_delete_p;
}

/* Finish computing the `literal type' property of class type T.

   At this point, we have already processed base classes and
   non-static data members.  We need to check whether the copy
   constructor is trivial, the destructor is trivial, and there
   is a trivial default constructor or at least one constexpr
   constructor other than the copy constructor.  */

static void
finalize_literal_type_property (tree t)
{
  tree fn;

  if (cxx_dialect < cxx11)
    CLASSTYPE_LITERAL_P (t) = false;
  else if (CLASSTYPE_LITERAL_P (t)
	   && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
	   && (cxx_dialect < cxx2a || !type_maybe_constexpr_destructor (t)))
    CLASSTYPE_LITERAL_P (t) = false;
  else if (CLASSTYPE_LITERAL_P (t) && LAMBDA_TYPE_P (t))
    CLASSTYPE_LITERAL_P (t) = (cxx_dialect >= cxx17);
  else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
	   && CLASSTYPE_NON_AGGREGATE (t)
	   && !TYPE_HAS_CONSTEXPR_CTOR (t))
    CLASSTYPE_LITERAL_P (t) = false;

  /* C++14 DR 1684 removed this restriction.  */
  if (cxx_dialect < cxx14
      && !CLASSTYPE_LITERAL_P (t) && !LAMBDA_TYPE_P (t))
    for (fn = TYPE_FIELDS (t); fn; fn = DECL_CHAIN (fn))
      if (TREE_CODE (fn) == FUNCTION_DECL
	  && DECL_DECLARED_CONSTEXPR_P (fn)
	  && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
	  && !DECL_CONSTRUCTOR_P (fn))
	{
	  DECL_DECLARED_CONSTEXPR_P (fn) = false;
	  if (!DECL_GENERATED_P (fn))
	    {
	      auto_diagnostic_group d;
	      if (pedwarn (DECL_SOURCE_LOCATION (fn), OPT_Wpedantic,
			     "enclosing class of %<constexpr%> non-static "
			     "member function %q+#D is not a literal type", fn))
		explain_non_literal_class (t);
	    }
	}
}

/* T is a non-literal type used in a context which requires a constant
   expression.  Explain why it isn't literal.  */

void
explain_non_literal_class (tree t)
{
  static hash_set<tree> *diagnosed;

  if (!CLASS_TYPE_P (t))
    return;
  t = TYPE_MAIN_VARIANT (t);

  if (diagnosed == NULL)
    diagnosed = new hash_set<tree>;
  if (diagnosed->add (t))
    /* Already explained.  */
    return;

  auto_diagnostic_group d;
  inform (UNKNOWN_LOCATION, "%q+T is not literal because:", t);
  if (cxx_dialect < cxx17 && LAMBDA_TYPE_P (t))
    inform (UNKNOWN_LOCATION,
	    "  %qT is a closure type, which is only literal in "
	    "C++17 and later", t);
  else if (cxx_dialect < cxx2a && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
    inform (UNKNOWN_LOCATION, "  %q+T has a non-trivial destructor", t);
  else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
	   && !type_maybe_constexpr_destructor (t))
    inform (UNKNOWN_LOCATION, "  %q+T does not have %<constexpr%> destructor",
	    t);
  else if (CLASSTYPE_NON_AGGREGATE (t)
	   && !TYPE_HAS_TRIVIAL_DFLT (t)
	   && !LAMBDA_TYPE_P (t)
	   && !TYPE_HAS_CONSTEXPR_CTOR (t))
    {
      inform (UNKNOWN_LOCATION,
	      "  %q+T is not an aggregate, does not have a trivial "
	      "default constructor, and has no %<constexpr%> constructor that "
	      "is not a copy or move constructor", t);
      if (type_has_non_user_provided_default_constructor (t))
	/* Note that we can't simply call locate_ctor because when the
	   constructor is deleted it just returns NULL_TREE.  */
	for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
	  {
	    tree fn = *iter;
	    tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));

	    parms = skip_artificial_parms_for (fn, parms);

	    if (sufficient_parms_p (parms))
	      {
		if (DECL_DELETED_FN (fn))
		  maybe_explain_implicit_delete (fn);
		else
		  explain_invalid_constexpr_fn (fn);
		break;
	      }
	}
    }
  else
    {
      tree binfo, base_binfo, field; int i;
      for (binfo = TYPE_BINFO (t), i = 0;
	   BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
	{
	  tree basetype = TREE_TYPE (base_binfo);
	  if (!CLASSTYPE_LITERAL_P (basetype))
	    {
	      inform (UNKNOWN_LOCATION,
		      "  base class %qT of %q+T is non-literal",
		      basetype, t);
	      explain_non_literal_class (basetype);
	      return;
	    }
	}
      for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
	{
	  tree ftype;
	  if (TREE_CODE (field) != FIELD_DECL)
	    continue;
	  ftype = TREE_TYPE (field);
	  if (!literal_type_p (ftype))
	    {
	      inform (DECL_SOURCE_LOCATION (field),
		      "  non-static data member %qD has non-literal type",
		      field);
	      if (CLASS_TYPE_P (ftype))
		explain_non_literal_class (ftype);
	    }
	  if (CP_TYPE_VOLATILE_P (ftype))
	    inform (DECL_SOURCE_LOCATION (field),
		    "  non-static data member %qD has volatile type", field);
	}
    }
}

/* Check the validity of the bases and members declared in T.  Add any
   implicitly-generated functions (like copy-constructors and
   assignment operators).  Compute various flag bits (like
   CLASSTYPE_NON_LAYOUT_POD_T) for T.  This routine works purely at the C++
   level: i.e., independently of the ABI in use.  */

static void
check_bases_and_members (tree t)
{
  /* Nonzero if the implicitly generated copy constructor should take
     a non-const reference argument.  */
  int cant_have_const_ctor;
  /* Nonzero if the implicitly generated assignment operator
     should take a non-const reference argument.  */
  int no_const_asn_ref;
  tree access_decls;
  bool saved_complex_asn_ref;
  bool saved_nontrivial_dtor;
  tree fn;

  /* By default, we use const reference arguments and generate default
     constructors.  */
  cant_have_const_ctor = 0;
  no_const_asn_ref = 0;

  /* Check all the base-classes and set FMEM members to point to arrays
     of potential interest.  */
  check_bases (t, &cant_have_const_ctor, &no_const_asn_ref);

  /* Deduce noexcept on destructor.  This needs to happen after we've set
     triviality flags appropriately for our bases.  */
  if (cxx_dialect >= cxx11)
    if (tree dtor = CLASSTYPE_DESTRUCTOR (t))
      deduce_noexcept_on_destructor (dtor);

  /* Check all the method declarations.  */
  check_methods (t);

  /* Save the initial values of these flags which only indicate whether
     or not the class has user-provided functions.  As we analyze the
     bases and members we can set these flags for other reasons.  */
  saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
  saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);

  /* Check all the data member declarations.  We cannot call
     check_field_decls until we have called check_bases check_methods,
     as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
     being set appropriately.  */
  check_field_decls (t, &access_decls,
		     &cant_have_const_ctor,
		     &no_const_asn_ref);

  /* A nearly-empty class has to be vptr-containing; a nearly empty
     class contains just a vptr.  */
  if (!TYPE_CONTAINS_VPTR_P (t))
    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;

  /* Do some bookkeeping that will guide the generation of implicitly
     declared member functions.  */
  TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
  TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
  /* We need to call a constructor for this class if it has a
     user-provided constructor, or if the default constructor is going
     to initialize the vptr.  (This is not an if-and-only-if;
     TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
     themselves need constructing.)  */
  TYPE_NEEDS_CONSTRUCTING (t)
    |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
  /* [dcl.init.aggr]

     An aggregate is an array or a class with no user-provided
     constructors ... and no virtual functions.  

     Again, other conditions for being an aggregate are checked
     elsewhere.  */
  CLASSTYPE_NON_AGGREGATE (t)
    |= ((cxx_dialect < cxx2a
	 ? type_has_user_provided_or_explicit_constructor (t)
	 : TYPE_HAS_USER_CONSTRUCTOR (t))
	|| TYPE_POLYMORPHIC_P (t));
  /* This is the C++98/03 definition of POD; it changed in C++0x, but we
     retain the old definition internally for ABI reasons.  */
  CLASSTYPE_NON_LAYOUT_POD_P (t)
    |= (CLASSTYPE_NON_AGGREGATE (t)
	|| saved_nontrivial_dtor || saved_complex_asn_ref);
  CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
  TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
  TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
  TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);

  /* If the only explicitly declared default constructor is user-provided,
     set TYPE_HAS_COMPLEX_DFLT.  */
  if (!TYPE_HAS_COMPLEX_DFLT (t)
      && TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
      && !type_has_non_user_provided_default_constructor (t))
    TYPE_HAS_COMPLEX_DFLT (t) = true;

  /* Warn if a public base of a polymorphic type has an accessible
     non-virtual destructor.  It is only now that we know the class is
     polymorphic.  Although a polymorphic base will have a already
     been diagnosed during its definition, we warn on use too.  */
  if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
    {
      tree binfo = TYPE_BINFO (t);
      vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
      tree base_binfo;
      unsigned i;
      
      for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
	{
	  tree basetype = TREE_TYPE (base_binfo);

	  if ((*accesses)[i] == access_public_node
	      && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
	      && accessible_nvdtor_p (basetype))
	    warning (OPT_Wnon_virtual_dtor,
		     "base class %q#T has accessible non-virtual destructor",
		     basetype);
	}
    }
  
  /* If the class has no user-declared constructor, but does have
     non-static const or reference data members that can never be
     initialized, issue a warning.  */
  if (warn_uninitialized
      /* Classes with user-declared constructors are presumed to
	 initialize these members.  */
      && !TYPE_HAS_USER_CONSTRUCTOR (t)
      /* Aggregates can be initialized with brace-enclosed
	 initializers.  */
      && CLASSTYPE_NON_AGGREGATE (t))
    {
      tree field;

      for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
	{
	  tree type;

	  if (TREE_CODE (field) != FIELD_DECL
	      || DECL_INITIAL (field) != NULL_TREE)
	    continue;

	  type = TREE_TYPE (field);
	  if (TYPE_REF_P (type))
	    warning_at (DECL_SOURCE_LOCATION (field),
			OPT_Wuninitialized, "non-static reference %q#D "
			"in class without a constructor", field);
	  else if (CP_TYPE_CONST_P (type)
		   && (!CLASS_TYPE_P (type)
		       || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
	    warning_at (DECL_SOURCE_LOCATION (field),
			OPT_Wuninitialized, "non-static const member %q#D "
			"in class without a constructor", field);
	}
    }

  /* Synthesize any needed methods.  */
  add_implicitly_declared_members (t, &access_decls,
				   cant_have_const_ctor,
				   no_const_asn_ref);

  /* Check defaulted declarations here so we have cant_have_const_ctor
     and don't need to worry about clones.  */
  for (fn = TYPE_FIELDS (t); fn; fn = DECL_CHAIN (fn))
    if (DECL_DECLARES_FUNCTION_P (fn)
	&& !DECL_ARTIFICIAL (fn)
	&& DECL_DEFAULTED_IN_CLASS_P (fn))
      {
	int copy = copy_fn_p (fn);
	if (copy > 0)
	  {
	    bool imp_const_p
	      = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
		 : !no_const_asn_ref);
	    bool fn_const_p = (copy == 2);

	    if (fn_const_p && !imp_const_p)
	      /* If the function is defaulted outside the class, we just
		 give the synthesis error.  Core Issue #1331 says this is
		 no longer ill-formed, it is defined as deleted instead.  */
	      DECL_DELETED_FN (fn) = true;
	  }
	defaulted_late_check (fn);
      }

  if (LAMBDA_TYPE_P (t))
    {
      /* "This class type is not an aggregate."  */
      CLASSTYPE_NON_AGGREGATE (t) = 1;
    }

  /* Compute the 'literal type' property before we
     do anything with non-static member functions.  */
  finalize_literal_type_property (t);

  /* Create the in-charge and not-in-charge variants of constructors
     and destructors.  */
  clone_constructors_and_destructors (t);

  /* Process the using-declarations.  */
  for (; access_decls; access_decls = TREE_CHAIN (access_decls))
    handle_using_decl (TREE_VALUE (access_decls), t);

  /* Figure out whether or not we will need a cookie when dynamically
     allocating an array of this type.  */
  LANG_TYPE_CLASS_CHECK (t)->vec_new_uses_cookie
    = type_requires_array_cookie (t);
}

/* If T needs a pointer to its virtual function table, set TYPE_VFIELD
   accordingly.  If a new vfield was created (because T doesn't have a
   primary base class), then the newly created field is returned.  It
   is not added to the TYPE_FIELDS list; it is the caller's
   responsibility to do that.  Accumulate declared virtual functions
   on VIRTUALS_P.  */

static tree
create_vtable_ptr (tree t, tree* virtuals_p)
{
  tree fn;

  /* Collect the virtual functions declared in T.  */
  for (fn = TYPE_FIELDS (t); fn; fn = DECL_CHAIN (fn))
    if (TREE_CODE (fn) == FUNCTION_DECL
	&& DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
	&& TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
      {
	tree new_virtual = make_node (TREE_LIST);

	BV_FN (new_virtual) = fn;
	BV_DELTA (new_virtual) = integer_zero_node;
	BV_VCALL_INDEX (new_virtual) = NULL_TREE;

	TREE_CHAIN (new_virtual) = *virtuals_p;
	*virtuals_p = new_virtual;
      }

  /* If we couldn't find an appropriate base class, create a new field
     here.  Even if there weren't any new virtual functions, we might need a
     new virtual function table if we're supposed to include vptrs in
     all classes that need them.  */
  if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
    {
      /* We build this decl with vtbl_ptr_type_node, which is a
	 `vtable_entry_type*'.  It might seem more precise to use
	 `vtable_entry_type (*)[N]' where N is the number of virtual
	 functions.  However, that would require the vtable pointer in
	 base classes to have a different type than the vtable pointer
	 in derived classes.  We could make that happen, but that
	 still wouldn't solve all the problems.  In particular, the
	 type-based alias analysis code would decide that assignments
	 to the base class vtable pointer can't alias assignments to
	 the derived class vtable pointer, since they have different
	 types.  Thus, in a derived class destructor, where the base
	 class constructor was inlined, we could generate bad code for
	 setting up the vtable pointer.

	 Therefore, we use one type for all vtable pointers.  We still
	 use a type-correct type; it's just doesn't indicate the array
	 bounds.  That's better than using `void*' or some such; it's
	 cleaner, and it let's the alias analysis code know that these
	 stores cannot alias stores to void*!  */
      tree field;

      field = build_decl (input_location, 
			  FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
      DECL_VIRTUAL_P (field) = 1;
      DECL_ARTIFICIAL (field) = 1;
      DECL_FIELD_CONTEXT (field) = t;
      DECL_FCONTEXT (field) = t;
      if (TYPE_PACKED (t))
	DECL_PACKED (field) = 1;

      TYPE_VFIELD (t) = field;

      /* This class is non-empty.  */
      CLASSTYPE_EMPTY_P (t) = 0;

      return field;
    }

  return NULL_TREE;
}

/* Add OFFSET to all base types of BINFO which is a base in the
   hierarchy dominated by T.

   OFFSET, which is a type offset, is number of bytes.  */

static void
propagate_binfo_offsets (tree binfo, tree offset)
{
  int i;
  tree primary_binfo;
  tree base_binfo;

  /* Update BINFO's offset.  */
  BINFO_OFFSET (binfo)
    = fold_convert (sizetype,
	       size_binop (PLUS_EXPR,
			   fold_convert (ssizetype, BINFO_OFFSET (binfo)),
			   offset));

  /* Find the primary base class.  */
  primary_binfo = get_primary_binfo (binfo);

  if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
    propagate_binfo_offsets (primary_binfo, offset);

  /* Scan all of the bases, pushing the BINFO_OFFSET adjust
     downwards.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    {
      /* Don't do the primary base twice.  */
      if (base_binfo == primary_binfo)
	continue;

      if (BINFO_VIRTUAL_P (base_binfo))
	continue;

      propagate_binfo_offsets (base_binfo, offset);
    }
}

/* Set BINFO_OFFSET for all of the virtual bases for RLI->T.  Update
   TYPE_ALIGN and TYPE_SIZE for T.  OFFSETS gives the location of
   empty subobjects of T.  */

static void
layout_virtual_bases (record_layout_info rli, splay_tree offsets)
{
  tree vbase;
  tree t = rli->t;
  tree *next_field;

  if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
    return;

  /* Find the last field.  The artificial fields created for virtual
     bases will go after the last extant field to date.  */
  next_field = &TYPE_FIELDS (t);
  while (*next_field)
    next_field = &DECL_CHAIN (*next_field);

  /* Go through the virtual bases, allocating space for each virtual
     base that is not already a primary base class.  These are
     allocated in inheritance graph order.  */
  for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
    {
      if (!BINFO_VIRTUAL_P (vbase))
	continue;

      if (!BINFO_PRIMARY_P (vbase))
	{
	  /* This virtual base is not a primary base of any class in the
	     hierarchy, so we have to add space for it.  */
	  next_field = build_base_field (rli, vbase,
					 access_private_node,
					 offsets, next_field);
	}
    }
}

/* Returns the offset of the byte just past the end of the base class
   BINFO.  */

static tree
end_of_base (tree binfo)
{
  tree size;

  if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
    size = TYPE_SIZE_UNIT (char_type_node);
  else if (is_empty_class (BINFO_TYPE (binfo)))
    /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
       allocate some space for it. It cannot have virtual bases, so
       TYPE_SIZE_UNIT is fine.  */
    size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
  else
    size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));

  return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
}

/* Returns the offset of the byte just past the end of the base class or empty
   data member with the highest offset in T.  If INCLUDE_VIRTUALS_P is zero,
   then only non-virtual bases are included.  */

static tree
end_of_class (tree t, bool include_virtuals_p)
{
  tree result = size_zero_node;
  vec<tree, va_gc> *vbases;
  tree binfo;
  tree base_binfo;
  tree offset;
  int i;

  for (binfo = TYPE_BINFO (t), i = 0;
       BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    {
      if (!include_virtuals_p
	  && BINFO_VIRTUAL_P (base_binfo)
	  && (!BINFO_PRIMARY_P (base_binfo)
	      || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
	continue;

      offset = end_of_base (base_binfo);
      if (tree_int_cst_lt (result, offset))
	result = offset;
    }

  /* Also consider empty data members.  */
  for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL
	&& !DECL_ARTIFICIAL (field)
	&& field_poverlapping_p (field)
	&& is_empty_class (TREE_TYPE (field)))
      {
	/* Update sizeof(C) to max (sizeof(C), offset(D)+sizeof(D)) */
	offset = size_binop (PLUS_EXPR, DECL_FIELD_OFFSET (field),
			     TYPE_SIZE_UNIT (TREE_TYPE (field)));
	if (tree_int_cst_lt (result, offset))
	  result = offset;
      }

  if (include_virtuals_p)
    for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
	 vec_safe_iterate (vbases, i, &base_binfo); i++)
      {
	offset = end_of_base (base_binfo);
	if (tree_int_cst_lt (result, offset))
	  result = offset;
      }

  return result;
}

/* Warn about bases of T that are inaccessible because they are
   ambiguous.  For example:

     struct S {};
     struct T : public S {};
     struct U : public S, public T {};

   Here, `(S*) new U' is not allowed because there are two `S'
   subobjects of U.  */

static void
maybe_warn_about_inaccessible_bases (tree t)
{
  int i;
  vec<tree, va_gc> *vbases;
  tree basetype;
  tree binfo;
  tree base_binfo;

  /* If not checking for warning then return early.  */
  if (!warn_inaccessible_base)
    return;

  /* If there are no repeated bases, nothing can be ambiguous.  */
  if (!CLASSTYPE_REPEATED_BASE_P (t))
    return;

  /* Check direct bases.  */
  for (binfo = TYPE_BINFO (t), i = 0;
       BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    {
      basetype = BINFO_TYPE (base_binfo);

      if (!uniquely_derived_from_p (basetype, t))
	warning (OPT_Winaccessible_base, "direct base %qT inaccessible "
		 "in %qT due to ambiguity", basetype, t);
    }

  /* Check for ambiguous virtual bases.  */
  if (extra_warnings)
    for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
	 vec_safe_iterate (vbases, i, &binfo); i++)
      {
	basetype = BINFO_TYPE (binfo);

	if (!uniquely_derived_from_p (basetype, t))
	  warning (OPT_Winaccessible_base, "virtual base %qT inaccessible in "
		   "%qT due to ambiguity", basetype, t);
      }
}

/* Compare two INTEGER_CSTs K1 and K2.  */

static int
splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
{
  return tree_int_cst_compare ((tree) k1, (tree) k2);
}

/* Increase the size indicated in RLI to account for empty classes
   that are "off the end" of the class.  */

static void
include_empty_classes (record_layout_info rli)
{
  tree eoc;
  tree rli_size;

  /* It might be the case that we grew the class to allocate a
     zero-sized base class.  That won't be reflected in RLI, yet,
     because we are willing to overlay multiple bases at the same
     offset.  However, now we need to make sure that RLI is big enough
     to reflect the entire class.  */
  eoc = end_of_class (rli->t, CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
  rli_size = rli_size_unit_so_far (rli);
  if (TREE_CODE (rli_size) == INTEGER_CST
      && tree_int_cst_lt (rli_size, eoc))
    {
      /* The size should have been rounded to a whole byte.  */
      gcc_assert (tree_int_cst_equal
		  (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
      rli->bitpos
	= size_binop (PLUS_EXPR,
		      rli->bitpos,
		      size_binop (MULT_EXPR,
				  fold_convert (bitsizetype,
					   size_binop (MINUS_EXPR,
						       eoc, rli_size)),
				  bitsize_int (BITS_PER_UNIT)));
      normalize_rli (rli);
    }
}

/* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T.  Calculate
   BINFO_OFFSETs for all of the base-classes.  Position the vtable
   pointer.  Accumulate declared virtual functions on VIRTUALS_P.  */

static void
layout_class_type (tree t, tree *virtuals_p)
{
  tree non_static_data_members;
  tree field;
  tree vptr;
  record_layout_info rli;
  /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
     types that appear at that offset.  */
  splay_tree empty_base_offsets;
  /* True if the last field laid out was a bit-field.  */
  bool last_field_was_bitfield = false;
  /* The location at which the next field should be inserted.  */
  tree *next_field;

  /* Keep track of the first non-static data member.  */
  non_static_data_members = TYPE_FIELDS (t);

  /* Start laying out the record.  */
  rli = start_record_layout (t);

  /* Mark all the primary bases in the hierarchy.  */
  determine_primary_bases (t);

  /* Create a pointer to our virtual function table.  */
  vptr = create_vtable_ptr (t, virtuals_p);

  /* The vptr is always the first thing in the class.  */
  if (vptr)
    {
      DECL_CHAIN (vptr) = TYPE_FIELDS (t);
      TYPE_FIELDS (t) = vptr;
      next_field = &DECL_CHAIN (vptr);
      place_field (rli, vptr);
    }
  else
    next_field = &TYPE_FIELDS (t);

  /* Build FIELD_DECLs for all of the non-virtual base-types.  */
  empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
				       NULL, NULL);
  build_base_fields (rli, empty_base_offsets, next_field);

  /* Layout the non-static data members.  */
  for (field = non_static_data_members; field; field = DECL_CHAIN (field))
    {
      tree type;
      tree padding;

      /* We still pass things that aren't non-static data members to
	 the back end, in case it wants to do something with them.  */
      if (TREE_CODE (field) != FIELD_DECL)
	{
	  place_field (rli, field);
	  /* If the static data member has incomplete type, keep track
	     of it so that it can be completed later.  (The handling
	     of pending statics in finish_record_layout is
	     insufficient; consider:

	       struct S1;
	       struct S2 { static S1 s1; };

	     At this point, finish_record_layout will be called, but
	     S1 is still incomplete.)  */
	  if (VAR_P (field))
	    {
	      maybe_register_incomplete_var (field);
	      /* The visibility of static data members is determined
		 at their point of declaration, not their point of
		 definition.  */
	      determine_visibility (field);
	    }
	  continue;
	}

      type = TREE_TYPE (field);
      if (type == error_mark_node)
	continue;

      padding = NULL_TREE;

      bool might_overlap = field_poverlapping_p (field);

      if (might_overlap && CLASS_TYPE_P (type)
	  && (CLASSTYPE_NON_LAYOUT_POD_P (type) || CLASSTYPE_EMPTY_P (type)))
	{
	  /* if D is a potentially-overlapping data member, update sizeof(C) to
	     max (sizeof(C), offset(D)+max (nvsize(D), dsize(D))).  */
	  tree nvsize = CLASSTYPE_SIZE_UNIT (type);
	  /* end_of_class doesn't always give dsize, but it does in the case of
	     a class with virtual bases, which is when dsize > nvsize.  */
	  tree dsize = end_of_class (type, /*vbases*/true);
	  if (tree_int_cst_le (dsize, nvsize))
	    {
	      DECL_SIZE_UNIT (field) = nvsize;
	      DECL_SIZE (field) = CLASSTYPE_SIZE (type);
	    }
	  else
	    {
	      DECL_SIZE_UNIT (field) = dsize;
	      DECL_SIZE (field) = bit_from_pos (dsize, bitsize_zero_node);
	    }
	}

      /* If this field is a bit-field whose width is greater than its
	 type, then there are some special rules for allocating
	 it.  */
      if (DECL_C_BIT_FIELD (field)
	  && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
	{
	  bool was_unnamed_p = false;
	  /* We must allocate the bits as if suitably aligned for the
	     longest integer type that fits in this many bits.  Then,
	     we are supposed to use the left over bits as additional
	     padding.  */

	  /* Do not pick a type bigger than MAX_FIXED_MODE_SIZE.  */
	  tree limit = size_int (MAX_FIXED_MODE_SIZE);
	  if (tree_int_cst_lt (DECL_SIZE (field), limit))
	    limit = DECL_SIZE (field);

	  tree integer_type = integer_types[itk_char];
	  for (unsigned itk = itk_char; itk != itk_none; itk++)
	    if (tree next = integer_types[itk])
	      {
		if (tree_int_cst_lt (limit, TYPE_SIZE (next)))
		  /* Too big, so our current guess is what we want.  */
		  break;
		/* Not bigger than limit, ok  */
		integer_type = next;
	      }

	  /* Figure out how much additional padding is required.  */
	  if (TREE_CODE (t) == UNION_TYPE)
	    /* In a union, the padding field must have the full width
	       of the bit-field; all fields start at offset zero.  */
	    padding = DECL_SIZE (field);
	  else
	    padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
				  TYPE_SIZE (integer_type));

 	  if (integer_zerop (padding))
	    padding = NULL_TREE;

	  /* An unnamed bitfield does not normally affect the
	     alignment of the containing class on a target where
	     PCC_BITFIELD_TYPE_MATTERS.  But, the C++ ABI does not
	     make any exceptions for unnamed bitfields when the
	     bitfields are longer than their types.  Therefore, we
	     temporarily give the field a name.  */
	  if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
	    {
	      was_unnamed_p = true;
	      DECL_NAME (field) = make_anon_name ();
	    }

	  DECL_SIZE (field) = TYPE_SIZE (integer_type);
	  SET_DECL_ALIGN (field, TYPE_ALIGN (integer_type));
	  DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
	  layout_nonempty_base_or_field (rli, field, NULL_TREE,
					 empty_base_offsets);
	  if (was_unnamed_p)
	    DECL_NAME (field) = NULL_TREE;
	  /* Now that layout has been performed, set the size of the
	     field to the size of its declared type; the rest of the
	     field is effectively invisible.  */
	  DECL_SIZE (field) = TYPE_SIZE (type);
	  /* We must also reset the DECL_MODE of the field.  */
	  SET_DECL_MODE (field, TYPE_MODE (type));
	}
      else if (might_overlap && is_empty_class (type))
	{
	  DECL_FIELD_ABI_IGNORED (field) = 1;
	  layout_empty_base_or_field (rli, field, empty_base_offsets);
	}
      else
	layout_nonempty_base_or_field (rli, field, NULL_TREE,
				       empty_base_offsets);

      /* Remember the location of any empty classes in FIELD.  */
      record_subobject_offsets (field, empty_base_offsets);

      /* If a bit-field does not immediately follow another bit-field,
	 and yet it starts in the middle of a byte, we have failed to
	 comply with the ABI.  */
      if (warn_abi
	  && DECL_C_BIT_FIELD (field)
	  /* The TREE_NO_WARNING flag gets set by Objective-C when
	     laying out an Objective-C class.  The ObjC ABI differs
	     from the C++ ABI, and so we do not want a warning
	     here.  */
	  && !TREE_NO_WARNING (field)
	  && !last_field_was_bitfield
	  && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
					 DECL_FIELD_BIT_OFFSET (field),
					 bitsize_unit_node)))
	warning_at (DECL_SOURCE_LOCATION (field), OPT_Wabi,
		    "offset of %qD is not ABI-compliant and may "
		    "change in a future version of GCC", field);

      /* The middle end uses the type of expressions to determine the
	 possible range of expression values.  In order to optimize
	 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
	 must be made aware of the width of "i", via its type.

	 Because C++ does not have integer types of arbitrary width,
	 we must (for the purposes of the front end) convert from the
	 type assigned here to the declared type of the bitfield
	 whenever a bitfield expression is used as an rvalue.
	 Similarly, when assigning a value to a bitfield, the value
	 must be converted to the type given the bitfield here.  */
      if (DECL_C_BIT_FIELD (field))
	{
	  unsigned HOST_WIDE_INT width;
	  tree ftype = TREE_TYPE (field);
	  width = tree_to_uhwi (DECL_SIZE (field));
	  if (width != TYPE_PRECISION (ftype))
	    {
	      TREE_TYPE (field)
		= c_build_bitfield_integer_type (width,
						 TYPE_UNSIGNED (ftype));
	      TREE_TYPE (field)
		= cp_build_qualified_type (TREE_TYPE (field),
					   cp_type_quals (ftype));
	    }
	}

      /* If we needed additional padding after this field, add it
	 now.  */
      if (padding)
	{
	  tree padding_field;

	  padding_field = build_decl (input_location,
				      FIELD_DECL,
				      NULL_TREE,
				      char_type_node);
	  DECL_BIT_FIELD (padding_field) = 1;
	  DECL_SIZE (padding_field) = padding;
	  DECL_CONTEXT (padding_field) = t;
	  DECL_ARTIFICIAL (padding_field) = 1;
	  DECL_IGNORED_P (padding_field) = 1;
	  DECL_PADDING_P (padding_field) = 1;
	  layout_nonempty_base_or_field (rli, padding_field,
					 NULL_TREE,
					 empty_base_offsets);
	}

      last_field_was_bitfield = DECL_C_BIT_FIELD (field);
    }

  if (!integer_zerop (rli->bitpos))
    {
      /* Make sure that we are on a byte boundary so that the size of
	 the class without virtual bases will always be a round number
	 of bytes.  */
      rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
      normalize_rli (rli);
    }

  /* Delete all zero-width bit-fields from the list of fields.  Now
     that the type is laid out they are no longer important.  */
  remove_zero_width_bit_fields (t);

  if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
    {
      /* T needs a different layout as a base (eliding virtual bases
	 or whatever).  Create that version.  */
      tree base_t = make_node (TREE_CODE (t));

      /* If the ABI version is not at least two, and the last
	 field was a bit-field, RLI may not be on a byte
	 boundary.  In particular, rli_size_unit_so_far might
	 indicate the last complete byte, while rli_size_so_far
	 indicates the total number of bits used.  Therefore,
	 rli_size_so_far, rather than rli_size_unit_so_far, is
	 used to compute TYPE_SIZE_UNIT.  */
      tree eoc = end_of_class (t, /*include_virtuals_p=*/0);
      TYPE_SIZE_UNIT (base_t)
	= size_binop (MAX_EXPR,
		      fold_convert (sizetype,
			       size_binop (CEIL_DIV_EXPR,
					   rli_size_so_far (rli),
					   bitsize_int (BITS_PER_UNIT))),
		      eoc);
      TYPE_SIZE (base_t)
	= size_binop (MAX_EXPR,
		      rli_size_so_far (rli),
		      size_binop (MULT_EXPR,
				  fold_convert (bitsizetype, eoc),
				  bitsize_int (BITS_PER_UNIT)));
      SET_TYPE_ALIGN (base_t, rli->record_align);
      TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
      TYPE_TYPELESS_STORAGE (base_t) = TYPE_TYPELESS_STORAGE (t);
      TYPE_CXX_ODR_P (base_t) = TYPE_CXX_ODR_P (t);

      /* Copy the non-static data members of T. This will include its
	 direct non-virtual bases & vtable.  */
      next_field = &TYPE_FIELDS (base_t);
      for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL)
	  {
	    *next_field = copy_node (field);
	    DECL_CONTEXT (*next_field) = base_t;
	    next_field = &DECL_CHAIN (*next_field);
	  }
      *next_field = NULL_TREE;

      /* We use the base type for trivial assignments, and hence it
	 needs a mode.  */
      compute_record_mode (base_t);

      TYPE_CONTEXT (base_t) = t;

      /* Record the base version of the type.  */
      CLASSTYPE_AS_BASE (t) = base_t;
    }
  else
    CLASSTYPE_AS_BASE (t) = t;

  /* Every empty class contains an empty class.  */
  if (CLASSTYPE_EMPTY_P (t))
    CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;

  /* Set the TYPE_DECL for this type to contain the right
     value for DECL_OFFSET, so that we can use it as part
     of a COMPONENT_REF for multiple inheritance.  */
  layout_decl (TYPE_MAIN_DECL (t), 0);

  /* Now fix up any virtual base class types that we left lying
     around.  We must get these done before we try to lay out the
     virtual function table.  As a side-effect, this will remove the
     base subobject fields.  */
  layout_virtual_bases (rli, empty_base_offsets);

  /* Make sure that empty classes are reflected in RLI at this
     point.  */
  include_empty_classes (rli);

  /* Make sure not to create any structures with zero size.  */
  if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
    place_field (rli,
		 build_decl (input_location,
			     FIELD_DECL, NULL_TREE, char_type_node));

  /* If this is a non-POD, declaring it packed makes a difference to how it
     can be used as a field; don't let finalize_record_size undo it.  */
  if (TYPE_PACKED (t) && !layout_pod_type_p (t))
    rli->packed_maybe_necessary = true;

  /* Let the back end lay out the type.  */
  finish_record_layout (rli, /*free_p=*/true);

  /* If we didn't end up needing an as-base type, don't use it.  */
  if (CLASSTYPE_AS_BASE (t) != t
      /* If T's CLASSTYPE_AS_BASE is TYPE_USER_ALIGN, but T is not,
	 replacing the as-base type would change CLASSTYPE_USER_ALIGN,
	 causing us to lose the user-specified alignment as in PR94050.  */
      && TYPE_USER_ALIGN (t) == TYPE_USER_ALIGN (CLASSTYPE_AS_BASE (t))
      && tree_int_cst_equal (TYPE_SIZE (t),
			     TYPE_SIZE (CLASSTYPE_AS_BASE (t))))
    CLASSTYPE_AS_BASE (t) = t;

  if (TYPE_SIZE_UNIT (t)
      && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
      && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
      && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
    error ("size of type %qT is too large (%qE bytes)", t, TYPE_SIZE_UNIT (t));

  /* Warn about bases that can't be talked about due to ambiguity.  */
  maybe_warn_about_inaccessible_bases (t);

  /* Now that we're done with layout, give the base fields the real types.  */
  for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
    if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
      TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));

  /* Clean up.  */
  splay_tree_delete (empty_base_offsets);

  if (CLASSTYPE_EMPTY_P (t)
      && tree_int_cst_lt (sizeof_biggest_empty_class,
			  TYPE_SIZE_UNIT (t)))
    sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
}

/* Determine the "key method" for the class type indicated by TYPE,
   and set CLASSTYPE_KEY_METHOD accordingly.  */

void
determine_key_method (tree type)
{
  tree method;

  if (processing_template_decl
      || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
      || CLASSTYPE_INTERFACE_KNOWN (type))
    return;

  /* The key method is the first non-pure virtual function that is not
     inline at the point of class definition.  On some targets the
     key function may not be inline; those targets should not call
     this function until the end of the translation unit.  */
  for (method = TYPE_FIELDS (type); method; method = DECL_CHAIN (method))
    if (TREE_CODE (method) == FUNCTION_DECL
	&& DECL_VINDEX (method) != NULL_TREE
	&& ! DECL_DECLARED_INLINE_P (method)
	&& ! DECL_PURE_VIRTUAL_P (method))
      {
	CLASSTYPE_KEY_METHOD (type) = method;
	break;
      }

  return;
}

/* Helper of find_flexarrays.  Return true when FLD refers to a non-static
   class data member of non-zero size, otherwise false.  */

static inline bool
field_nonempty_p (const_tree fld)
{
  if (TREE_CODE (fld) == ERROR_MARK)
    return false;

  tree type = TREE_TYPE (fld);
  if (TREE_CODE (fld) == FIELD_DECL
      && TREE_CODE (type) != ERROR_MARK
      && (DECL_NAME (fld) || RECORD_OR_UNION_TYPE_P (type)))
    {
      return TYPE_SIZE (type)
	&& (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
	    || !tree_int_cst_equal (size_zero_node, TYPE_SIZE (type)));
    }

  return false;
}

/* Used by find_flexarrays and related functions.  */

struct flexmems_t
{
  /* The first flexible array member or non-zero array member found
     in the order of layout.  */
  tree array;
  /* First non-static non-empty data member in the class or its bases.  */
  tree first;
  /* The first non-static non-empty data member following either
     the flexible array member, if found, or the zero-length array member
     otherwise.  AFTER[1] refers to the first such data member of a union
     of which the struct containing the flexible array member or zero-length
     array is a member, or NULL when no such union exists.  This element is
     only used during searching, not for diagnosing problems.  AFTER[0]
     refers to the first such data member that is not a member of such
     a union.  */
  tree after[2];

  /* Refers to a struct (not union) in which the struct of which the flexible
     array is member is defined.  Used to diagnose strictly (according to C)
     invalid uses of the latter structs.  */
  tree enclosing;
};

/* Find either the first flexible array member or the first zero-length
   array, in that order of preference, among members of class T (but not
   its base classes), and set members of FMEM accordingly.
   BASE_P is true if T is a base class of another class.
   PUN is set to the outermost union in which the flexible array member
   (or zero-length array) is defined if one such union exists, otherwise
   to NULL.
   Similarly, PSTR is set to a data member of the outermost struct of
   which the flexible array is a member if one such struct exists,
   otherwise to NULL.  */

static void
find_flexarrays (tree t, flexmems_t *fmem, bool base_p,
		 tree pun /* = NULL_TREE */,
		 tree pstr /* = NULL_TREE */)
{
  /* Set the "pointer" to the outermost enclosing union if not set
     yet and maintain it for the remainder of the recursion.   */
  if (!pun && TREE_CODE (t) == UNION_TYPE)
    pun = t;

  for (tree fld = TYPE_FIELDS (t); fld; fld = DECL_CHAIN (fld))
    {
      if (fld == error_mark_node)
	return;

      /* Is FLD a typedef for an anonymous struct?  */

      /* FIXME: Note that typedefs (as well as arrays) need to be fully
	 handled elsewhere so that errors like the following are detected
	 as well:
	   typedef struct { int i, a[], j; } S;   // bug c++/72753
	   S s [2];                               // bug c++/68489
      */
      if (TREE_CODE (fld) == TYPE_DECL
	  && DECL_IMPLICIT_TYPEDEF_P (fld)
	  && CLASS_TYPE_P (TREE_TYPE (fld))
	  && IDENTIFIER_ANON_P (DECL_NAME (fld)))
	{
	  /* Check the nested unnamed type referenced via a typedef
	     independently of FMEM (since it's not a data member of
	     the enclosing class).  */
	  check_flexarrays (TREE_TYPE (fld));
	  continue;
	}

      /* Skip anything that's GCC-generated or not a (non-static) data
	 member.  */
      if (DECL_ARTIFICIAL (fld) || TREE_CODE (fld) != FIELD_DECL)
	continue;

      /* Type of the member.  */
      tree fldtype = TREE_TYPE (fld);
      if (fldtype == error_mark_node)
	return;

      /* Determine the type of the array element or object referenced
	 by the member so that it can be checked for flexible array
	 members if it hasn't been yet.  */
      tree eltype = fldtype;
      while (TREE_CODE (eltype) == ARRAY_TYPE
	     || INDIRECT_TYPE_P (eltype))
	eltype = TREE_TYPE (eltype);

      if (RECORD_OR_UNION_TYPE_P (eltype))
	{
	  if (fmem->array && !fmem->after[bool (pun)])
	    {
	      /* Once the member after the flexible array has been found
		 we're done.  */
	      fmem->after[bool (pun)] = fld;
	      break;
	    }

	  if (eltype == fldtype || TYPE_UNNAMED_P (eltype))
	    {
	      /* Descend into the non-static member struct or union and try
		 to find a flexible array member or zero-length array among
		 its members.  This is only necessary for anonymous types
		 and types in whose context the current type T has not been
		 defined (the latter must not be checked again because they
		 are already in the process of being checked by one of the
		 recursive calls).  */

	      tree first = fmem->first;
	      tree array = fmem->array;

	      /* If this member isn't anonymous and a prior non-flexible array
		 member has been seen in one of the enclosing structs, clear
		 the FIRST member since it doesn't contribute to the flexible
		 array struct's members.  */
	      if (first && !array && !ANON_AGGR_TYPE_P (eltype))
		fmem->first = NULL_TREE;

	      find_flexarrays (eltype, fmem, false, pun,
			       !pstr && TREE_CODE (t) == RECORD_TYPE ? fld : pstr);

	      if (fmem->array != array)
		continue;

	      if (first && !array && !ANON_AGGR_TYPE_P (eltype))
		{
		  /* Restore the FIRST member reset above if no flexible
		     array member has been found in this member's struct.  */
		  fmem->first = first;
		}

	      /* If the member struct contains the first flexible array
		 member, or if this member is a base class, continue to
		 the next member and avoid setting the FMEM->NEXT pointer
		 to point to it.  */
	      if (base_p)
		continue;
	    }
	}

      if (field_nonempty_p (fld))
	{
	  /* Remember the first non-static data member.  */
	  if (!fmem->first)
	    fmem->first = fld;

	  /* Remember the first non-static data member after the flexible
	     array member, if one has been found, or the zero-length array
	     if it has been found.  */
	  if (fmem->array && !fmem->after[bool (pun)])
	    fmem->after[bool (pun)] = fld;
	}

      /* Skip non-arrays.  */
      if (TREE_CODE (fldtype) != ARRAY_TYPE)
	continue;

      /* Determine the upper bound of the array if it has one.  */
      if (TYPE_DOMAIN (fldtype))
	{
	  if (fmem->array)
	    {
	      /* Make a record of the zero-length array if either one
		 such field or a flexible array member has been seen to
		 handle the pathological and unlikely case of multiple
		 such members.  */
	      if (!fmem->after[bool (pun)])
		fmem->after[bool (pun)] = fld;
	    }
	  else if (integer_all_onesp (TYPE_MAX_VALUE (TYPE_DOMAIN (fldtype))))
	    {
	      /* Remember the first zero-length array unless a flexible array
		 member has already been seen.  */
	      fmem->array = fld;
	      fmem->enclosing = pstr;
	    }
	}
      else
	{
	  /* Flexible array members have no upper bound.  */
	  if (fmem->array)
	    {
	      if (TYPE_DOMAIN (TREE_TYPE (fmem->array)))
		{
		  /* Replace the zero-length array if it's been stored and
		     reset the after pointer.  */
		  fmem->after[bool (pun)] = NULL_TREE;
		  fmem->array = fld;
		  fmem->enclosing = pstr;
		}
	      else if (!fmem->after[bool (pun)])
		/* Make a record of another flexible array member.  */
		fmem->after[bool (pun)] = fld;
	    }
	  else
	    {
	      fmem->array = fld;
	      fmem->enclosing = pstr;
	    }
	}
    }
}

/* Diagnose a strictly (by the C standard) invalid use of a struct with
   a flexible array member (or the zero-length array extension).  */

static void
diagnose_invalid_flexarray (const flexmems_t *fmem)
{
  if (fmem->array && fmem->enclosing)
    {
      auto_diagnostic_group d;
      if (pedwarn (location_of (fmem->enclosing), OPT_Wpedantic,
		     TYPE_DOMAIN (TREE_TYPE (fmem->array))
		     ? G_("invalid use of %q#T with a zero-size array "
			  "in %q#D")
		     : G_("invalid use of %q#T with a flexible array member "
			  "in %q#T"),
		     DECL_CONTEXT (fmem->array),
		     DECL_CONTEXT (fmem->enclosing)))
	inform (DECL_SOURCE_LOCATION (fmem->array),
		  "array member %q#D declared here", fmem->array);
    }
}

/* Issue diagnostics for invalid flexible array members or zero-length
   arrays that are not the last elements of the containing class or its
   base classes or that are its sole members.  */

static void
diagnose_flexarrays (tree t, const flexmems_t *fmem)
{
  if (!fmem->array)
    return;

  if (fmem->first && !fmem->after[0])
    {
      diagnose_invalid_flexarray (fmem);
      return;
    }

  /* Has a diagnostic been issued?  */
  bool diagd = false;

  const char *msg = 0;

  if (TYPE_DOMAIN (TREE_TYPE (fmem->array)))
    {
      if (fmem->after[0])
	msg = G_("zero-size array member %qD not at end of %q#T");
      else if (!fmem->first)
	msg = G_("zero-size array member %qD in an otherwise empty %q#T");

      if (msg)
	{
	  location_t loc = DECL_SOURCE_LOCATION (fmem->array);

	  auto_diagnostic_group d;
	  if (pedwarn (loc, OPT_Wpedantic, msg, fmem->array, t))
	    {
	      inform (location_of (t), "in the definition of %q#T", t);
	      diagd = true;
	    }
	}
    }
  else
    {
      if (fmem->after[0])
	msg = G_("flexible array member %qD not at end of %q#T");
      else if (!fmem->first)
	msg = G_("flexible array member %qD in an otherwise empty %q#T");

      if (msg)
	{
	  location_t loc = DECL_SOURCE_LOCATION (fmem->array);
	  diagd = true;

	  auto_diagnostic_group d;
	  error_at (loc, msg, fmem->array, t);

	  /* In the unlikely event that the member following the flexible
	     array member is declared in a different class, or the member
	     overlaps another member of a common union, point to it.
	     Otherwise it should be obvious.  */
	  if (fmem->after[0]
	      && ((DECL_CONTEXT (fmem->after[0])
		   != DECL_CONTEXT (fmem->array))))
	    {
	      inform (DECL_SOURCE_LOCATION (fmem->after[0]),
		      "next member %q#D declared here",
		      fmem->after[0]);
	      inform (location_of (t), "in the definition of %q#T", t);
	    }
	}
    }

  if (!diagd && fmem->array && fmem->enclosing)
    diagnose_invalid_flexarray (fmem);
}


/* Recursively check to make sure that any flexible array or zero-length
   array members of class T or its bases are valid (i.e., not the sole
   non-static data member of T and, if one exists, that it is the last
   non-static data member of T and its base classes.  FMEM is expected
   to be initially null and is used internally by recursive calls to
   the function.  Issue the appropriate diagnostics for the array member
   that fails the checks.  */

static void
check_flexarrays (tree t, flexmems_t *fmem /* = NULL */,
		  bool base_p /* = false */)
{
  /* Initialize the result of a search for flexible array and zero-length
     array members.  Avoid doing any work if the most interesting FMEM data
     have already been populated.  */
  flexmems_t flexmems = flexmems_t ();
  if (!fmem)
    fmem = &flexmems;
  else if (fmem->array && fmem->first && fmem->after[0])
    return;

  tree fam = fmem->array;

  /* Recursively check the primary base class first.  */
  if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
    {
      tree basetype = BINFO_TYPE (CLASSTYPE_PRIMARY_BINFO (t));
      check_flexarrays (basetype, fmem, true);
    }

  /* Recursively check the base classes.  */
  int nbases = TYPE_BINFO (t) ? BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) : 0;
  for (int i = 0; i < nbases; ++i)
    {
      tree base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);

      /* The primary base class was already checked above.  */
      if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
	continue;

      /* Virtual base classes are at the end.  */
      if (BINFO_VIRTUAL_P (base_binfo))
	continue;

      /* Check the base class.  */
      check_flexarrays (BINFO_TYPE (base_binfo), fmem, /*base_p=*/true);
    }

  if (fmem == &flexmems)
    {
      /* Check virtual base classes only once per derived class.
	 I.e., this check is not performed recursively for base
	 classes.  */
      int i;
      tree base_binfo;
      vec<tree, va_gc> *vbases;
      for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
	   vec_safe_iterate (vbases, i, &base_binfo); i++)
	{
	  /* Check the virtual base class.  */
	  tree basetype = TREE_TYPE (base_binfo);

	  check_flexarrays (basetype, fmem, /*base_p=*/true);
	}
    }

  /* Is the type unnamed (and therefore a member of it potentially
     an anonymous struct or union)?  */
  bool maybe_anon_p = TYPE_UNNAMED_P (t);
  if (tree ctx = maybe_anon_p ? TYPE_CONTEXT (t) : NULL_TREE)
    maybe_anon_p = RECORD_OR_UNION_TYPE_P (ctx);

  /* Search the members of the current (possibly derived) class, skipping
     unnamed structs and unions since those could be anonymous.  */
  if (fmem != &flexmems || !maybe_anon_p)
    find_flexarrays (t, fmem, base_p || fam != fmem->array);

  if (fmem == &flexmems && !maybe_anon_p)
    {
      /* Issue diagnostics for invalid flexible and zero-length array
	 members found in base classes or among the members of the current
	 class.  Ignore anonymous structs and unions whose members are
	 considered to be members of the enclosing class and thus will
	 be diagnosed when checking it.  */
      diagnose_flexarrays (t, fmem);
    }
}

/* Perform processing required when the definition of T (a class type)
   is complete.  Diagnose invalid definitions of flexible array members
   and zero-size arrays.  */

void
finish_struct_1 (tree t)
{
  tree x;
  /* A TREE_LIST.  The TREE_VALUE of each node is a FUNCTION_DECL.  */
  tree virtuals = NULL_TREE;

  if (COMPLETE_TYPE_P (t))
    {
      gcc_assert (MAYBE_CLASS_TYPE_P (t));
      error ("redefinition of %q#T", t);
      popclass ();
      return;
    }

  /* If this type was previously laid out as a forward reference,
     make sure we lay it out again.  */
  TYPE_SIZE (t) = NULL_TREE;
  CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;

  /* Make assumptions about the class; we'll reset the flags if
     necessary.  */
  CLASSTYPE_EMPTY_P (t) = 1;
  CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
  CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
  CLASSTYPE_LITERAL_P (t) = true;

  /* Do end-of-class semantic processing: checking the validity of the
     bases and members and add implicitly generated methods.  */
  check_bases_and_members (t);

  /* Find the key method.  */
  if (TYPE_CONTAINS_VPTR_P (t))
    {
      /* The Itanium C++ ABI permits the key method to be chosen when
	 the class is defined -- even though the key method so
	 selected may later turn out to be an inline function.  On
	 some systems (such as ARM Symbian OS) the key method cannot
	 be determined until the end of the translation unit.  On such
	 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
	 will cause the class to be added to KEYED_CLASSES.  Then, in
	 finish_file we will determine the key method.  */
      if (targetm.cxx.key_method_may_be_inline ())
	determine_key_method (t);

      /* If a polymorphic class has no key method, we may emit the vtable
	 in every translation unit where the class definition appears.  If
	 we're devirtualizing, we can look into the vtable even if we
	 aren't emitting it.  */
      if (!CLASSTYPE_KEY_METHOD (t))
	vec_safe_push (keyed_classes, t);
    }

  /* Layout the class itself.  */
  layout_class_type (t, &virtuals);
  /* COMPLETE_TYPE_P is now true.  */

  set_class_bindings (t);

  /* With the layout complete, check for flexible array members and
     zero-length arrays that might overlap other members in the final
     layout.  */
  check_flexarrays (t);

  virtuals = modify_all_vtables (t, nreverse (virtuals));

  /* If necessary, create the primary vtable for this class.  */
  if (virtuals || TYPE_CONTAINS_VPTR_P (t))
    {
      /* We must enter these virtuals into the table.  */
      if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
	build_primary_vtable (NULL_TREE, t);
      else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
	/* Here we know enough to change the type of our virtual
	   function table, but we will wait until later this function.  */
	build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);

      /* If we're warning about ABI tags, check the types of the new
	 virtual functions.  */
      if (warn_abi_tag)
	for (tree v = virtuals; v; v = TREE_CHAIN (v))
	  check_abi_tags (t, TREE_VALUE (v));
    }

  if (TYPE_CONTAINS_VPTR_P (t))
    {
      int vindex;
      tree fn;

      if (BINFO_VTABLE (TYPE_BINFO (t)))
	gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
      if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
	gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);

      /* Add entries for virtual functions introduced by this class.  */
      BINFO_VIRTUALS (TYPE_BINFO (t))
	= chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);

      /* Set DECL_VINDEX for all functions declared in this class.  */
      for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
	   fn;
	   fn = TREE_CHAIN (fn),
	     vindex += (TARGET_VTABLE_USES_DESCRIPTORS
			? TARGET_VTABLE_USES_DESCRIPTORS : 1))
	{
	  tree fndecl = BV_FN (fn);

	  if (DECL_THUNK_P (fndecl))
	    /* A thunk. We should never be calling this entry directly
	       from this vtable -- we'd use the entry for the non
	       thunk base function.  */
	    DECL_VINDEX (fndecl) = NULL_TREE;
	  else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
	    DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
	}
    }

  finish_struct_bits (t);

  set_method_tm_attributes (t);
  if (flag_openmp || flag_openmp_simd)
    finish_omp_declare_simd_methods (t);

  /* Clear DECL_IN_AGGR_P for all member functions.  Complete the rtl
     for any static member objects of the type we're working on.  */
  for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
    if (DECL_DECLARES_FUNCTION_P (x))
      DECL_IN_AGGR_P (x) = false;
    else if (VAR_P (x) && TREE_STATIC (x)
	     && TREE_TYPE (x) != error_mark_node
	     && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
      SET_DECL_MODE (x, TYPE_MODE (t));

  /* Complain if one of the field types requires lower visibility.  */
  constrain_class_visibility (t);

  /* Make the rtl for any new vtables we have created, and unmark
     the base types we marked.  */
  finish_vtbls (t);

  /* Build the VTT for T.  */
  build_vtt (t);

  if (warn_nonvdtor
      && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t)
      && !CLASSTYPE_FINAL (t))
    warning (OPT_Wnon_virtual_dtor,
	     "%q#T has virtual functions and accessible"
	     " non-virtual destructor", t);

  complete_vars (t);

  if (warn_overloaded_virtual)
    warn_hidden (t);

  /* Class layout, assignment of virtual table slots, etc., is now
     complete.  Give the back end a chance to tweak the visibility of
     the class or perform any other required target modifications.  */
  targetm.cxx.adjust_class_at_definition (t);

  maybe_suppress_debug_info (t);

  if (flag_vtable_verify)
    vtv_save_class_info (t);

  dump_class_hierarchy (t);

  /* Finish debugging output for this type.  */
  rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));

  /* Recalculate satisfaction that might depend on completeness.  */
  clear_satisfaction_cache ();

  if (TYPE_TRANSPARENT_AGGR (t))
    {
      tree field = first_field (t);
      if (field == NULL_TREE || error_operand_p (field))
	{
	  error ("type transparent %q#T does not have any fields", t);
	  TYPE_TRANSPARENT_AGGR (t) = 0;
	}
      else if (DECL_ARTIFICIAL (field))
	{
	  if (DECL_FIELD_IS_BASE (field))
	    error ("type transparent class %qT has base classes", t);
	  else
	    {
	      gcc_checking_assert (DECL_VIRTUAL_P (field));
	      error ("type transparent class %qT has virtual functions", t);
	    }
	  TYPE_TRANSPARENT_AGGR (t) = 0;
	}
      else if (TYPE_MODE (t) != DECL_MODE (field))
	{
	  error ("type transparent %q#T cannot be made transparent because "
		 "the type of the first field has a different ABI from the "
		 "class overall", t);
	  TYPE_TRANSPARENT_AGGR (t) = 0;
	}
    }
}

/* When T was built up, the member declarations were added in reverse
   order.  Rearrange them to declaration order.  */

void
unreverse_member_declarations (tree t)
{
  tree next;
  tree prev;
  tree x;

  /* The following lists are all in reverse order.  Put them in
     declaration order now.  */
  CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));

  /* For the TYPE_FIELDS, only the non TYPE_DECLs are in reverse
     order, so we can't just use nreverse.  Due to stat_hack
     chicanery in finish_member_declaration.  */
  prev = NULL_TREE;
  for (x = TYPE_FIELDS (t);
       x && TREE_CODE (x) != TYPE_DECL;
       x = next)
    {
      next = DECL_CHAIN (x);
      DECL_CHAIN (x) = prev;
      prev = x;
    }

  if (prev)
    {
      DECL_CHAIN (TYPE_FIELDS (t)) = x;
      TYPE_FIELDS (t) = prev;
    }
}

tree
finish_struct (tree t, tree attributes)
{
  location_t saved_loc = input_location;

  /* Now that we've got all the field declarations, reverse everything
     as necessary.  */
  unreverse_member_declarations (t);

  cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
  fixup_attribute_variants (t);

  /* Nadger the current location so that diagnostics point to the start of
     the struct, not the end.  */
  input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));

  if (processing_template_decl)
    {
      tree x;

      /* We need to add the target functions of USING_DECLS, so that
	 they can be found when the using declaration is not
	 instantiated yet.  */
      for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
	if (TREE_CODE (x) == USING_DECL)
	  {
	    tree fn = strip_using_decl (x);
  	    if (OVL_P (fn))
	      for (lkp_iterator iter (fn); iter; ++iter)
		add_method (t, *iter, true);
	  }
	else if (DECL_DECLARES_FUNCTION_P (x))
	  {
	    DECL_IN_AGGR_P (x) = false;
	    if (DECL_VIRTUAL_P (x))
	      CLASSTYPE_NON_AGGREGATE (t) = true;
	  }
	else if (TREE_CODE (x) == FIELD_DECL)
	  {
	    if (TREE_PROTECTED (x) || TREE_PRIVATE (x))
	      CLASSTYPE_NON_AGGREGATE (t) = true;
	  }

      /* Also add a USING_DECL for operator=.  We know there'll be (at
	 least) one, but we don't know the signature(s).  We want name
	 lookup not to fail or recurse into bases.  This isn't added
	 to the template decl list so we drop this at instantiation
	 time.  */
      tree ass_op = build_lang_decl (USING_DECL, assign_op_identifier,
				     NULL_TREE);
      DECL_CONTEXT (ass_op) = t;
      USING_DECL_SCOPE (ass_op) = t;
      DECL_DEPENDENT_P (ass_op) = true;
      DECL_ARTIFICIAL (ass_op) = true;
      DECL_CHAIN (ass_op) = TYPE_FIELDS (t);
      TYPE_FIELDS (t) = ass_op;

      TYPE_SIZE (t) = bitsize_zero_node;
      TYPE_SIZE_UNIT (t) = size_zero_node;
      /* COMPLETE_TYPE_P is now true.  */

      set_class_bindings (t);

      /* We need to emit an error message if this type was used as a parameter
	 and it is an abstract type, even if it is a template. We construct
	 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
	 account and we call complete_vars with this type, which will check
	 the PARM_DECLS. Note that while the type is being defined,
	 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
	 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it.  */
      CLASSTYPE_PURE_VIRTUALS (t) = NULL;
      for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
	if (TREE_CODE (x) == FUNCTION_DECL && DECL_PURE_VIRTUAL_P (x))
	  vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
      complete_vars (t);

      /* Remember current #pragma pack value.  */
      TYPE_PRECISION (t) = maximum_field_alignment;

      if (cxx_dialect < cxx2a)
	{
	  if (!CLASSTYPE_NON_AGGREGATE (t)
	      && type_has_user_provided_or_explicit_constructor (t))
	    CLASSTYPE_NON_AGGREGATE (t) = 1;
	}
      else if (TYPE_HAS_USER_CONSTRUCTOR (t))
	CLASSTYPE_NON_AGGREGATE (t) = 1;

      /* Fix up any variants we've already built.  */
      for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
	{
	  TYPE_SIZE (x) = TYPE_SIZE (t);
	  TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
	  TYPE_FIELDS (x) = TYPE_FIELDS (t);
	}
    }
  else
    finish_struct_1 (t);
  /* COMPLETE_TYPE_P is now true.  */

  maybe_warn_about_overly_private_class (t);
  
  if (is_std_init_list (t))
    {
      /* People keep complaining that the compiler crashes on an invalid
	 definition of initializer_list, so I guess we should explicitly
	 reject it.  What the compiler internals care about is that it's a
	 template and has a pointer field followed by size_type field.  */
      bool ok = false;
      if (processing_template_decl)
	{
	  tree f = next_initializable_field (TYPE_FIELDS (t));
	  if (f && TYPE_PTR_P (TREE_TYPE (f)))
	    {
	      f = next_initializable_field (DECL_CHAIN (f));
	      if (f && same_type_p (TREE_TYPE (f), size_type_node))
		ok = true;
	    }
	}
      if (!ok)
	fatal_error (input_location, "definition of %qD does not match "
		     "%<#include <initializer_list>%>", TYPE_NAME (t));
    }

  input_location = saved_loc;

  TYPE_BEING_DEFINED (t) = 0;

  if (current_class_type)
    popclass ();
  else
    error ("trying to finish struct, but kicked out due to previous parse errors");

  if (flag_openmp)
    for (tree decl = TYPE_FIELDS (t); decl; decl = DECL_CHAIN (decl))
      if (TREE_CODE (decl) == FUNCTION_DECL
	  && DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
	if (tree attr = lookup_attribute ("omp declare variant base",
					  DECL_ATTRIBUTES (decl)))
	  omp_declare_variant_finalize (decl, attr);

  if (processing_template_decl && at_function_scope_p ()
      /* Lambdas are defined by the LAMBDA_EXPR.  */
      && !LAMBDA_TYPE_P (t))
    add_stmt (build_min (TAG_DEFN, t));

  return t;
}

/* Hash table to avoid endless recursion when handling references.  */
static hash_table<nofree_ptr_hash<tree_node> > *fixed_type_or_null_ref_ht;

/* Return the dynamic type of INSTANCE, if known.
   Used to determine whether the virtual function table is needed
   or not.

   *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
   of our knowledge of its type.  *NONNULL should be initialized
   before this function is called.  */

static tree
fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
{
#define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)

  switch (TREE_CODE (instance))
    {
    case INDIRECT_REF:
      if (INDIRECT_TYPE_P (TREE_TYPE (instance)))
	return NULL_TREE;
      else
	return RECUR (TREE_OPERAND (instance, 0));

    case CALL_EXPR:
      /* This is a call to a constructor, hence it's never zero.  */
      if (CALL_EXPR_FN (instance)
	  && TREE_HAS_CONSTRUCTOR (instance))
	{
	  if (nonnull)
	    *nonnull = 1;
	  return TREE_TYPE (instance);
	}
      return NULL_TREE;

    case SAVE_EXPR:
      /* This is a call to a constructor, hence it's never zero.  */
      if (TREE_HAS_CONSTRUCTOR (instance))
	{
	  if (nonnull)
	    *nonnull = 1;
	  return TREE_TYPE (instance);
	}
      return RECUR (TREE_OPERAND (instance, 0));

    case POINTER_PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
      if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
	return RECUR (TREE_OPERAND (instance, 0));
      if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
	/* Propagate nonnull.  */
	return RECUR (TREE_OPERAND (instance, 0));

      return NULL_TREE;

    CASE_CONVERT:
      return RECUR (TREE_OPERAND (instance, 0));

    case ADDR_EXPR:
      instance = TREE_OPERAND (instance, 0);
      if (nonnull)
	{
	  /* Just because we see an ADDR_EXPR doesn't mean we're dealing
	     with a real object -- given &p->f, p can still be null.  */
	  tree t = get_base_address (instance);
	  /* ??? Probably should check DECL_WEAK here.  */
	  if (t && DECL_P (t))
	    *nonnull = 1;
	}
      return RECUR (instance);

    case COMPONENT_REF:
      /* If this component is really a base class reference, then the field
	 itself isn't definitive.  */
      if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
	return RECUR (TREE_OPERAND (instance, 0));
      return RECUR (TREE_OPERAND (instance, 1));

    case VAR_DECL:
    case FIELD_DECL:
      if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
	  && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
	{
	  if (nonnull)
	    *nonnull = 1;
	  return TREE_TYPE (TREE_TYPE (instance));
	}
      /* fall through.  */
    case TARGET_EXPR:
    case PARM_DECL:
    case RESULT_DECL:
      if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
	{
	  if (nonnull)
	    *nonnull = 1;
	  return TREE_TYPE (instance);
	}
      else if (instance == current_class_ptr)
	{
	  if (nonnull)
	    *nonnull = 1;

	  /* if we're in a ctor or dtor, we know our type.  If
	     current_class_ptr is set but we aren't in a function, we're in
	     an NSDMI (and therefore a constructor).  */
	  if (current_scope () != current_function_decl
	      || (DECL_LANG_SPECIFIC (current_function_decl)
		  && (DECL_CONSTRUCTOR_P (current_function_decl)
		      || DECL_DESTRUCTOR_P (current_function_decl))))
	    {
	      if (cdtorp)
		*cdtorp = 1;
	      return TREE_TYPE (TREE_TYPE (instance));
	    }
	}
      else if (TYPE_REF_P (TREE_TYPE (instance)))
	{
	  /* We only need one hash table because it is always left empty.  */
	  if (!fixed_type_or_null_ref_ht)
	    fixed_type_or_null_ref_ht
	      = new hash_table<nofree_ptr_hash<tree_node> > (37);

	  /* Reference variables should be references to objects.  */
	  if (nonnull)
	    *nonnull = 1;

	  /* Enter the INSTANCE in a table to prevent recursion; a
	     variable's initializer may refer to the variable
	     itself.  */
	  if (VAR_P (instance)
	      && DECL_INITIAL (instance)
	      && !type_dependent_expression_p_push (DECL_INITIAL (instance))
	      && !fixed_type_or_null_ref_ht->find (instance))
	    {
	      tree type;
	      tree_node **slot;

	      slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
	      *slot = instance;
	      type = RECUR (DECL_INITIAL (instance));
	      fixed_type_or_null_ref_ht->remove_elt (instance);

	      return type;
	    }
	}
      return NULL_TREE;

    case VIEW_CONVERT_EXPR:
      if (location_wrapper_p (instance))
	return RECUR (TREE_OPERAND (instance, 0));
      else
	/* TODO: Recursion may be correct for some non-location-wrapper
	   uses of VIEW_CONVERT_EXPR.  */
	return NULL_TREE;

    default:
      return NULL_TREE;
    }
#undef RECUR
}

/* Return nonzero if the dynamic type of INSTANCE is known, and
   equivalent to the static type.  We also handle the case where
   INSTANCE is really a pointer. Return negative if this is a
   ctor/dtor. There the dynamic type is known, but this might not be
   the most derived base of the original object, and hence virtual
   bases may not be laid out according to this type.

   Used to determine whether the virtual function table is needed
   or not.

   *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
   of our knowledge of its type.  *NONNULL should be initialized
   before this function is called.  */

int
resolves_to_fixed_type_p (tree instance, int* nonnull)
{
  tree t = TREE_TYPE (instance);
  int cdtorp = 0;
  tree fixed;

  /* processing_template_decl can be false in a template if we're in
     instantiate_non_dependent_expr, but we still want to suppress
     this check.  */
  if (in_template_function ())
    {
      /* In a template we only care about the type of the result.  */
      if (nonnull)
	*nonnull = true;
      return true;
    }

  fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
  if (INDIRECT_TYPE_P (t))
    t = TREE_TYPE (t);
  if (CLASS_TYPE_P (t) && CLASSTYPE_FINAL (t))
    return 1;
  if (fixed == NULL_TREE)
    return 0;
  if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
    return 0;
  return cdtorp ? -1 : 1;
}


void
init_class_processing (void)
{
  current_class_depth = 0;
  current_class_stack_size = 10;
  current_class_stack
    = XNEWVEC (struct class_stack_node, current_class_stack_size);
  sizeof_biggest_empty_class = size_zero_node;

  ridpointers[(int) RID_PUBLIC] = access_public_node;
  ridpointers[(int) RID_PRIVATE] = access_private_node;
  ridpointers[(int) RID_PROTECTED] = access_protected_node;
}

/* Restore the cached PREVIOUS_CLASS_LEVEL.  */

static void
restore_class_cache (void)
{
  tree type;

  /* We are re-entering the same class we just left, so we don't
     have to search the whole inheritance matrix to find all the
     decls to bind again.  Instead, we install the cached
     class_shadowed list and walk through it binding names.  */
  push_binding_level (previous_class_level);
  class_binding_level = previous_class_level;
  /* Restore IDENTIFIER_TYPE_VALUE.  */
  for (type = class_binding_level->type_shadowed;
       type;
       type = TREE_CHAIN (type))
    SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
}

/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
   appropriate for TYPE.

   So that we may avoid calls to lookup_name, we cache the _TYPE
   nodes of local TYPE_DECLs in the TREE_TYPE field of the name.

   For multiple inheritance, we perform a two-pass depth-first search
   of the type lattice.  */

void
pushclass (tree type)
{
  class_stack_node_t csn;

  type = TYPE_MAIN_VARIANT (type);

  /* Make sure there is enough room for the new entry on the stack.  */
  if (current_class_depth + 1 >= current_class_stack_size)
    {
      current_class_stack_size *= 2;
      current_class_stack
	= XRESIZEVEC (struct class_stack_node, current_class_stack,
		      current_class_stack_size);
    }

  /* Insert a new entry on the class stack.  */
  csn = current_class_stack + current_class_depth;
  csn->name = current_class_name;
  csn->type = current_class_type;
  csn->access = current_access_specifier;
  csn->names_used = 0;
  csn->hidden = 0;
  current_class_depth++;

  /* Now set up the new type.  */
  current_class_name = TYPE_NAME (type);
  if (TREE_CODE (current_class_name) == TYPE_DECL)
    current_class_name = DECL_NAME (current_class_name);
  current_class_type = type;

  /* By default, things in classes are private, while things in
     structures or unions are public.  */
  current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
			      ? access_private_node
			      : access_public_node);

  if (previous_class_level
      && type != previous_class_level->this_entity
      && current_class_depth == 1)
    {
      /* Forcibly remove any old class remnants.  */
      invalidate_class_lookup_cache ();
    }

  if (!previous_class_level
      || type != previous_class_level->this_entity
      || current_class_depth > 1)
    pushlevel_class ();
  else
    restore_class_cache ();
}

/* Get out of the current class scope. If we were in a class scope
   previously, that is the one popped to.  */

void
popclass (void)
{
  poplevel_class ();

  current_class_depth--;
  current_class_name = current_class_stack[current_class_depth].name;
  current_class_type = current_class_stack[current_class_depth].type;
  current_access_specifier = current_class_stack[current_class_depth].access;
  if (current_class_stack[current_class_depth].names_used)
    splay_tree_delete (current_class_stack[current_class_depth].names_used);
}

/* Mark the top of the class stack as hidden.  */

void
push_class_stack (void)
{
  if (current_class_depth)
    ++current_class_stack[current_class_depth - 1].hidden;
}

/* Mark the top of the class stack as un-hidden.  */

void
pop_class_stack (void)
{
  if (current_class_depth)
    --current_class_stack[current_class_depth - 1].hidden;
}

/* If the class type currently being defined is either T or
   a nested type of T, returns the type from the current_class_stack,
   which might be equivalent to but not equal to T in case of
   constrained partial specializations.  */

tree
currently_open_class (tree t)
{
  int i;

  if (!CLASS_TYPE_P (t))
    return NULL_TREE;

  t = TYPE_MAIN_VARIANT (t);

  /* We start looking from 1 because entry 0 is from global scope,
     and has no type.  */
  for (i = current_class_depth; i > 0; --i)
    {
      tree c;
      if (i == current_class_depth)
	c = current_class_type;
      else
	{
	  if (current_class_stack[i].hidden)
	    break;
	  c = current_class_stack[i].type;
	}
      if (!c)
	continue;
      if (same_type_p (c, t))
	return c;
    }
  return NULL_TREE;
}

/* If either current_class_type or one of its enclosing classes are derived
   from T, return the appropriate type.  Used to determine how we found
   something via unqualified lookup.  */

tree
currently_open_derived_class (tree t)
{
  int i;

  /* The bases of a dependent type are unknown.  */
  if (dependent_type_p (t))
    return NULL_TREE;

  if (!current_class_type)
    return NULL_TREE;

  if (DERIVED_FROM_P (t, current_class_type))
    return current_class_type;

  for (i = current_class_depth - 1; i > 0; --i)
    {
      if (current_class_stack[i].hidden)
	break;
      if (DERIVED_FROM_P (t, current_class_stack[i].type))
	return current_class_stack[i].type;
    }

  return NULL_TREE;
}

/* Return the outermost enclosing class type that is still open, or
   NULL_TREE.  */

tree
outermost_open_class (void)
{
  if (!current_class_type)
    return NULL_TREE;
  tree r = NULL_TREE;
  if (TYPE_BEING_DEFINED (current_class_type))
    r = current_class_type;
  for (int i = current_class_depth - 1; i > 0; --i)
    {
      if (current_class_stack[i].hidden)
	break;
      tree t = current_class_stack[i].type;
      if (!TYPE_BEING_DEFINED (t))
	break;
      r = t;
    }
  return r;
}

/* Returns the innermost class type which is not a lambda closure type.  */

tree
current_nonlambda_class_type (void)
{
  tree type = current_class_type;
  while (type && LAMBDA_TYPE_P (type))
    type = decl_type_context (TYPE_NAME (type));
  return type;
}

/* When entering a class scope, all enclosing class scopes' names with
   static meaning (static variables, static functions, types and
   enumerators) have to be visible.  This recursive function calls
   pushclass for all enclosing class contexts until global or a local
   scope is reached.  TYPE is the enclosed class.  */

void
push_nested_class (tree type)
{
  /* A namespace might be passed in error cases, like A::B:C.  */
  if (type == NULL_TREE
      || !CLASS_TYPE_P (type))
    return;

  push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));

  pushclass (type);
}

/* Undoes a push_nested_class call.  */

void
pop_nested_class (void)
{
  tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));

  popclass ();
  if (context && CLASS_TYPE_P (context))
    pop_nested_class ();
}

/* Returns the number of extern "LANG" blocks we are nested within.  */

int
current_lang_depth (void)
{
  return vec_safe_length (current_lang_base);
}

/* Set global variables CURRENT_LANG_NAME to appropriate value
   so that behavior of name-mangling machinery is correct.  */

void
push_lang_context (tree name)
{
  vec_safe_push (current_lang_base, current_lang_name);

  if (name == lang_name_cplusplus)
    current_lang_name = name;
  else if (name == lang_name_c)
    current_lang_name = name;
  else
    error ("language string %<\"%E\"%> not recognized", name);
}

/* Get out of the current language scope.  */

void
pop_lang_context (void)
{
  current_lang_name = current_lang_base->pop ();
}

/* Type instantiation routines.  */

/* Given an OVERLOAD and a TARGET_TYPE, return the function that
   matches the TARGET_TYPE.  If there is no satisfactory match, return
   error_mark_node, and issue an error & warning messages under
   control of FLAGS.  Permit pointers to member function if FLAGS
   permits.  If TEMPLATE_ONLY, the name of the overloaded function was
   a template-id, and EXPLICIT_TARGS are the explicitly provided
   template arguments.  

   If OVERLOAD is for one or more member functions, then ACCESS_PATH
   is the base path used to reference those member functions.  If
   the address is resolved to a member function, access checks will be
   performed and errors issued if appropriate.  */

static tree
resolve_address_of_overloaded_function (tree target_type,
					tree overload,
					tsubst_flags_t complain,
					bool template_only,
					tree explicit_targs,
					tree access_path)
{
  /* Here's what the standard says:

       [over.over]

       If the name is a function template, template argument deduction
       is done, and if the argument deduction succeeds, the deduced
       arguments are used to generate a single template function, which
       is added to the set of overloaded functions considered.

       Non-member functions and static member functions match targets of
       type "pointer-to-function" or "reference-to-function."  Nonstatic
       member functions match targets of type "pointer-to-member
       function;" the function type of the pointer to member is used to
       select the member function from the set of overloaded member
       functions.  If a nonstatic member function is selected, the
       reference to the overloaded function name is required to have the
       form of a pointer to member as described in 5.3.1.

       If more than one function is selected, any template functions in
       the set are eliminated if the set also contains a non-template
       function, and any given template function is eliminated if the
       set contains a second template function that is more specialized
       than the first according to the partial ordering rules 14.5.5.2.
       After such eliminations, if any, there shall remain exactly one
       selected function.  */

  int is_ptrmem = 0;
  /* We store the matches in a TREE_LIST rooted here.  The functions
     are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
     interoperability with most_specialized_instantiation.  */
  tree matches = NULL_TREE;
  tree fn;
  tree target_fn_type;

  /* By the time we get here, we should be seeing only real
     pointer-to-member types, not the internal POINTER_TYPE to
     METHOD_TYPE representation.  */
  gcc_assert (!TYPE_PTR_P (target_type)
	      || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);

  gcc_assert (is_overloaded_fn (overload));

  /* Check that the TARGET_TYPE is reasonable.  */
  if (TYPE_PTRFN_P (target_type)
      || TYPE_REFFN_P (target_type))
    /* This is OK.  */;
  else if (TYPE_PTRMEMFUNC_P (target_type))
    /* This is OK, too.  */
    is_ptrmem = 1;
  else if (TREE_CODE (target_type) == FUNCTION_TYPE)
    /* This is OK, too.  This comes from a conversion to reference
       type.  */
    target_type = build_reference_type (target_type);
  else
    {
      if (complain & tf_error)
	error ("cannot resolve overloaded function %qD based on"
	       " conversion to type %qT",
	       OVL_NAME (overload), target_type);
      return error_mark_node;
    }

  /* Non-member functions and static member functions match targets of type
     "pointer-to-function" or "reference-to-function."  Nonstatic member
     functions match targets of type "pointer-to-member-function;" the
     function type of the pointer to member is used to select the member
     function from the set of overloaded member functions.

     So figure out the FUNCTION_TYPE that we want to match against.  */
  target_fn_type = static_fn_type (target_type);

  /* If we can find a non-template function that matches, we can just
     use it.  There's no point in generating template instantiations
     if we're just going to throw them out anyhow.  But, of course, we
     can only do this when we don't *need* a template function.  */
  if (!template_only)
    for (lkp_iterator iter (overload); iter; ++iter)
      {
	tree fn = *iter;

	if (TREE_CODE (fn) == TEMPLATE_DECL)
	  /* We're not looking for templates just yet.  */
	  continue;

	if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE) != is_ptrmem)
	  /* We're looking for a non-static member, and this isn't
	     one, or vice versa.  */
	  continue;

	/* In C++17 we need the noexcept-qualifier to compare types.  */
	if (flag_noexcept_type
	    && !maybe_instantiate_noexcept (fn, complain))
	  continue;

	/* See if there's a match.  */
	tree fntype = static_fn_type (fn);
	if (same_type_p (target_fn_type, fntype)
	    || fnptr_conv_p (target_fn_type, fntype))
	  matches = tree_cons (fn, NULL_TREE, matches);
      }

  /* Now, if we've already got a match (or matches), there's no need
     to proceed to the template functions.  But, if we don't have a
     match we need to look at them, too.  */
  if (!matches)
    {
      tree target_arg_types;
      tree target_ret_type;
      tree *args;
      unsigned int nargs, ia;
      tree arg;

      target_arg_types = TYPE_ARG_TYPES (target_fn_type);
      target_ret_type = TREE_TYPE (target_fn_type);

      nargs = list_length (target_arg_types);
      args = XALLOCAVEC (tree, nargs);
      for (arg = target_arg_types, ia = 0;
	   arg != NULL_TREE && arg != void_list_node;
	   arg = TREE_CHAIN (arg), ++ia)
	args[ia] = TREE_VALUE (arg);
      nargs = ia;

      for (lkp_iterator iter (overload); iter; ++iter)
	{
	  tree fn = *iter;
	  tree instantiation;
	  tree targs;

	  if (TREE_CODE (fn) != TEMPLATE_DECL)
	    /* We're only looking for templates.  */
	    continue;

	  if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
	      != is_ptrmem)
	    /* We're not looking for a non-static member, and this is
	       one, or vice versa.  */
	    continue;

	  tree ret = target_ret_type;

	  /* If the template has a deduced return type, don't expose it to
	     template argument deduction.  */
	  if (undeduced_auto_decl (fn))
	    ret = NULL_TREE;

	  /* Try to do argument deduction.  */
	  targs = make_tree_vec (DECL_NTPARMS (fn));
	  instantiation = fn_type_unification (fn, explicit_targs, targs, args,
					       nargs, ret,
					      DEDUCE_EXACT, LOOKUP_NORMAL,
					       NULL, false, false);
	  if (instantiation == error_mark_node)
	    /* Instantiation failed.  */
	    continue;

	  /* Constraints must be satisfied. This is done before
	     return type deduction since that instantiates the
	     function. */
	  if (flag_concepts && !constraints_satisfied_p (instantiation))
	    continue;

	  /* And now force instantiation to do return type deduction.  */
	  if (undeduced_auto_decl (instantiation))
	    {
	      ++function_depth;
	      instantiate_decl (instantiation, /*defer*/false, /*class*/false);
	      --function_depth;

	      require_deduced_type (instantiation);
	    }

	  /* In C++17 we need the noexcept-qualifier to compare types.  */
	  if (flag_noexcept_type)
	    maybe_instantiate_noexcept (instantiation, complain);

	  /* See if there's a match.  */
	  tree fntype = static_fn_type (instantiation);
	  if (same_type_p (target_fn_type, fntype)
	      || fnptr_conv_p (target_fn_type, fntype))
	    matches = tree_cons (instantiation, fn, matches);
	}

      /* Now, remove all but the most specialized of the matches.  */
      if (matches)
	{
	  tree match = most_specialized_instantiation (matches);

	  if (match != error_mark_node)
	    matches = tree_cons (TREE_PURPOSE (match),
				 NULL_TREE,
				 NULL_TREE);
	}
    }

  /* Now we should have exactly one function in MATCHES.  */
  if (matches == NULL_TREE)
    {
      /* There were *no* matches.  */
      if (complain & tf_error)
	{
	  error ("no matches converting function %qD to type %q#T",
		 OVL_NAME (overload), target_type);

	  print_candidates (overload);
	}
      return error_mark_node;
    }
  else if (TREE_CHAIN (matches))
    {
      /* There were too many matches.  First check if they're all
	 the same function.  */
      tree match = NULL_TREE;

      fn = TREE_PURPOSE (matches);

      /* For multi-versioned functions, more than one match is just fine and
	 decls_match will return false as they are different.  */
      for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
	if (!decls_match (fn, TREE_PURPOSE (match))
	    && !targetm.target_option.function_versions
	       (fn, TREE_PURPOSE (match)))
          break;

      if (match)
	{
	  if (complain & tf_error)
	    {
	      error ("converting overloaded function %qD to type %q#T is ambiguous",
		     OVL_NAME (overload), target_type);

	      /* Since print_candidates expects the functions in the
		 TREE_VALUE slot, we flip them here.  */
	      for (match = matches; match; match = TREE_CHAIN (match))
		TREE_VALUE (match) = TREE_PURPOSE (match);

	      print_candidates (matches);
	    }

	  return error_mark_node;
	}
    }

  /* Good, exactly one match.  Now, convert it to the correct type.  */
  fn = TREE_PURPOSE (matches);

  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
      && !(complain & tf_ptrmem_ok) && !flag_ms_extensions)
    {
      static int explained;

      if (!(complain & tf_error))
	return error_mark_node;

      auto_diagnostic_group d;
      if (permerror (input_location, "assuming pointer to member %qD", fn)
	  && !explained)
	{
	  inform (input_location, "(a pointer to member can only be "
		  "formed with %<&%E%>)", fn);
	  explained = 1;
	}
    }

  /* If a pointer to a function that is multi-versioned is requested, the
     pointer to the dispatcher function is returned instead.  This works
     well because indirectly calling the function will dispatch the right
     function version at run-time.  */
  if (DECL_FUNCTION_VERSIONED (fn))
    {
      fn = get_function_version_dispatcher (fn);
      if (fn == NULL)
	return error_mark_node;
      /* Mark all the versions corresponding to the dispatcher as used.  */
      if (!(complain & tf_conv))
	mark_versions_used (fn);
    }

  /* If we're doing overload resolution purely for the purpose of
     determining conversion sequences, we should not consider the
     function used.  If this conversion sequence is selected, the
     function will be marked as used at this point.  */
  if (!(complain & tf_conv))
    {
      /* Make =delete work with SFINAE.  */
      if (DECL_DELETED_FN (fn) && !(complain & tf_error))
	return error_mark_node;
      if (!mark_used (fn, complain) && !(complain & tf_error))
	return error_mark_node;
    }

  /* We could not check access to member functions when this
     expression was originally created since we did not know at that
     time to which function the expression referred.  */
  if (DECL_FUNCTION_MEMBER_P (fn))
    {
      gcc_assert (access_path);
      perform_or_defer_access_check (access_path, fn, fn, complain);
    }

  if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
    return cp_build_addr_expr (fn, complain);
  else
    {
      /* The target must be a REFERENCE_TYPE.  Above, cp_build_unary_op
	 will mark the function as addressed, but here we must do it
	 explicitly.  */
      cxx_mark_addressable (fn);

      return fn;
    }
}

/* This function will instantiate the type of the expression given in
   RHS to match the type of LHSTYPE.  If errors exist, then return
   error_mark_node. COMPLAIN is a bit mask.  If TF_ERROR is set, then
   we complain on errors.  If we are not complaining, never modify rhs,
   as overload resolution wants to try many possible instantiations, in
   the hope that at least one will work.

   For non-recursive calls, LHSTYPE should be a function, pointer to
   function, or a pointer to member function.  */

tree
instantiate_type (tree lhstype, tree rhs, tsubst_flags_t complain)
{
  tsubst_flags_t complain_in = complain;
  tree access_path = NULL_TREE;

  complain &= ~tf_ptrmem_ok;

  if (lhstype == unknown_type_node)
    {
      if (complain & tf_error)
	error ("not enough type information");
      return error_mark_node;
    }

  if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
    {
      tree fntype = non_reference (lhstype);
      if (same_type_p (fntype, TREE_TYPE (rhs)))
	return rhs;
      if (fnptr_conv_p (fntype, TREE_TYPE (rhs)))
	return rhs;
      if (flag_ms_extensions
	  && TYPE_PTRMEMFUNC_P (fntype)
	  && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
	/* Microsoft allows `A::f' to be resolved to a
	   pointer-to-member.  */
	;
      else
	{
	  if (complain & tf_error)
	    error ("cannot convert %qE from type %qT to type %qT",
		   rhs, TREE_TYPE (rhs), fntype);
	  return error_mark_node;
	}
    }

  /* If we instantiate a template, and it is a A ?: C expression
     with omitted B, look through the SAVE_EXPR.  */
  if (TREE_CODE (rhs) == SAVE_EXPR)
    rhs = TREE_OPERAND (rhs, 0);

  if (BASELINK_P (rhs))
    {
      access_path = BASELINK_ACCESS_BINFO (rhs);
      rhs = BASELINK_FUNCTIONS (rhs);
    }

  /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
     deduce any type information.  */
  if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
    {
      if (complain & tf_error)
	error ("not enough type information");
      return error_mark_node;
    }

  /* There are only a few kinds of expressions that may have a type
     dependent on overload resolution.  */
  gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
	      || TREE_CODE (rhs) == COMPONENT_REF
	      || is_overloaded_fn (rhs)
	      || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));

  /* This should really only be used when attempting to distinguish
     what sort of a pointer to function we have.  For now, any
     arithmetic operation which is not supported on pointers
     is rejected as an error.  */

  switch (TREE_CODE (rhs))
    {
    case COMPONENT_REF:
      {
	tree member = TREE_OPERAND (rhs, 1);

	member = instantiate_type (lhstype, member, complain);
	if (member != error_mark_node
	    && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
	  /* Do not lose object's side effects.  */
	  return build2 (COMPOUND_EXPR, TREE_TYPE (member),
			 TREE_OPERAND (rhs, 0), member);
	return member;
      }

    case OFFSET_REF:
      rhs = TREE_OPERAND (rhs, 1);
      if (BASELINK_P (rhs))
	return instantiate_type (lhstype, rhs, complain_in);

      /* This can happen if we are forming a pointer-to-member for a
	 member template.  */
      gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);

      /* Fall through.  */

    case TEMPLATE_ID_EXPR:
      {
	tree fns = TREE_OPERAND (rhs, 0);
	tree args = TREE_OPERAND (rhs, 1);

	return
	  resolve_address_of_overloaded_function (lhstype, fns, complain_in,
						  /*template_only=*/true,
						  args, access_path);
      }

    case OVERLOAD:
    case FUNCTION_DECL:
      return
	resolve_address_of_overloaded_function (lhstype, rhs, complain_in,
						/*template_only=*/false,
						/*explicit_targs=*/NULL_TREE,
						access_path);

    case ADDR_EXPR:
    {
      if (PTRMEM_OK_P (rhs))
	complain |= tf_ptrmem_ok;

      return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
    }

    case ERROR_MARK:
      return error_mark_node;

    default:
      gcc_unreachable ();
    }
  return error_mark_node;
}

/* Return the name of the virtual function pointer field
   (as an IDENTIFIER_NODE) for the given TYPE.  Note that
   this may have to look back through base types to find the
   ultimate field name.  (For single inheritance, these could
   all be the same name.  Who knows for multiple inheritance).  */

static tree
get_vfield_name (tree type)
{
  tree binfo, base_binfo;

  for (binfo = TYPE_BINFO (type);
       BINFO_N_BASE_BINFOS (binfo);
       binfo = base_binfo)
    {
      base_binfo = BINFO_BASE_BINFO (binfo, 0);

      if (BINFO_VIRTUAL_P (base_binfo)
	  || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
	break;
    }

  type = BINFO_TYPE (binfo);
  tree ctor_name = constructor_name (type);
  char *buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
			       + IDENTIFIER_LENGTH (ctor_name) + 2);
  sprintf (buf, VFIELD_NAME_FORMAT, IDENTIFIER_POINTER (ctor_name));
  return get_identifier (buf);
}

/* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
   according to [class]:
					  The class-name is also inserted
   into  the scope of the class itself.  For purposes of access checking,
   the inserted class name is treated as if it were a public member name.  */

void
build_self_reference (void)
{
  tree name = DECL_NAME (TYPE_NAME (current_class_type));
  tree value = build_lang_decl (TYPE_DECL, name, current_class_type);

  DECL_NONLOCAL (value) = 1;
  DECL_CONTEXT (value) = current_class_type;
  DECL_ARTIFICIAL (value) = 1;
  SET_DECL_SELF_REFERENCE_P (value);
  set_underlying_type (value);

  if (processing_template_decl)
    value = push_template_decl (value);

  tree saved_cas = current_access_specifier;
  current_access_specifier = access_public_node;
  finish_member_declaration (value);
  current_access_specifier = saved_cas;
}

/* Returns 1 if TYPE contains only padding bytes.  */

int
is_empty_class (tree type)
{
  if (type == error_mark_node)
    return 0;

  if (! CLASS_TYPE_P (type))
    return 0;

  return CLASSTYPE_EMPTY_P (type);
}

/* Returns true if TYPE contains no actual data, just various
   possible combinations of empty classes.  If IGNORE_VPTR is true,
   a vptr doesn't prevent the class from being considered empty.  Typically
   we want to ignore the vptr on assignment, and not on initialization.  */

bool
is_really_empty_class (tree type, bool ignore_vptr)
{
  if (CLASS_TYPE_P (type))
    {
      tree field;
      tree binfo;
      tree base_binfo;
      int i;

      /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
	 out, but we'd like to be able to check this before then.  */
      if (COMPLETE_TYPE_P (type) && is_empty_class (type))
	return true;

      if (!ignore_vptr && TYPE_CONTAINS_VPTR_P (type))
	return false;

      for (binfo = TYPE_BINFO (type), i = 0;
	   BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
	if (!is_really_empty_class (BINFO_TYPE (base_binfo), ignore_vptr))
	  return false;
      for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL
	    && !DECL_ARTIFICIAL (field)
	    /* An unnamed bit-field is not a data member.  */
	    && !DECL_UNNAMED_BIT_FIELD (field)
	    && !is_really_empty_class (TREE_TYPE (field), ignore_vptr))
	  return false;
      return true;
    }
  else if (TREE_CODE (type) == ARRAY_TYPE)
    return (integer_zerop (array_type_nelts_top (type))
	    || is_really_empty_class (TREE_TYPE (type), ignore_vptr));
  return false;
}

/* Note that NAME was looked up while the current class was being
   defined and that the result of that lookup was DECL.  */

void
maybe_note_name_used_in_class (tree name, tree decl)
{
  splay_tree names_used;

  /* If we're not defining a class, there's nothing to do.  */
  if (!(innermost_scope_kind() == sk_class
	&& TYPE_BEING_DEFINED (current_class_type)
	&& !LAMBDA_TYPE_P (current_class_type)))
    return;

  /* If there's already a binding for this NAME, then we don't have
     anything to worry about.  */
  if (lookup_member (current_class_type, name,
		     /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
    return;

  if (!current_class_stack[current_class_depth - 1].names_used)
    current_class_stack[current_class_depth - 1].names_used
      = splay_tree_new (splay_tree_compare_pointers, 0, 0);
  names_used = current_class_stack[current_class_depth - 1].names_used;

  splay_tree_insert (names_used,
		     (splay_tree_key) name,
		     (splay_tree_value) decl);
}

/* Note that NAME was declared (as DECL) in the current class.  Check
   to see that the declaration is valid.  */

void
note_name_declared_in_class (tree name, tree decl)
{
  splay_tree names_used;
  splay_tree_node n;

  /* Look to see if we ever used this name.  */
  names_used
    = current_class_stack[current_class_depth - 1].names_used;
  if (!names_used)
    return;
  /* The C language allows members to be declared with a type of the same
     name, and the C++ standard says this diagnostic is not required.  So
     allow it in extern "C" blocks unless predantic is specified.
     Allow it in all cases if -ms-extensions is specified.  */
  if ((!pedantic && current_lang_name == lang_name_c)
      || flag_ms_extensions)
    return;
  n = splay_tree_lookup (names_used, (splay_tree_key) name);
  if (n)
    {
      /* [basic.scope.class]

	 A name N used in a class S shall refer to the same declaration
	 in its context and when re-evaluated in the completed scope of
	 S.  */
      if (permerror (location_of (decl),
		     "declaration of %q#D changes meaning of %qD",
		     decl, OVL_NAME (decl)))
	inform (location_of ((tree) n->value),
		"%qD declared here as %q#D",
		OVL_NAME (decl), (tree) n->value);
    }
}

/* Returns the VAR_DECL for the complete vtable associated with BINFO.
   Secondary vtables are merged with primary vtables; this function
   will return the VAR_DECL for the primary vtable.  */

tree
get_vtbl_decl_for_binfo (tree binfo)
{
  tree decl;

  decl = BINFO_VTABLE (binfo);
  if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
    {
      gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
      decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
    }
  if (decl)
    gcc_assert (VAR_P (decl));
  return decl;
}


/* Returns the binfo for the primary base of BINFO.  If the resulting
   BINFO is a virtual base, and it is inherited elsewhere in the
   hierarchy, then the returned binfo might not be the primary base of
   BINFO in the complete object.  Check BINFO_PRIMARY_P or
   BINFO_LOST_PRIMARY_P to be sure.  */

static tree
get_primary_binfo (tree binfo)
{
  tree primary_base;

  primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
  if (!primary_base)
    return NULL_TREE;

  return copied_binfo (primary_base, binfo);
}

/* As above, but iterate until we reach the binfo that actually provides the
   vptr for BINFO.  */

static tree
most_primary_binfo (tree binfo)
{
  tree b = binfo;
  while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
	 && !BINFO_LOST_PRIMARY_P (b))
    {
      tree primary_base = get_primary_binfo (b);
      gcc_assert (BINFO_PRIMARY_P (primary_base)
		  && BINFO_INHERITANCE_CHAIN (primary_base) == b);
      b = primary_base;
    }
  return b;
}

/* Returns true if BINFO gets its vptr from a virtual base of the most derived
   type.  Note that the virtual inheritance might be above or below BINFO in
   the hierarchy.  */

bool
vptr_via_virtual_p (tree binfo)
{
  if (TYPE_P (binfo))
    binfo = TYPE_BINFO (binfo);
  tree primary = most_primary_binfo (binfo);
  /* Don't limit binfo_via_virtual, we want to return true when BINFO itself is
     a morally virtual base.  */
  tree virt = binfo_via_virtual (primary, NULL_TREE);
  return virt != NULL_TREE;
}

/* If INDENTED_P is zero, indent to INDENT. Return nonzero.  */

static int
maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
{
  if (!indented_p)
    fprintf (stream, "%*s", indent, "");
  return 1;
}

/* Dump the offsets of all the bases rooted at BINFO to STREAM.
   INDENT should be zero when called from the top level; it is
   incremented recursively.  IGO indicates the next expected BINFO in
   inheritance graph ordering.  */

static tree
dump_class_hierarchy_r (FILE *stream,
			dump_flags_t flags,
			tree binfo,
			tree igo,
			int indent)
{
  int indented = 0;
  tree base_binfo;
  int i;

  fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
	   type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
	   (HOST_WIDE_INT) (uintptr_t) binfo);
  if (binfo != igo)
    {
      fprintf (stream, "alternative-path\n");
      return igo;
    }
  igo = TREE_CHAIN (binfo);

  fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
	   tree_to_shwi (BINFO_OFFSET (binfo)));
  if (is_empty_class (BINFO_TYPE (binfo)))
    fprintf (stream, " empty");
  else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
    fprintf (stream, " nearly-empty");
  if (BINFO_VIRTUAL_P (binfo))
    fprintf (stream, " virtual");
  fprintf (stream, "\n");

  if (BINFO_PRIMARY_P (binfo))
    {
      indented = maybe_indent_hierarchy (stream, indent + 3, indented);
      fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
	       type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
			       TFF_PLAIN_IDENTIFIER),
	       (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
    }
  if (BINFO_LOST_PRIMARY_P (binfo))
    {
      indented = maybe_indent_hierarchy (stream, indent + 3, indented);
      fprintf (stream, " lost-primary");
    }
  if (indented)
    fprintf (stream, "\n");

  if (!(flags & TDF_SLIM))
    {
      int indented = 0;

      if (BINFO_SUBVTT_INDEX (binfo))
	{
	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
	  fprintf (stream, " subvttidx=%s",
		   expr_as_string (BINFO_SUBVTT_INDEX (binfo),
				   TFF_PLAIN_IDENTIFIER));
	}
      if (BINFO_VPTR_INDEX (binfo))
	{
	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
	  fprintf (stream, " vptridx=%s",
		   expr_as_string (BINFO_VPTR_INDEX (binfo),
				   TFF_PLAIN_IDENTIFIER));
	}
      if (BINFO_VPTR_FIELD (binfo))
	{
	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
	  fprintf (stream, " vbaseoffset=%s",
		   expr_as_string (BINFO_VPTR_FIELD (binfo),
				   TFF_PLAIN_IDENTIFIER));
	}
      if (BINFO_VTABLE (binfo))
	{
	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
	  fprintf (stream, " vptr=%s",
		   expr_as_string (BINFO_VTABLE (binfo),
				   TFF_PLAIN_IDENTIFIER));
	}

      if (indented)
	fprintf (stream, "\n");
    }

  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
    igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);

  return igo;
}

/* Dump the BINFO hierarchy for T.  */

static void
dump_class_hierarchy_1 (FILE *stream, dump_flags_t flags, tree t)
{
  fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
  fprintf (stream, "   size=%lu align=%lu\n",
	   (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
	   (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
  fprintf (stream, "   base size=%lu base align=%lu\n",
	   (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
			   / BITS_PER_UNIT),
	   (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
			   / BITS_PER_UNIT));
  dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
  fprintf (stream, "\n");
}

/* Debug interface to hierarchy dumping.  */

void
debug_class (tree t)
{
  dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
}

static void
dump_class_hierarchy (tree t)
{
  dump_flags_t flags;
  if (FILE *stream = dump_begin (class_dump_id, &flags))
    {
      dump_class_hierarchy_1 (stream, flags, t);
      dump_end (class_dump_id, stream);
    }
}

static void
dump_array (FILE * stream, tree decl)
{
  tree value;
  unsigned HOST_WIDE_INT ix;
  HOST_WIDE_INT elt;
  tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));

  elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
	 / BITS_PER_UNIT);
  fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
  fprintf (stream, " %s entries",
	   expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
			   TFF_PLAIN_IDENTIFIER));
  fprintf (stream, "\n");

  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
			      ix, value)
    fprintf (stream, "%-4ld  %s\n", (long)(ix * elt),
	     expr_as_string (value, TFF_PLAIN_IDENTIFIER));
}

static void
dump_vtable (tree t, tree binfo, tree vtable)
{
  dump_flags_t flags;
  FILE *stream = dump_begin (class_dump_id, &flags);

  if (!stream)
    return;

  if (!(flags & TDF_SLIM))
    {
      int ctor_vtbl_p = TYPE_BINFO (t) != binfo;

      fprintf (stream, "%s for %s",
	       ctor_vtbl_p ? "Construction vtable" : "Vtable",
	       type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
      if (ctor_vtbl_p)
	{
	  if (!BINFO_VIRTUAL_P (binfo))
	    fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
		     (HOST_WIDE_INT) (uintptr_t) binfo);
	  fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
	}
      fprintf (stream, "\n");
      dump_array (stream, vtable);
      fprintf (stream, "\n");
    }

  dump_end (class_dump_id, stream);
}

static void
dump_vtt (tree t, tree vtt)
{
  dump_flags_t flags;
  FILE *stream = dump_begin (class_dump_id, &flags);

  if (!stream)
    return;

  if (!(flags & TDF_SLIM))
    {
      fprintf (stream, "VTT for %s\n",
	       type_as_string (t, TFF_PLAIN_IDENTIFIER));
      dump_array (stream, vtt);
      fprintf (stream, "\n");
    }

  dump_end (class_dump_id, stream);
}

/* Dump a function or thunk and its thunkees.  */

static void
dump_thunk (FILE *stream, int indent, tree thunk)
{
  static const char spaces[] = "        ";
  tree name = DECL_NAME (thunk);
  tree thunks;

  fprintf (stream, "%.*s%p %s %s", indent, spaces,
	   (void *)thunk,
	   !DECL_THUNK_P (thunk) ? "function"
	   : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
	   name ? IDENTIFIER_POINTER (name) : "<unset>");
  if (DECL_THUNK_P (thunk))
    {
      HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
      tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);

      fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
      if (!virtual_adjust)
	/*NOP*/;
      else if (DECL_THIS_THUNK_P (thunk))
	fprintf (stream, " vcall="  HOST_WIDE_INT_PRINT_DEC,
		 tree_to_shwi (virtual_adjust));
      else
	fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
		 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
		 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
      if (THUNK_ALIAS (thunk))
	fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
    }
  fprintf (stream, "\n");
  for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
    dump_thunk (stream, indent + 2, thunks);
}

/* Dump the thunks for FN.  */

void
debug_thunks (tree fn)
{
  dump_thunk (stderr, 0, fn);
}

/* Virtual function table initialization.  */

/* Create all the necessary vtables for T and its base classes.  */

static void
finish_vtbls (tree t)
{
  tree vbase;
  vec<constructor_elt, va_gc> *v = NULL;
  tree vtable = BINFO_VTABLE (TYPE_BINFO (t));

  /* We lay out the primary and secondary vtables in one contiguous
     vtable.  The primary vtable is first, followed by the non-virtual
     secondary vtables in inheritance graph order.  */
  accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
			 vtable, t, &v);

  /* Then come the virtual bases, also in inheritance graph order.  */
  for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
    {
      if (!BINFO_VIRTUAL_P (vbase))
	continue;
      accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
    }

  if (BINFO_VTABLE (TYPE_BINFO (t)))
    initialize_vtable (TYPE_BINFO (t), v);
}

/* Initialize the vtable for BINFO with the INITS.  */

static void
initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
{
  tree decl;

  layout_vtable_decl (binfo, vec_safe_length (inits));
  decl = get_vtbl_decl_for_binfo (binfo);
  initialize_artificial_var (decl, inits);
  dump_vtable (BINFO_TYPE (binfo), binfo, decl);
}

/* Build the VTT (virtual table table) for T.
   A class requires a VTT if it has virtual bases.

   This holds
   1 - primary virtual pointer for complete object T
   2 - secondary VTTs for each direct non-virtual base of T which requires a
       VTT
   3 - secondary virtual pointers for each direct or indirect base of T which
       has virtual bases or is reachable via a virtual path from T.
   4 - secondary VTTs for each direct or indirect virtual base of T.

   Secondary VTTs look like complete object VTTs without part 4.  */

static void
build_vtt (tree t)
{
  tree type;
  tree vtt;
  tree index;
  vec<constructor_elt, va_gc> *inits;

  /* Build up the initializers for the VTT.  */
  inits = NULL;
  index = size_zero_node;
  build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);

  /* If we didn't need a VTT, we're done.  */
  if (!inits)
    return;

  /* Figure out the type of the VTT.  */
  type = build_array_of_n_type (const_ptr_type_node,
                                inits->length ());

  /* Now, build the VTT object itself.  */
  vtt = build_vtable (t, mangle_vtt_for_type (t), type);
  initialize_artificial_var (vtt, inits);
  /* Add the VTT to the vtables list.  */
  DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
  DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;

  dump_vtt (t, vtt);
}

/* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
   PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
   and CHAIN the vtable pointer for this binfo after construction is
   complete.  VALUE can also be another BINFO, in which case we recurse.  */

static tree
binfo_ctor_vtable (tree binfo)
{
  tree vt;

  while (1)
    {
      vt = BINFO_VTABLE (binfo);
      if (TREE_CODE (vt) == TREE_LIST)
	vt = TREE_VALUE (vt);
      if (TREE_CODE (vt) == TREE_BINFO)
	binfo = vt;
      else
	break;
    }

  return vt;
}

/* Data for secondary VTT initialization.  */
struct secondary_vptr_vtt_init_data
{
  /* Is this the primary VTT? */
  bool top_level_p;

  /* Current index into the VTT.  */
  tree index;

  /* Vector of initializers built up.  */
  vec<constructor_elt, va_gc> *inits;

  /* The type being constructed by this secondary VTT.  */
  tree type_being_constructed;
};

/* Recursively build the VTT-initializer for BINFO (which is in the
   hierarchy dominated by T).  INITS points to the end of the initializer
   list to date.  INDEX is the VTT index where the next element will be
   replaced.  Iff BINFO is the binfo for T, this is the top level VTT (i.e.
   not a subvtt for some base of T).  When that is so, we emit the sub-VTTs
   for virtual bases of T. When it is not so, we build the constructor
   vtables for the BINFO-in-T variant.  */

static void
build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
		 tree *index)
{
  int i;
  tree b;
  tree init;
  secondary_vptr_vtt_init_data data;
  int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);

  /* We only need VTTs for subobjects with virtual bases.  */
  if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
    return;

  /* We need to use a construction vtable if this is not the primary
     VTT.  */
  if (!top_level_p)
    {
      build_ctor_vtbl_group (binfo, t);

      /* Record the offset in the VTT where this sub-VTT can be found.  */
      BINFO_SUBVTT_INDEX (binfo) = *index;
    }

  /* Add the address of the primary vtable for the complete object.  */
  init = binfo_ctor_vtable (binfo);
  CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
  if (top_level_p)
    {
      gcc_assert (!BINFO_VPTR_INDEX (binfo));
      BINFO_VPTR_INDEX (binfo) = *index;
    }
  *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));

  /* Recursively add the secondary VTTs for non-virtual bases.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
    if (!BINFO_VIRTUAL_P (b))
      build_vtt_inits (b, t, inits, index);

  /* Add secondary virtual pointers for all subobjects of BINFO with
     either virtual bases or reachable along a virtual path, except
     subobjects that are non-virtual primary bases.  */
  data.top_level_p = top_level_p;
  data.index = *index;
  data.inits = *inits;
  data.type_being_constructed = BINFO_TYPE (binfo);

  dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);

  *index = data.index;

  /* data.inits might have grown as we added secondary virtual pointers.
     Make sure our caller knows about the new vector.  */
  *inits = data.inits;

  if (top_level_p)
    /* Add the secondary VTTs for virtual bases in inheritance graph
       order.  */
    for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
      {
	if (!BINFO_VIRTUAL_P (b))
	  continue;

	build_vtt_inits (b, t, inits, index);
      }
  else
    /* Remove the ctor vtables we created.  */
    dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
}

/* Called from build_vtt_inits via dfs_walk.  BINFO is the binfo for the base
   in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure.  */

static tree
dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
{
  secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;

  /* We don't care about bases that don't have vtables.  */
  if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
    return dfs_skip_bases;

  /* We're only interested in proper subobjects of the type being
     constructed.  */
  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
    return NULL_TREE;

  /* We're only interested in bases with virtual bases or reachable
     via a virtual path from the type being constructed.  */
  if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
	|| binfo_via_virtual (binfo, data->type_being_constructed)))
    return dfs_skip_bases;

  /* We're not interested in non-virtual primary bases.  */
  if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
    return NULL_TREE;

  /* Record the index where this secondary vptr can be found.  */
  if (data->top_level_p)
    {
      gcc_assert (!BINFO_VPTR_INDEX (binfo));
      BINFO_VPTR_INDEX (binfo) = data->index;

      if (BINFO_VIRTUAL_P (binfo))
	{
	  /* It's a primary virtual base, and this is not a
	     construction vtable.  Find the base this is primary of in
	     the inheritance graph, and use that base's vtable
	     now.  */
	  while (BINFO_PRIMARY_P (binfo))
	    binfo = BINFO_INHERITANCE_CHAIN (binfo);
	}
    }

  /* Add the initializer for the secondary vptr itself.  */
  CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));

  /* Advance the vtt index.  */
  data->index = size_binop (PLUS_EXPR, data->index,
			    TYPE_SIZE_UNIT (ptr_type_node));

  return NULL_TREE;
}

/* Called from build_vtt_inits via dfs_walk. After building
   constructor vtables and generating the sub-vtt from them, we need
   to restore the BINFO_VTABLES that were scribbled on.  DATA is the
   binfo of the base whose sub vtt was generated.  */

static tree
dfs_fixup_binfo_vtbls (tree binfo, void* data)
{
  tree vtable = BINFO_VTABLE (binfo);

  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
    /* If this class has no vtable, none of its bases do.  */
    return dfs_skip_bases;

  if (!vtable)
    /* This might be a primary base, so have no vtable in this
       hierarchy.  */
    return NULL_TREE;

  /* If we scribbled the construction vtable vptr into BINFO, clear it
     out now.  */
  if (TREE_CODE (vtable) == TREE_LIST
      && (TREE_PURPOSE (vtable) == (tree) data))
    BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);

  return NULL_TREE;
}

/* Build the construction vtable group for BINFO which is in the
   hierarchy dominated by T.  */

static void
build_ctor_vtbl_group (tree binfo, tree t)
{
  tree type;
  tree vtbl;
  tree id;
  tree vbase;
  vec<constructor_elt, va_gc> *v;

  /* See if we've already created this construction vtable group.  */
  id = mangle_ctor_vtbl_for_type (t, binfo);
  if (get_global_binding (id))
    return;

  gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
  /* Build a version of VTBL (with the wrong type) for use in
     constructing the addresses of secondary vtables in the
     construction vtable group.  */
  vtbl = build_vtable (t, id, ptr_type_node);

  /* Don't export construction vtables from shared libraries.  Even on
     targets that don't support hidden visibility, this tells
     can_refer_decl_in_current_unit_p not to assume that it's safe to
     access from a different compilation unit (bz 54314).  */
  DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
  DECL_VISIBILITY_SPECIFIED (vtbl) = true;

  v = NULL;
  accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
			 binfo, vtbl, t, &v);

  /* Add the vtables for each of our virtual bases using the vbase in T
     binfo.  */
  for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
       vbase;
       vbase = TREE_CHAIN (vbase))
    {
      tree b;

      if (!BINFO_VIRTUAL_P (vbase))
	continue;
      b = copied_binfo (vbase, binfo);

      accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
    }

  /* Figure out the type of the construction vtable.  */
  type = build_array_of_n_type (vtable_entry_type, v->length ());
  layout_type (type);
  TREE_TYPE (vtbl) = type;
  DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
  layout_decl (vtbl, 0);

  /* Initialize the construction vtable.  */
  CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
  initialize_artificial_var (vtbl, v);
  dump_vtable (t, binfo, vtbl);
}

/* Add the vtbl initializers for BINFO (and its bases other than
   non-virtual primaries) to the list of INITS.  BINFO is in the
   hierarchy dominated by T.  RTTI_BINFO is the binfo within T of
   the constructor the vtbl inits should be accumulated for. (If this
   is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
   ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
   BINFO is the active base equivalent of ORIG_BINFO in the inheritance
   graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
   but are not necessarily the same in terms of layout.  */

static void
accumulate_vtbl_inits (tree binfo,
		       tree orig_binfo,
		       tree rtti_binfo,
		       tree vtbl,
		       tree t,
		       vec<constructor_elt, va_gc> **inits)
{
  int i;
  tree base_binfo;
  int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);

  gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));

  /* If it doesn't have a vptr, we don't do anything.  */
  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
    return;

  /* If we're building a construction vtable, we're not interested in
     subobjects that don't require construction vtables.  */
  if (ctor_vtbl_p
      && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
      && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
    return;

  /* Build the initializers for the BINFO-in-T vtable.  */
  dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);

  /* Walk the BINFO and its bases.  We walk in preorder so that as we
     initialize each vtable we can figure out at what offset the
     secondary vtable lies from the primary vtable.  We can't use
     dfs_walk here because we need to iterate through bases of BINFO
     and RTTI_BINFO simultaneously.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    {
      /* Skip virtual bases.  */
      if (BINFO_VIRTUAL_P (base_binfo))
	continue;
      accumulate_vtbl_inits (base_binfo,
			     BINFO_BASE_BINFO (orig_binfo, i),
			     rtti_binfo, vtbl, t,
			     inits);
    }
}

/* Called from accumulate_vtbl_inits.  Adds the initializers for the
   BINFO vtable to L.  */

static void
dfs_accumulate_vtbl_inits (tree binfo,
			   tree orig_binfo,
			   tree rtti_binfo,
			   tree orig_vtbl,
			   tree t,
			   vec<constructor_elt, va_gc> **l)
{
  tree vtbl = NULL_TREE;
  int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
  int n_inits;

  if (ctor_vtbl_p
      && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
    {
      /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
	 primary virtual base.  If it is not the same primary in
	 the hierarchy of T, we'll need to generate a ctor vtable
	 for it, to place at its location in T.  If it is the same
	 primary, we still need a VTT entry for the vtable, but it
	 should point to the ctor vtable for the base it is a
	 primary for within the sub-hierarchy of RTTI_BINFO.

	 There are three possible cases:

	 1) We are in the same place.
	 2) We are a primary base within a lost primary virtual base of
	 RTTI_BINFO.
	 3) We are primary to something not a base of RTTI_BINFO.  */

      tree b;
      tree last = NULL_TREE;

      /* First, look through the bases we are primary to for RTTI_BINFO
	 or a virtual base.  */
      b = binfo;
      while (BINFO_PRIMARY_P (b))
	{
	  b = BINFO_INHERITANCE_CHAIN (b);
	  last = b;
	  if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
	    goto found;
	}
      /* If we run out of primary links, keep looking down our
	 inheritance chain; we might be an indirect primary.  */
      for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
	if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
	  break;
    found:

      /* If we found RTTI_BINFO, this is case 1.  If we found a virtual
	 base B and it is a base of RTTI_BINFO, this is case 2.  In
	 either case, we share our vtable with LAST, i.e. the
	 derived-most base within B of which we are a primary.  */
      if (b == rtti_binfo
	  || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
	/* Just set our BINFO_VTABLE to point to LAST, as we may not have
	   set LAST's BINFO_VTABLE yet.  We'll extract the actual vptr in
	   binfo_ctor_vtable after everything's been set up.  */
	vtbl = last;

      /* Otherwise, this is case 3 and we get our own.  */
    }
  else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
    return;

  n_inits = vec_safe_length (*l);

  if (!vtbl)
    {
      tree index;
      int non_fn_entries;

      /* Add the initializer for this vtable.  */
      build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
                              &non_fn_entries, l);

      /* Figure out the position to which the VPTR should point.  */
      vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
      index = size_binop (MULT_EXPR,
			  TYPE_SIZE_UNIT (vtable_entry_type),
			  size_int (non_fn_entries + n_inits));
      vtbl = fold_build_pointer_plus (vtbl, index);
    }

  if (ctor_vtbl_p)
    /* For a construction vtable, we can't overwrite BINFO_VTABLE.
       So, we make a TREE_LIST.  Later, dfs_fixup_binfo_vtbls will
       straighten this out.  */
    BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
  else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
    /* Throw away any unneeded intializers.  */
    (*l)->truncate (n_inits);
  else
     /* For an ordinary vtable, set BINFO_VTABLE.  */
    BINFO_VTABLE (binfo) = vtbl;
}

static GTY(()) tree abort_fndecl_addr;
static GTY(()) tree dvirt_fn;

/* Construct the initializer for BINFO's virtual function table.  BINFO
   is part of the hierarchy dominated by T.  If we're building a
   construction vtable, the ORIG_BINFO is the binfo we should use to
   find the actual function pointers to put in the vtable - but they
   can be overridden on the path to most-derived in the graph that
   ORIG_BINFO belongs.  Otherwise,
   ORIG_BINFO should be the same as BINFO.  The RTTI_BINFO is the
   BINFO that should be indicated by the RTTI information in the
   vtable; it will be a base class of T, rather than T itself, if we
   are building a construction vtable.

   The value returned is a TREE_LIST suitable for wrapping in a
   CONSTRUCTOR to use as the DECL_INITIAL for a vtable.  If
   NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
   number of non-function entries in the vtable.

   It might seem that this function should never be called with a
   BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
   base is always subsumed by a derived class vtable.  However, when
   we are building construction vtables, we do build vtables for
   primary bases; we need these while the primary base is being
   constructed.  */

static void
build_vtbl_initializer (tree binfo,
			tree orig_binfo,
			tree t,
			tree rtti_binfo,
			int* non_fn_entries_p,
			vec<constructor_elt, va_gc> **inits)
{
  tree v;
  vtbl_init_data vid;
  unsigned ix, jx;
  tree vbinfo;
  vec<tree, va_gc> *vbases;
  constructor_elt *e;

  /* Initialize VID.  */
  memset (&vid, 0, sizeof (vid));
  vid.binfo = binfo;
  vid.derived = t;
  vid.rtti_binfo = rtti_binfo;
  vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
  vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
  vid.generate_vcall_entries = true;
  /* The first vbase or vcall offset is at index -3 in the vtable.  */
  vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);

  /* Add entries to the vtable for RTTI.  */
  build_rtti_vtbl_entries (binfo, &vid);

  /* Create an array for keeping track of the functions we've
     processed.  When we see multiple functions with the same
     signature, we share the vcall offsets.  */
  vec_alloc (vid.fns, 32);
  /* Add the vcall and vbase offset entries.  */
  build_vcall_and_vbase_vtbl_entries (binfo, &vid);

  /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
     build_vbase_offset_vtbl_entries.  */
  for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
       vec_safe_iterate (vbases, ix, &vbinfo); ix++)
    BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;

  /* If the target requires padding between data entries, add that now.  */
  if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
    {
      int n_entries = vec_safe_length (vid.inits);

      vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);

      /* Move data entries into their new positions and add padding
	 after the new positions.  Iterate backwards so we don't
	 overwrite entries that we would need to process later.  */
      for (ix = n_entries - 1;
	   vid.inits->iterate (ix, &e);
	   ix--)
	{
	  int j;
	  int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
			      + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));

	  (*vid.inits)[new_position] = *e;

	  for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
	    {
	      constructor_elt *f = &(*vid.inits)[new_position - j];
	      f->index = NULL_TREE;
	      f->value = build1 (NOP_EXPR, vtable_entry_type,
				 null_pointer_node);
	    }
	}
    }

  if (non_fn_entries_p)
    *non_fn_entries_p = vec_safe_length (vid.inits);

  /* The initializers for virtual functions were built up in reverse
     order.  Straighten them out and add them to the running list in one
     step.  */
  jx = vec_safe_length (*inits);
  vec_safe_grow (*inits, jx + vid.inits->length ());

  for (ix = vid.inits->length () - 1;
       vid.inits->iterate (ix, &e);
       ix--, jx++)
    (**inits)[jx] = *e;

  /* Go through all the ordinary virtual functions, building up
     initializers.  */
  for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
    {
      tree delta;
      tree vcall_index;
      tree fn, fn_original;
      tree init = NULL_TREE;

      fn = BV_FN (v);
      fn_original = fn;
      if (DECL_THUNK_P (fn))
	{
	  if (!DECL_NAME (fn))
	    finish_thunk (fn);
	  if (THUNK_ALIAS (fn))
	    {
	      fn = THUNK_ALIAS (fn);
	      BV_FN (v) = fn;
	    }
	  fn_original = THUNK_TARGET (fn);
	}

      /* If the only definition of this function signature along our
	 primary base chain is from a lost primary, this vtable slot will
	 never be used, so just zero it out.  This is important to avoid
	 requiring extra thunks which cannot be generated with the function.

	 We first check this in update_vtable_entry_for_fn, so we handle
	 restored primary bases properly; we also need to do it here so we
	 zero out unused slots in ctor vtables, rather than filling them
	 with erroneous values (though harmless, apart from relocation
	 costs).  */
      if (BV_LOST_PRIMARY (v))
	init = size_zero_node;

      if (! init)
	{
	  /* Pull the offset for `this', and the function to call, out of
	     the list.  */
	  delta = BV_DELTA (v);
	  vcall_index = BV_VCALL_INDEX (v);

	  gcc_assert (TREE_CODE (delta) == INTEGER_CST);
	  gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);

	  /* You can't call an abstract virtual function; it's abstract.
	     So, we replace these functions with __pure_virtual.  */
	  if (DECL_PURE_VIRTUAL_P (fn_original))
	    {
	      fn = abort_fndecl;
	      if (!TARGET_VTABLE_USES_DESCRIPTORS)
		{
		  if (abort_fndecl_addr == NULL)
		    abort_fndecl_addr
		      = fold_convert (vfunc_ptr_type_node,
				      build_fold_addr_expr (fn));
		  init = abort_fndecl_addr;
		}
	    }
	  /* Likewise for deleted virtuals.  */
	  else if (DECL_DELETED_FN (fn_original))
	    {
	      if (!dvirt_fn)
		{
		  tree name = get_identifier ("__cxa_deleted_virtual");
		  dvirt_fn = get_global_binding (name);
		  if (!dvirt_fn)
		    dvirt_fn = push_library_fn
		      (name,
		       build_function_type_list (void_type_node, NULL_TREE),
		       NULL_TREE, ECF_NORETURN | ECF_COLD);
		}
	      fn = dvirt_fn;
	      if (!TARGET_VTABLE_USES_DESCRIPTORS)
		init = fold_convert (vfunc_ptr_type_node,
				     build_fold_addr_expr (fn));
	    }
	  else
	    {
	      if (!integer_zerop (delta) || vcall_index)
		{
		  fn = make_thunk (fn, /*this_adjusting=*/1,
				   delta, vcall_index);
		  if (!DECL_NAME (fn))
		    finish_thunk (fn);
		}
	      /* Take the address of the function, considering it to be of an
		 appropriate generic type.  */
	      if (!TARGET_VTABLE_USES_DESCRIPTORS)
		init = fold_convert (vfunc_ptr_type_node,
				     build_fold_addr_expr (fn));
	      /* Don't refer to a virtual destructor from a constructor
		 vtable or a vtable for an abstract class, since destroying
		 an object under construction is undefined behavior and we
		 don't want it to be considered a candidate for speculative
		 devirtualization.  But do create the thunk for ABI
		 compliance.  */
	      if (DECL_DESTRUCTOR_P (fn_original)
		  && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
		      || orig_binfo != binfo))
		init = size_zero_node;
	    }
	}

      /* And add it to the chain of initializers.  */
      if (TARGET_VTABLE_USES_DESCRIPTORS)
	{
	  int i;
	  if (init == size_zero_node)
	    for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
	      CONSTRUCTOR_APPEND_ELT (*inits, size_int (jx++), init);
	  else
	    for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
	      {
		tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
				     fn, build_int_cst (NULL_TREE, i));
		TREE_CONSTANT (fdesc) = 1;

		CONSTRUCTOR_APPEND_ELT (*inits, size_int (jx++), fdesc);
	      }
	}
      else
	CONSTRUCTOR_APPEND_ELT (*inits, size_int (jx++), init);
    }
}

/* Adds to vid->inits the initializers for the vbase and vcall
   offsets in BINFO, which is in the hierarchy dominated by T.  */

static void
build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
{
  tree b;

  /* If this is a derived class, we must first create entries
     corresponding to the primary base class.  */
  b = get_primary_binfo (binfo);
  if (b)
    build_vcall_and_vbase_vtbl_entries (b, vid);

  /* Add the vbase entries for this base.  */
  build_vbase_offset_vtbl_entries (binfo, vid);
  /* Add the vcall entries for this base.  */
  build_vcall_offset_vtbl_entries (binfo, vid);
}

/* Returns the initializers for the vbase offset entries in the vtable
   for BINFO (which is part of the class hierarchy dominated by T), in
   reverse order.  VBASE_OFFSET_INDEX gives the vtable index
   where the next vbase offset will go.  */

static void
build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
{
  tree vbase;
  tree t;
  tree non_primary_binfo;

  /* If there are no virtual baseclasses, then there is nothing to
     do.  */
  if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
    return;

  t = vid->derived;

  /* We might be a primary base class.  Go up the inheritance hierarchy
     until we find the most derived class of which we are a primary base:
     it is the offset of that which we need to use.  */
  non_primary_binfo = binfo;
  while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
    {
      tree b;

      /* If we have reached a virtual base, then it must be a primary
	 base (possibly multi-level) of vid->binfo, or we wouldn't
	 have called build_vcall_and_vbase_vtbl_entries for it.  But it
	 might be a lost primary, so just skip down to vid->binfo.  */
      if (BINFO_VIRTUAL_P (non_primary_binfo))
	{
	  non_primary_binfo = vid->binfo;
	  break;
	}

      b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
      if (get_primary_binfo (b) != non_primary_binfo)
	break;
      non_primary_binfo = b;
    }

  /* Go through the virtual bases, adding the offsets.  */
  for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
       vbase;
       vbase = TREE_CHAIN (vbase))
    {
      tree b;
      tree delta;

      if (!BINFO_VIRTUAL_P (vbase))
	continue;

      /* Find the instance of this virtual base in the complete
	 object.  */
      b = copied_binfo (vbase, binfo);

      /* If we've already got an offset for this virtual base, we
	 don't need another one.  */
      if (BINFO_VTABLE_PATH_MARKED (b))
	continue;
      BINFO_VTABLE_PATH_MARKED (b) = 1;

      /* Figure out where we can find this vbase offset.  */
      delta = size_binop (MULT_EXPR,
			  vid->index,
			  fold_convert (ssizetype,
				   TYPE_SIZE_UNIT (vtable_entry_type)));
      if (vid->primary_vtbl_p)
	BINFO_VPTR_FIELD (b) = delta;

      if (binfo != TYPE_BINFO (t))
	/* The vbase offset had better be the same.  */
	gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));

      /* The next vbase will come at a more negative offset.  */
      vid->index = size_binop (MINUS_EXPR, vid->index,
			       ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));

      /* The initializer is the delta from BINFO to this virtual base.
	 The vbase offsets go in reverse inheritance-graph order, and
	 we are walking in inheritance graph order so these end up in
	 the right order.  */
      delta = size_diffop_loc (input_location,
			   BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));

      CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
			      fold_build1_loc (input_location, NOP_EXPR,
					       vtable_entry_type, delta));
    }
}

/* Adds the initializers for the vcall offset entries in the vtable
   for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
   to VID->INITS.  */

static void
build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
{
  /* We only need these entries if this base is a virtual base.  We
     compute the indices -- but do not add to the vtable -- when
     building the main vtable for a class.  */
  if (binfo == TYPE_BINFO (vid->derived)
      || (BINFO_VIRTUAL_P (binfo) 
	  /* If BINFO is RTTI_BINFO, then (since BINFO does not
	     correspond to VID->DERIVED), we are building a primary
	     construction virtual table.  Since this is a primary
	     virtual table, we do not need the vcall offsets for
	     BINFO.  */
	  && binfo != vid->rtti_binfo))
    {
      /* We need a vcall offset for each of the virtual functions in this
	 vtable.  For example:

	   class A { virtual void f (); };
	   class B1 : virtual public A { virtual void f (); };
	   class B2 : virtual public A { virtual void f (); };
	   class C: public B1, public B2 { virtual void f (); };

	 A C object has a primary base of B1, which has a primary base of A.  A
	 C also has a secondary base of B2, which no longer has a primary base
	 of A.  So the B2-in-C construction vtable needs a secondary vtable for
	 A, which will adjust the A* to a B2* to call f.  We have no way of
	 knowing what (or even whether) this offset will be when we define B2,
	 so we store this "vcall offset" in the A sub-vtable and look it up in
	 a "virtual thunk" for B2::f.

	 We need entries for all the functions in our primary vtable and
	 in our non-virtual bases' secondary vtables.  */
      vid->vbase = binfo;
      /* If we are just computing the vcall indices -- but do not need
	 the actual entries -- not that.  */
      if (!BINFO_VIRTUAL_P (binfo))
	vid->generate_vcall_entries = false;
      /* Now, walk through the non-virtual bases, adding vcall offsets.  */
      add_vcall_offset_vtbl_entries_r (binfo, vid);
    }
}

/* Build vcall offsets, starting with those for BINFO.  */

static void
add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
{
  int i;
  tree primary_binfo;
  tree base_binfo;

  /* Don't walk into virtual bases -- except, of course, for the
     virtual base for which we are building vcall offsets.  Any
     primary virtual base will have already had its offsets generated
     through the recursion in build_vcall_and_vbase_vtbl_entries.  */
  if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
    return;

  /* If BINFO has a primary base, process it first.  */
  primary_binfo = get_primary_binfo (binfo);
  if (primary_binfo)
    add_vcall_offset_vtbl_entries_r (primary_binfo, vid);

  /* Add BINFO itself to the list.  */
  add_vcall_offset_vtbl_entries_1 (binfo, vid);

  /* Scan the non-primary bases of BINFO.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    if (base_binfo != primary_binfo)
      add_vcall_offset_vtbl_entries_r (base_binfo, vid);
}

/* Called from build_vcall_offset_vtbl_entries_r.  */

static void
add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
{
  /* Make entries for the rest of the virtuals.  */
  tree orig_fn;

  /* The ABI requires that the methods be processed in declaration
     order.  */
  for (orig_fn = TYPE_FIELDS (BINFO_TYPE (binfo));
       orig_fn;
       orig_fn = DECL_CHAIN (orig_fn))
    if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
      add_vcall_offset (orig_fn, binfo, vid);
}

/* Add a vcall offset entry for ORIG_FN to the vtable.  */

static void
add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
{
  size_t i;
  tree vcall_offset;
  tree derived_entry;

  /* If there is already an entry for a function with the same
     signature as FN, then we do not need a second vcall offset.
     Check the list of functions already present in the derived
     class vtable.  */
  FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
    {
      if (same_signature_p (derived_entry, orig_fn)
	  /* We only use one vcall offset for virtual destructors,
	     even though there are two virtual table entries.  */
	  || (DECL_DESTRUCTOR_P (derived_entry)
	      && DECL_DESTRUCTOR_P (orig_fn)))
	return;
    }

  /* If we are building these vcall offsets as part of building
     the vtable for the most derived class, remember the vcall
     offset.  */
  if (vid->binfo == TYPE_BINFO (vid->derived))
    {
      tree_pair_s elt = {orig_fn, vid->index};
      vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
    }

  /* The next vcall offset will be found at a more negative
     offset.  */
  vid->index = size_binop (MINUS_EXPR, vid->index,
			   ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));

  /* Keep track of this function.  */
  vec_safe_push (vid->fns, orig_fn);

  if (vid->generate_vcall_entries)
    {
      tree base;
      tree fn;

      /* Find the overriding function.  */
      fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
      if (fn == error_mark_node)
	vcall_offset = build_zero_cst (vtable_entry_type);
      else
	{
	  base = TREE_VALUE (fn);

	  /* The vbase we're working on is a primary base of
	     vid->binfo.  But it might be a lost primary, so its
	     BINFO_OFFSET might be wrong, so we just use the
	     BINFO_OFFSET from vid->binfo.  */
	  vcall_offset = size_diffop_loc (input_location,
				      BINFO_OFFSET (base),
				      BINFO_OFFSET (vid->binfo));
	  vcall_offset = fold_build1_loc (input_location,
				      NOP_EXPR, vtable_entry_type,
				      vcall_offset);
	}
      /* Add the initializer to the vtable.  */
      CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
    }
}

/* Return vtbl initializers for the RTTI entries corresponding to the
   BINFO's vtable.  The RTTI entries should indicate the object given
   by VID->rtti_binfo.  */

static void
build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
{
  tree b;
  tree t;
  tree offset;
  tree decl;
  tree init;

  t = BINFO_TYPE (vid->rtti_binfo);

  /* To find the complete object, we will first convert to our most
     primary base, and then add the offset in the vtbl to that value.  */
  b = most_primary_binfo (binfo);
  offset = size_diffop_loc (input_location,
			BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));

  /* The second entry is the address of the typeinfo object.  */
  if (flag_rtti)
    decl = build_address (get_tinfo_decl (t));
  else
    decl = integer_zero_node;

  /* Convert the declaration to a type that can be stored in the
     vtable.  */
  init = build_nop (vfunc_ptr_type_node, decl);
  CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);

  /* Add the offset-to-top entry.  It comes earlier in the vtable than
     the typeinfo entry.  Convert the offset to look like a
     function pointer, so that we can put it in the vtable.  */
  init = build_nop (vfunc_ptr_type_node, offset);
  CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
}

/* TRUE iff TYPE is uniquely derived from PARENT.  Ignores
   accessibility.  */

bool
uniquely_derived_from_p (tree parent, tree type)
{
  tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
  return base && base != error_mark_node;
}

/* TRUE iff TYPE is publicly & uniquely derived from PARENT.  */

bool
publicly_uniquely_derived_p (tree parent, tree type)
{
  tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
			   NULL, tf_none);
  return base && base != error_mark_node;
}

/* CTX1 and CTX2 are declaration contexts.  Return the innermost common
   class between them, if any.  */

tree
common_enclosing_class (tree ctx1, tree ctx2)
{
  if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
    return NULL_TREE;
  gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
	      && ctx2 == TYPE_MAIN_VARIANT (ctx2));
  if (ctx1 == ctx2)
    return ctx1;
  for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
    TYPE_MARKED_P (t) = true;
  tree found = NULL_TREE;
  for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
    if (TYPE_MARKED_P (t))
      {
	found = t;
	break;
      }
  for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
    TYPE_MARKED_P (t) = false;
  return found;
}

#include "gt-cp-class.h"