Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
/* Convert a program in SSA form into Normal form.
   Copyright (C) 2004-2020 Free Software Foundation, Inc.
   Contributed by Andrew Macleod <amacleod@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "ssa.h"
#include "tree-ssa.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "tree-dfa.h"
#include "stor-layout.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "dumpfile.h"
#include "tree-ssa-live.h"
#include "tree-ssa-ter.h"
#include "tree-ssa-coalesce.h"
#include "tree-outof-ssa.h"
#include "dojump.h"

/* FIXME: A lot of code here deals with expanding to RTL.  All that code
   should be in cfgexpand.c.  */
#include "explow.h"
#include "expr.h"

/* Return TRUE if expression STMT is suitable for replacement.  */

bool
ssa_is_replaceable_p (gimple *stmt)
{
  use_operand_p use_p;
  tree def;
  gimple *use_stmt;

  /* Only consider modify stmts.  */
  if (!is_gimple_assign (stmt))
    return false;

  /* If the statement may throw an exception, it cannot be replaced.  */
  if (stmt_could_throw_p (cfun, stmt))
    return false;

  /* Punt if there is more than 1 def.  */
  def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
  if (!def)
    return false;

  /* Only consider definitions which have a single use.  */
  if (!single_imm_use (def, &use_p, &use_stmt))
    return false;

  /* Used in this block, but at the TOP of the block, not the end.  */
  if (gimple_code (use_stmt) == GIMPLE_PHI)
    return false;

  /* There must be no VDEFs.  */
  if (gimple_vdef (stmt))
    return false;

  /* Float expressions must go through memory if float-store is on.  */
  if (flag_float_store
      && FLOAT_TYPE_P (gimple_expr_type (stmt)))
    return false;

  /* An assignment with a register variable on the RHS is not
     replaceable.  */
  if (gimple_assign_rhs_code (stmt) == VAR_DECL
      && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
    return false;

  /* No function calls can be replaced.  */
  if (is_gimple_call (stmt))
    return false;

  /* Leave any stmt with volatile operands alone as well.  */
  if (gimple_has_volatile_ops (stmt))
    return false;

  return true;
}


/* Used to hold all the components required to do SSA PHI elimination.
   The node and pred/succ list is a simple linear list of nodes and
   edges represented as pairs of nodes.

   The predecessor and successor list:  Nodes are entered in pairs, where
   [0] ->PRED, [1]->SUCC.  All the even indexes in the array represent
   predecessors, all the odd elements are successors.

   Rationale:
   When implemented as bitmaps, very large programs SSA->Normal times were
   being dominated by clearing the interference graph.

   Typically this list of edges is extremely small since it only includes
   PHI results and uses from a single edge which have not coalesced with
   each other.  This means that no virtual PHI nodes are included, and
   empirical evidence suggests that the number of edges rarely exceed
   3, and in a bootstrap of GCC, the maximum size encountered was 7.
   This also limits the number of possible nodes that are involved to
   rarely more than 6, and in the bootstrap of gcc, the maximum number
   of nodes encountered was 12.  */

class elim_graph
{
public:
  elim_graph (var_map map);

  /* Size of the elimination vectors.  */
  int size;

  /* List of nodes in the elimination graph.  */
  auto_vec<int> nodes;

  /*  The predecessor and successor edge list.  */
  auto_vec<int> edge_list;

  /* Source locus on each edge */
  auto_vec<location_t> edge_locus;

  /* Visited vector.  */
  auto_sbitmap visited;

  /* Stack for visited nodes.  */
  auto_vec<int> stack;

  /* The variable partition map.  */
  var_map map;

  /* Edge being eliminated by this graph.  */
  edge e;

  /* List of constant copies to emit.  These are pushed on in pairs.  */
  auto_vec<int> const_dests;
  auto_vec<tree> const_copies;

  /* Source locations for any constant copies.  */
  auto_vec<location_t> copy_locus;
};


/* For an edge E find out a good source location to associate with
   instructions inserted on edge E.  If E has an implicit goto set,
   use its location.  Otherwise search instructions in predecessors
   of E for a location, and use that one.  That makes sense because
   we insert on edges for PHI nodes, and effects of PHIs happen on
   the end of the predecessor conceptually.  An exception is made
   for EH edges because we don't want to drag the source location
   of unrelated statements at the beginning of handlers; they would
   be further reused for various EH constructs, which would damage
   the coverage information.  */

static void
set_location_for_edge (edge e)
{
  if (e->goto_locus)
    set_curr_insn_location (e->goto_locus);
  else if (e->flags & EDGE_EH)
    {
      basic_block bb = e->dest;
      gimple_stmt_iterator gsi;

      do
	{
	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	    {
	      gimple *stmt = gsi_stmt (gsi);
	      if (is_gimple_debug (stmt))
		continue;
	      if (gimple_has_location (stmt) || gimple_block (stmt))
		{
		  set_curr_insn_location (gimple_location (stmt));
		  return;
		}
	    }
	  /* Nothing found in this basic block.  Make a half-assed attempt
	     to continue with another block.  */
	  if (single_succ_p (bb))
	    bb = single_succ (bb);
	  else
	    bb = e->dest;
	}
      while (bb != e->dest);
    }
  else
    {
      basic_block bb = e->src;
      gimple_stmt_iterator gsi;

      do
	{
	  for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
	    {
	      gimple *stmt = gsi_stmt (gsi);
	      if (is_gimple_debug (stmt))
		continue;
	      if (gimple_has_location (stmt) || gimple_block (stmt))
		{
		  set_curr_insn_location (gimple_location (stmt));
		  return;
		}
	    }
	  /* Nothing found in this basic block.  Make a half-assed attempt
	     to continue with another block.  */
	  if (single_pred_p (bb))
	    bb = single_pred (bb);
	  else
	    bb = e->src;
	}
      while (bb != e->src);
    }
}

/* Emit insns to copy SRC into DEST converting SRC if necessary.  As
   SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
   which we deduce the size to copy in that case.  */

static inline rtx_insn *
emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
{
  start_sequence ();

  if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
    src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
  if (GET_MODE (src) == BLKmode)
    {
      gcc_assert (GET_MODE (dest) == BLKmode);
      emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
    }
  else
    emit_move_insn (dest, src);
  do_pending_stack_adjust ();

  rtx_insn *seq = get_insns ();
  end_sequence ();

  return seq;
}

/* Insert a copy instruction from partition SRC to DEST onto edge E.  */

static void
insert_partition_copy_on_edge (edge e, int dest, int src, location_t locus)
{
  tree var;
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file,
	       "Inserting a partition copy on edge BB%d->BB%d : "
	       "PART.%d = PART.%d",
	       e->src->index,
	       e->dest->index, dest, src);
      fprintf (dump_file, "\n");
    }

  gcc_assert (SA.partition_to_pseudo[dest]);
  gcc_assert (SA.partition_to_pseudo[src]);

  set_location_for_edge (e);
  /* If a locus is provided, override the default.  */
  if (locus)
    set_curr_insn_location (locus);

  var = partition_to_var (SA.map, src);
  rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
				       copy_rtx (SA.partition_to_pseudo[src]),
				       TYPE_UNSIGNED (TREE_TYPE (var)),
				       var);

  insert_insn_on_edge (seq, e);
}

/* Insert a copy instruction from expression SRC to partition DEST
   onto edge E.  */

static void
insert_value_copy_on_edge (edge e, int dest, tree src, location_t locus)
{
  rtx dest_rtx, seq, x;
  machine_mode dest_mode, src_mode;
  int unsignedp;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file,
	       "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
	       e->src->index,
	       e->dest->index, dest);
      print_generic_expr (dump_file, src, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
  gcc_assert (dest_rtx);

  set_location_for_edge (e);
  /* If a locus is provided, override the default.  */
  if (locus)
    set_curr_insn_location (locus);

  start_sequence ();

  tree name = partition_to_var (SA.map, dest);
  src_mode = TYPE_MODE (TREE_TYPE (src));
  dest_mode = GET_MODE (dest_rtx);
  gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (name)));
  gcc_assert (!REG_P (dest_rtx)
	      || dest_mode == promote_ssa_mode (name, &unsignedp));

  if (src_mode != dest_mode)
    {
      x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
      x = convert_modes (dest_mode, src_mode, x, unsignedp);
    }
  else if (src_mode == BLKmode)
    {
      x = dest_rtx;
      store_expr (src, x, 0, false, false);
    }
  else
    x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);

  if (x != dest_rtx)
    emit_move_insn (dest_rtx, x);
  do_pending_stack_adjust ();

  seq = get_insns ();
  end_sequence ();

  insert_insn_on_edge (seq, e);
}

/* Insert a copy instruction from RTL expression SRC to partition DEST
   onto edge E.  */

static void
insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
			    location_t locus)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file,
	       "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
	       e->src->index,
	       e->dest->index, dest);
      print_simple_rtl (dump_file, src);
      fprintf (dump_file, "\n");
    }

  gcc_assert (SA.partition_to_pseudo[dest]);

  set_location_for_edge (e);
  /* If a locus is provided, override the default.  */
  if (locus)
    set_curr_insn_location (locus);

  /* We give the destination as sizeexp in case src/dest are BLKmode
     mems.  Usually we give the source.  As we result from SSA names
     the left and right size should be the same (and no WITH_SIZE_EXPR
     involved), so it doesn't matter.  */
  rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
				       src, unsignedsrcp,
				       partition_to_var (SA.map, dest));

  insert_insn_on_edge (seq, e);
}

/* Insert a copy instruction from partition SRC to RTL lvalue DEST
   onto edge E.  */

static void
insert_part_to_rtx_on_edge (edge e, rtx dest, int src, location_t locus)
{
  tree var;
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file,
	       "Inserting a temp copy on edge BB%d->BB%d : ",
	       e->src->index,
	       e->dest->index);
      print_simple_rtl (dump_file, dest);
      fprintf (dump_file, "= PART.%d\n", src);
    }

  gcc_assert (SA.partition_to_pseudo[src]);

  set_location_for_edge (e);
  /* If a locus is provided, override the default.  */
  if (locus)
    set_curr_insn_location (locus);

  var = partition_to_var (SA.map, src);
  rtx_insn *seq = emit_partition_copy (dest,
				       copy_rtx (SA.partition_to_pseudo[src]),
				       TYPE_UNSIGNED (TREE_TYPE (var)),
				       var);

  insert_insn_on_edge (seq, e);
}


/* Create an elimination graph for map.  */

elim_graph::elim_graph (var_map map) :
  nodes (30), edge_list (20), edge_locus (10), visited (map->num_partitions),
  stack (30), map (map), const_dests (20), const_copies (20), copy_locus (10)
{
}


/* Empty elimination graph G.  */

static inline void
clear_elim_graph (elim_graph *g)
{
  g->nodes.truncate (0);
  g->edge_list.truncate (0);
  g->edge_locus.truncate (0);
}


/* Return the number of nodes in graph G.  */

static inline int
elim_graph_size (elim_graph *g)
{
  return g->nodes.length ();
}


/* Add NODE to graph G, if it doesn't exist already.  */

static inline void
elim_graph_add_node (elim_graph *g, int node)
{
  int x;
  int t;

  FOR_EACH_VEC_ELT (g->nodes, x, t)
    if (t == node)
      return;
  g->nodes.safe_push (node);
}


/* Add the edge PRED->SUCC to graph G.  */

static inline void
elim_graph_add_edge (elim_graph *g, int pred, int succ, location_t locus)
{
  g->edge_list.safe_push (pred);
  g->edge_list.safe_push (succ);
  g->edge_locus.safe_push (locus);
}


/* Remove an edge from graph G for which NODE is the predecessor, and
   return the successor node.  -1 is returned if there is no such edge.  */

static inline int
elim_graph_remove_succ_edge (elim_graph *g, int node, location_t *locus)
{
  int y;
  unsigned x;
  for (x = 0; x < g->edge_list.length (); x += 2)
    if (g->edge_list[x] == node)
      {
        g->edge_list[x] = -1;
	y = g->edge_list[x + 1];
	g->edge_list[x + 1] = -1;
	*locus = g->edge_locus[x / 2];
	g->edge_locus[x / 2] = UNKNOWN_LOCATION;
	return y;
      }
  *locus = UNKNOWN_LOCATION;
  return -1;
}


/* Find all the nodes in GRAPH which are successors to NODE in the
   edge list.  VAR will hold the partition number found.  CODE is the
   code fragment executed for every node found.  */

#define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE)		\
do {									\
  unsigned x_;								\
  int y_;								\
  for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2)	\
    {									\
      y_ = (GRAPH)->edge_list[x_];					\
      if (y_ != (NODE))							\
        continue;							\
      (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]);			\
      (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]);			\
      CODE;								\
    }									\
} while (0)


/* Find all the nodes which are predecessors of NODE in the edge list for
   GRAPH.  VAR will hold the partition number found.  CODE is the
   code fragment executed for every node found.  */

#define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE)		\
do {									\
  unsigned x_;								\
  int y_;								\
  for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2)	\
    {									\
      y_ = (GRAPH)->edge_list[x_ + 1];					\
      if (y_ != (NODE))							\
        continue;							\
      (void) ((VAR) = (GRAPH)->edge_list[x_]);				\
      (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]);			\
      CODE;								\
    }									\
} while (0)


/* Add T to elimination graph G.  */

static inline void
eliminate_name (elim_graph *g, int T)
{
  elim_graph_add_node (g, T);
}

/* Return true if this phi argument T should have a copy queued when using
   var_map MAP.  PHI nodes should contain only ssa_names and invariants.  A
   test for ssa_name is definitely simpler, but don't let invalid contents
   slip through in the meantime.  */

static inline bool
queue_phi_copy_p (var_map map, tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    { 
      if (var_to_partition (map, t) == NO_PARTITION)
        return true;
      return false;
    }
  gcc_checking_assert (is_gimple_min_invariant (t));
  return true;
}

/* Build elimination graph G for basic block BB on incoming PHI edge
   G->e.  */

static void
eliminate_build (elim_graph *g)
{
  tree Ti;
  int p0, pi;
  gphi_iterator gsi;

  clear_elim_graph (g);

  for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gphi *phi = gsi.phi ();
      location_t locus;

      p0 = var_to_partition (g->map, gimple_phi_result (phi));
      /* Ignore results which are not in partitions.  */
      if (p0 == NO_PARTITION)
	continue;

      Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
      /* See set_location_for_edge for the rationale.  */
      if (g->e->flags & EDGE_EH)
	locus = UNKNOWN_LOCATION;
      else
	locus = gimple_phi_arg_location_from_edge (phi, g->e);

      /* If this argument is a constant, or a SSA_NAME which is being
	 left in SSA form, just queue a copy to be emitted on this
	 edge.  */
      if (queue_phi_copy_p (g->map, Ti))
        {
	  /* Save constant copies until all other copies have been emitted
	     on this edge.  */
	  g->const_dests.safe_push (p0);
	  g->const_copies.safe_push (Ti);
	  g->copy_locus.safe_push (locus);
	}
      else
        {
	  pi = var_to_partition (g->map, Ti);
	  if (p0 != pi)
	    {
	      eliminate_name (g, p0);
	      eliminate_name (g, pi);
	      elim_graph_add_edge (g, p0, pi, locus);
	    }
	}
    }
}


/* Push successors of T onto the elimination stack for G.  */

static void
elim_forward (elim_graph *g, int T)
{
  int S;
  location_t locus;

  bitmap_set_bit (g->visited, T);
  FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
    {
      if (!bitmap_bit_p (g->visited, S))
        elim_forward (g, S);
    });
  g->stack.safe_push (T);
}


/* Return 1 if there unvisited predecessors of T in graph G.  */

static int
elim_unvisited_predecessor (elim_graph *g, int T)
{
  int P;
  location_t locus;

  FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
    {
      if (!bitmap_bit_p (g->visited, P))
        return 1;
    });
  return 0;
}

/* Process predecessors first, and insert a copy.  */

static void
elim_backward (elim_graph *g, int T)
{
  int P;
  location_t locus;

  bitmap_set_bit (g->visited, T);
  FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
    {
      if (!bitmap_bit_p (g->visited, P))
        {
	  elim_backward (g, P);
	  insert_partition_copy_on_edge (g->e, P, T, locus);
	}
    });
}

/* Allocate a new pseudo register usable for storing values sitting
   in NAME (a decl or SSA name), i.e. with matching mode and attributes.  */

static rtx
get_temp_reg (tree name)
{
  tree type = TREE_TYPE (name);
  int unsignedp;
  machine_mode reg_mode = promote_ssa_mode (name, &unsignedp);
  if (reg_mode == BLKmode)
    return assign_temp (type, 0, 0);
  rtx x = gen_reg_rtx (reg_mode);
  if (POINTER_TYPE_P (type))
    mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
  return x;
}

/* Insert required copies for T in graph G.  Check for a strongly connected
   region, and create a temporary to break the cycle if one is found.  */

static void
elim_create (elim_graph *g, int T)
{
  int P, S;
  location_t locus;

  if (elim_unvisited_predecessor (g, T))
    {
      tree var = partition_to_var (g->map, T);
      rtx U = get_temp_reg (var);
      int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));

      insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
      FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
	{
	  if (!bitmap_bit_p (g->visited, P))
	    {
	      elim_backward (g, P);
	      insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
	    }
	});
    }
  else
    {
      S = elim_graph_remove_succ_edge (g, T, &locus);
      if (S != -1)
	{
	  bitmap_set_bit (g->visited, T);
	  insert_partition_copy_on_edge (g->e, T, S, locus);
	}
    }
}


/* Eliminate all the phi nodes on edge E in graph G.  */

static void
eliminate_phi (edge e, elim_graph *g)
{
  int x;

  gcc_assert (g->const_copies.length () == 0);
  gcc_assert (g->copy_locus.length () == 0);

  /* Abnormal edges already have everything coalesced.  */
  if (e->flags & EDGE_ABNORMAL)
    return;

  g->e = e;

  eliminate_build (g);

  if (elim_graph_size (g) != 0)
    {
      int part;

      bitmap_clear (g->visited);
      g->stack.truncate (0);

      FOR_EACH_VEC_ELT (g->nodes, x, part)
        {
	  if (!bitmap_bit_p (g->visited, part))
	    elim_forward (g, part);
	}

      bitmap_clear (g->visited);
      while (g->stack.length () > 0)
	{
	  x = g->stack.pop ();
	  if (!bitmap_bit_p (g->visited, x))
	    elim_create (g, x);
	}
    }

  /* If there are any pending constant copies, issue them now.  */
  while (g->const_copies.length () > 0)
    {
      int dest;
      tree src;
      location_t locus;

      src = g->const_copies.pop ();
      dest = g->const_dests.pop ();
      locus = g->copy_locus.pop ();
      insert_value_copy_on_edge (e, dest, src, locus);
    }
}


/* Remove each argument from PHI.  If an arg was the last use of an SSA_NAME,
   check to see if this allows another PHI node to be removed.  */

static void
remove_gimple_phi_args (gphi *phi)
{
  use_operand_p arg_p;
  ssa_op_iter iter;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Removing Dead PHI definition: ");
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
    }

  FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
    {
      tree arg = USE_FROM_PTR (arg_p);
      if (TREE_CODE (arg) == SSA_NAME)
        {
	  /* Remove the reference to the existing argument.  */
	  SET_USE (arg_p, NULL_TREE);
	  if (has_zero_uses (arg))
	    {
	      gimple *stmt;
	      gimple_stmt_iterator gsi;

	      stmt = SSA_NAME_DEF_STMT (arg);

	      /* Also remove the def if it is a PHI node.  */
	      if (gimple_code (stmt) == GIMPLE_PHI)
		{
		  remove_gimple_phi_args (as_a <gphi *> (stmt));
		  gsi = gsi_for_stmt (stmt);
		  remove_phi_node (&gsi, true);
		}

	    }
	}
    }
}

/* Remove any PHI node which is a virtual PHI, or a PHI with no uses.  */

static void
eliminate_useless_phis (void)
{
  basic_block bb;
  gphi_iterator gsi;
  tree result;

  FOR_EACH_BB_FN (bb, cfun)
    {
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
        {
	  gphi *phi = gsi.phi ();
	  result = gimple_phi_result (phi);
	  if (virtual_operand_p (result))
	    remove_phi_node (&gsi, true);
          else
	    {
	      /* Also remove real PHIs with no uses.  */
	      if (has_zero_uses (result))
	        {
		  remove_gimple_phi_args (phi);
		  remove_phi_node (&gsi, true);
		}
	      else
		gsi_next (&gsi);
	    }
	}
    }
}


/* This function will rewrite the current program using the variable mapping
   found in MAP.  If the replacement vector VALUES is provided, any
   occurrences of partitions with non-null entries in the vector will be
   replaced with the expression in the vector instead of its mapped
   variable.  */

static void
rewrite_trees (var_map map)
{
  if (!flag_checking)
    return;

  basic_block bb;
  /* Search for PHIs where the destination has no partition, but one
     or more arguments has a partition.  This should not happen and can
     create incorrect code.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gphi_iterator gsi;
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
	  if (T0 == NULL_TREE)
	    {
	      size_t i;
	      for (i = 0; i < gimple_phi_num_args (phi); i++)
		{
		  tree arg = PHI_ARG_DEF (phi, i);

		  if (TREE_CODE (arg) == SSA_NAME
		      && var_to_partition (map, arg) != NO_PARTITION)
		    {
		      fprintf (stderr, "Argument of PHI is in a partition :(");
		      print_generic_expr (stderr, arg, TDF_SLIM);
		      fprintf (stderr, "), but the result is not :");
		      print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
		      internal_error ("SSA corruption");
		    }
		}
	    }
	}
    }
}

/* Create a default def for VAR.  */

static void
create_default_def (tree var, void *arg ATTRIBUTE_UNUSED)
{
  if (!is_gimple_reg (var))
    return;

  tree ssa = get_or_create_ssa_default_def (cfun, var);
  gcc_assert (ssa);
}

/* Call CALLBACK for all PARM_DECLs and RESULT_DECLs for which
   assign_parms may ask for a default partition.  */

static void
for_all_parms (void (*callback)(tree var, void *arg), void *arg)
{
  for (tree var = DECL_ARGUMENTS (current_function_decl); var;
       var = DECL_CHAIN (var))
    callback (var, arg);
  if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
    callback (DECL_RESULT (current_function_decl), arg);
  if (cfun->static_chain_decl)
    callback (cfun->static_chain_decl, arg);
}

/* We need to pass two arguments to set_parm_default_def_partition,
   but for_all_parms only supports one.  Use a pair.  */

typedef std::pair<var_map, bitmap> parm_default_def_partition_arg;

/* Set in ARG's PARTS bitmap the bit corresponding to the partition in
   ARG's MAP containing VAR's default def.  */

static void
set_parm_default_def_partition (tree var, void *arg_)
{
  parm_default_def_partition_arg *arg = (parm_default_def_partition_arg *)arg_;
  var_map map = arg->first;
  bitmap parts = arg->second;

  if (!is_gimple_reg (var))
    return;

  tree ssa = ssa_default_def (cfun, var);
  gcc_assert (ssa);

  int version = var_to_partition (map, ssa);
  gcc_assert (version != NO_PARTITION);

  bool changed = bitmap_set_bit (parts, version);
  gcc_assert (changed);
}

/* Allocate and return a bitmap that has a bit set for each partition
   that contains a default def for a parameter.  */

static bitmap
get_parm_default_def_partitions (var_map map)
{
  bitmap parm_default_def_parts = BITMAP_ALLOC (NULL);

  parm_default_def_partition_arg
    arg = std::make_pair (map, parm_default_def_parts);

  for_all_parms (set_parm_default_def_partition, &arg);

  return parm_default_def_parts;
}

/* Allocate and return a bitmap that has a bit set for each partition
   that contains an undefined value.  */

static bitmap
get_undefined_value_partitions (var_map map)
{
  bitmap undefined_value_parts = BITMAP_ALLOC (NULL);

  for (unsigned int i = 1; i < num_ssa_names; i++)
    {
      tree var = ssa_name (i);
      if (var
	  && !virtual_operand_p (var)
	  && !has_zero_uses (var)
	  && ssa_undefined_value_p (var))
	{
	  const int p = var_to_partition (map, var);
	  if (p != NO_PARTITION)
	    bitmap_set_bit (undefined_value_parts, p);
	}
    }

  return undefined_value_parts;
}

/* Given the out-of-ssa info object SA (with prepared partitions)
   eliminate all phi nodes in all basic blocks.  Afterwards no
   basic block will have phi nodes anymore and there are possibly
   some RTL instructions inserted on edges.  */

void
expand_phi_nodes (struct ssaexpand *sa)
{
  basic_block bb;
  elim_graph g (sa->map);

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
    if (!gimple_seq_empty_p (phi_nodes (bb)))
      {
	edge e;
	edge_iterator ei;
	FOR_EACH_EDGE (e, ei, bb->preds)
	  eliminate_phi (e, &g);
	set_phi_nodes (bb, NULL);
	/* We can't redirect EH edges in RTL land, so we need to do this
	   here.  Redirection happens only when splitting is necessary,
	   which it is only for critical edges, normally.  For EH edges
	   it might also be necessary when the successor has more than
	   one predecessor.  In that case the edge is either required to
	   be fallthru (which EH edges aren't), or the predecessor needs
	   to end with a jump (which again, isn't the case with EH edges).
	   Hence, split all EH edges on which we inserted instructions
	   and whose successor has multiple predecessors.  */
	for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
	  {
	    if (e->insns.r && (e->flags & EDGE_EH)
		&& !single_pred_p (e->dest))
	      {
		rtx_insn *insns = e->insns.r;
		basic_block bb;
		e->insns.r = NULL;
		bb = split_edge (e);
		single_pred_edge (bb)->insns.r = insns;
	      }
	    else
	      ei_next (&ei);
	  }
      }
}


/* Remove the ssa-names in the current function and translate them into normal
   compiler variables.  PERFORM_TER is true if Temporary Expression Replacement
   should also be used.  */

static void
remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
{
  bitmap values = NULL;
  var_map map;

  for_all_parms (create_default_def, NULL);
  map = init_var_map (num_ssa_names);
  coalesce_ssa_name (map);

  /* Return to viewing the variable list as just all reference variables after
     coalescing has been performed.  */
  partition_view_normal (map);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "After Coalescing:\n");
      dump_var_map (dump_file, map);
    }

  if (perform_ter)
    {
      values = find_replaceable_exprs (map);
      if (values && dump_file && (dump_flags & TDF_DETAILS))
	dump_replaceable_exprs (dump_file, values);
    }

  rewrite_trees (map);

  sa->map = map;
  sa->values = values;
  sa->partitions_for_parm_default_defs = get_parm_default_def_partitions (map);
  sa->partitions_for_undefined_values = get_undefined_value_partitions (map);
}


/* If not already done so for basic block BB, assign increasing uids
   to each of its instructions.  */

static void
maybe_renumber_stmts_bb (basic_block bb)
{
  unsigned i = 0;
  gimple_stmt_iterator gsi;

  if (!bb->aux)
    return;
  bb->aux = NULL;
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      gimple_set_uid (stmt, i);
      i++;
    }
}


/* Return true if we can determine that the SSA_NAMEs RESULT (a result
   of a PHI node) and ARG (one of its arguments) conflict.  Return false
   otherwise, also when we simply aren't sure.  */

static bool
trivially_conflicts_p (basic_block bb, tree result, tree arg)
{
  use_operand_p use;
  imm_use_iterator imm_iter;
  gimple *defa = SSA_NAME_DEF_STMT (arg);

  /* If ARG isn't defined in the same block it's too complicated for
     our little mind.  */
  if (gimple_bb (defa) != bb)
    return false;

  FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
    {
      gimple *use_stmt = USE_STMT (use);
      if (is_gimple_debug (use_stmt))
	continue;
      /* Now, if there's a use of RESULT that lies outside this basic block,
	 then there surely is a conflict with ARG.  */
      if (gimple_bb (use_stmt) != bb)
	return true;
      if (gimple_code (use_stmt) == GIMPLE_PHI)
	continue;
      /* The use now is in a real stmt of BB, so if ARG was defined
         in a PHI node (like RESULT) both conflict.  */
      if (gimple_code (defa) == GIMPLE_PHI)
	return true;
      maybe_renumber_stmts_bb (bb);
      /* If the use of RESULT occurs after the definition of ARG,
         the two conflict too.  */
      if (gimple_uid (defa) < gimple_uid (use_stmt))
	return true;
    }

  return false;
}


/* Search every PHI node for arguments associated with backedges which
   we can trivially determine will need a copy (the argument is either
   not an SSA_NAME or the argument has a different underlying variable
   than the PHI result).

   Insert a copy from the PHI argument to a new destination at the
   end of the block with the backedge to the top of the loop.  Update
   the PHI argument to reference this new destination.  */

static void
insert_backedge_copies (void)
{
  basic_block bb;
  gphi_iterator gsi;

  mark_dfs_back_edges ();

  FOR_EACH_BB_FN (bb, cfun)
    {
      /* Mark block as possibly needing calculation of UIDs.  */
      bb->aux = &bb->aux;

      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  tree result = gimple_phi_result (phi);
	  size_t i;

	  if (virtual_operand_p (result))
	    continue;

	  for (i = 0; i < gimple_phi_num_args (phi); i++)
	    {
	      tree arg = gimple_phi_arg_def (phi, i);
	      edge e = gimple_phi_arg_edge (phi, i);
	      /* We are only interested in copies emitted on critical
                 backedges.  */
	      if (!(e->flags & EDGE_DFS_BACK)
		  || !EDGE_CRITICAL_P (e))
		continue;

	      /* If the argument is not an SSA_NAME, then we will need a
		 constant initialization.  If the argument is an SSA_NAME then
		 a copy statement may be needed.  First handle the case
		 where we cannot insert before the argument definition.  */
	      if (TREE_CODE (arg) != SSA_NAME
		  || (gimple_code (SSA_NAME_DEF_STMT (arg)) == GIMPLE_PHI
		      && trivially_conflicts_p (bb, result, arg)))
		{
		  tree name;
		  gassign *stmt;
		  gimple *last = NULL;
		  gimple_stmt_iterator gsi2;

		  gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
		  if (!gsi_end_p (gsi2))
		    last = gsi_stmt (gsi2);

		  /* In theory the only way we ought to get back to the
		     start of a loop should be with a COND_EXPR or GOTO_EXPR.
		     However, better safe than sorry.
		     If the block ends with a control statement or
		     something that might throw, then we have to
		     insert this assignment before the last
		     statement.  Else insert it after the last statement.  */
		  if (last && stmt_ends_bb_p (last))
		    {
		      /* If the last statement in the block is the definition
			 site of the PHI argument, then we can't insert
			 anything after it.  */
		      if (TREE_CODE (arg) == SSA_NAME
			  && SSA_NAME_DEF_STMT (arg) == last)
			continue;
		    }

		  /* Create a new instance of the underlying variable of the
		     PHI result.  */
		  name = copy_ssa_name (result);
		  stmt = gimple_build_assign (name,
					      gimple_phi_arg_def (phi, i));

		  /* copy location if present.  */
		  if (gimple_phi_arg_has_location (phi, i))
		    gimple_set_location (stmt,
					 gimple_phi_arg_location (phi, i));

		  /* Insert the new statement into the block and update
		     the PHI node.  */
		  if (last && stmt_ends_bb_p (last))
		    gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
		  else
		    gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
		  SET_PHI_ARG_DEF (phi, i, name);
		}
	      /* Insert a copy before the definition of the backedge value
		 and adjust all conflicting uses.  */
	      else if (trivially_conflicts_p (bb, result, arg))
		{
		  gimple *def = SSA_NAME_DEF_STMT (arg);
		  if (gimple_nop_p (def)
		      || gimple_code (def) == GIMPLE_PHI)
		    continue;
		  tree name = copy_ssa_name (result);
		  gimple *stmt = gimple_build_assign (name, result);
		  imm_use_iterator imm_iter;
		  gimple *use_stmt;
		  /* The following matches trivially_conflicts_p.  */
		  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, result)
		    {
		      if (gimple_bb (use_stmt) != bb
			  || (gimple_code (use_stmt) != GIMPLE_PHI
			      && (maybe_renumber_stmts_bb (bb), true)
			      && gimple_uid (use_stmt) > gimple_uid (def)))
			{
			  use_operand_p use;
			  FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
			    SET_USE (use, name);
			}
		    }
		  gimple_stmt_iterator gsi = gsi_for_stmt (def);
		  gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
		}
	    }
	}

      /* Unmark this block again.  */
      bb->aux = NULL;
    }
}

/* Free all memory associated with going out of SSA form.  SA is
   the outof-SSA info object.  */

void
finish_out_of_ssa (struct ssaexpand *sa)
{
  free (sa->partition_to_pseudo);
  if (sa->values)
    BITMAP_FREE (sa->values);
  delete_var_map (sa->map);
  BITMAP_FREE (sa->partitions_for_parm_default_defs);
  BITMAP_FREE (sa->partitions_for_undefined_values);
  memset (sa, 0, sizeof *sa);
}

/* Take the current function out of SSA form, translating PHIs as described in
   R. Morgan, ``Building an Optimizing Compiler'',
   Butterworth-Heinemann, Boston, MA, 1998. pp 176-186.  */

unsigned int
rewrite_out_of_ssa (struct ssaexpand *sa)
{
  /* If elimination of a PHI requires inserting a copy on a backedge,
     then we will have to split the backedge which has numerous
     undesirable performance effects.

     A significant number of such cases can be handled here by inserting
     copies into the loop itself.  */
  insert_backedge_copies ();


  /* Eliminate PHIs which are of no use, such as virtual or dead phis.  */
  eliminate_useless_phis ();

  if (dump_file && (dump_flags & TDF_DETAILS))
    gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);

  remove_ssa_form (flag_tree_ter, sa);

  if (dump_file && (dump_flags & TDF_DETAILS))
    gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);

  return 0;
}