Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/* Copyright (C) 2007-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#undef IN_LIBGCC2
#include "bid-dpd.h"

/* get full 64x64bit product */
#define __mul_64x64_to_128(P, CX, CY)             \
{                                                 \
  UINT64 CXH, CXL, CYH,CYL,PL,PH,PM,PM2;  \
  CXH = (CX) >> 32;                               \
  CXL = (UINT32)(CX);                             \
  CYH = (CY) >> 32;                               \
  CYL = (UINT32)(CY);                             \
                                                  \
  PM = CXH*CYL;                                   \
  PH = CXH*CYH;                                   \
  PL = CXL*CYL;                                   \
  PM2 = CXL*CYH;                                  \
  PH += (PM>>32);                                 \
  PM = (UINT64)((UINT32)PM)+PM2+(PL>>32);         \
                                                  \
  (P).w[1] = PH + (PM>>32);                       \
  (P).w[0] = (PM<<32)+(UINT32)PL;                 \
}

/* add 64-bit value to 128-bit */
#define __add_128_64(R128, A128, B64)             \
{                                                 \
  UINT64 R64H;                                    \
  R64H = (A128).w[1];                             \
  (R128).w[0] = (B64) + (A128).w[0];              \
  if((R128).w[0] < (B64)) R64H ++;                \
  (R128).w[1] = R64H;                             \
}

/* add 128-bit value to 128-bit (assume no carry-out) */
#define __add_128_128(R128, A128, B128)           \
{                                                 \
  UINT128 Q128;                                   \
  Q128.w[1] = (A128).w[1]+(B128).w[1];            \
  Q128.w[0] = (B128).w[0] + (A128).w[0];          \
  if(Q128.w[0] < (B128).w[0]) Q128.w[1] ++;       \
  (R128).w[1] = Q128.w[1];                        \
  (R128).w[0] = Q128.w[0];                        \
}

#define __mul_128x128_high(Q, A, B)               \
{                                                 \
  UINT128 ALBL, ALBH, AHBL, AHBH, QM, QM2;        \
                                                  \
  __mul_64x64_to_128(ALBH, (A).w[0], (B).w[1]);   \
  __mul_64x64_to_128(AHBL, (B).w[0], (A).w[1]);   \
  __mul_64x64_to_128(ALBL, (A).w[0], (B).w[0]);   \
  __mul_64x64_to_128(AHBH, (A).w[1],(B).w[1]);    \
                                                  \
  __add_128_128(QM, ALBH, AHBL);                  \
  __add_128_64(QM2, QM, ALBL.w[1]);               \
  __add_128_64((Q), AHBH, QM2.w[1]);              \
}

#include "bid2dpd_dpd2bid.h"

static const unsigned int dm103[] =
  { 0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000 };

void _bid_to_dpd32 (_Decimal32 *, _Decimal32 *);

void
_bid_to_dpd32 (_Decimal32 *pres, _Decimal32 *px) {
  unsigned int sign, coefficient_x, exp, dcoeff;
  unsigned int b2, b1, b0, b01, res;
  _Decimal32 x = *px;

  sign = (x & 0x80000000);
  if ((x & 0x60000000ul) == 0x60000000ul) {
    /* special encodings */
    if ((x & 0x78000000ul) == 0x78000000ul) {
      *pres = x; /* NaN or Infinity */
      return;
    }
    /* coefficient */
    coefficient_x = (x & 0x001ffffful) | 0x00800000ul;
    if (coefficient_x >= 10000000) coefficient_x = 0;
    /* get exponent */
    exp = (x >> 21) & 0xff;
  } else {
    exp = (x >> 23) & 0xff;
    coefficient_x = (x & 0x007ffffful);
  }
  b01 = coefficient_x / 1000;
  b2 = coefficient_x - 1000 * b01;
  b0 = b01 / 1000;
  b1 = b01 - 1000 * b0;
  dcoeff = b2d[b2] | b2d2[b1];
  if (b0 >= 8) { /* is b0 8 or 9? */
    res = sign | ((0x600 | ((exp >> 6) << 7) |
        ((b0 & 1) << 6) | (exp & 0x3f)) << 20) | dcoeff;
  } else { /* else b0 is 0..7 */
    res = sign | ((((exp >> 6) << 9) | (b0 << 6) |
        (exp & 0x3f)) << 20) | dcoeff;
  }
  *pres = res;
}

void _dpd_to_bid32 (_Decimal32 *, _Decimal32 *);

void
_dpd_to_bid32 (_Decimal32 *pres, _Decimal32 *px) {
  unsigned int r;
  unsigned int sign, exp, bcoeff;
  UINT64 trailing;
  unsigned int d0, d1, d2;
  _Decimal32 x = *px;

  sign = (x & 0x80000000);
  trailing = (x & 0x000fffff);
  if ((x & 0x78000000) == 0x78000000) {
    *pres = x;
    return;
  }
  /* normal number */
  if ((x & 0x60000000) == 0x60000000) { /* G0..G1 = 11 -> d0 = 8 + G4 */
    d0 = d2b3[((x >> 26) & 1) | 8]; /* d0 = (comb & 0x0100 ? 9 : 8); */
    exp = (x >> 27) & 3; /* exp leading bits are G2..G3 */
  } else {
    d0 = d2b3[(x >> 26) & 0x7];
    exp = (x >> 29) & 3; /* exp loading bits are G0..G1 */
  }
  d1 = d2b2[(trailing >> 10) & 0x3ff];
  d2 = d2b[(trailing) & 0x3ff];
  bcoeff = d2 + d1 + d0;
  exp = (exp << 6) + ((x >> 20) & 0x3f);
  if (bcoeff < (1 << 23)) {
    r = exp;
    r <<= 23;
    r |= (bcoeff | sign);
  } else {
    r = exp;
    r <<= 21;
    r |= (sign | 0x60000000ul);
    /* add coeff, without leading bits */
    r |= (((unsigned int) bcoeff) & 0x1fffff);
  }
  *pres = r;
}

void _bid_to_dpd64 (_Decimal64 *, _Decimal64 *);

void
_bid_to_dpd64 (_Decimal64 *pres, _Decimal64 *px) {
  UINT64 res;
  UINT64 sign, comb, exp, B34, B01;
  UINT64 d103, D61;
  UINT64 b0, b2, b3, b5;
  unsigned int b1, b4;
  UINT64 bcoeff;
  UINT64 dcoeff;
  unsigned int yhi, ylo;
  _Decimal64 x = *px;

  sign = (x & 0x8000000000000000ull);
  comb = (x & 0x7ffc000000000000ull) >> 51;
  if ((comb & 0xf00) == 0xf00) {
    *pres = x;
    return;
  }
  /* Normal number */
  if ((comb & 0xc00) == 0xc00) { /* G0..G1 = 11 -> exp is G2..G11 */
    exp = (comb) & 0x3ff;
    bcoeff = (x & 0x0007ffffffffffffull) | 0x0020000000000000ull;
    if (bcoeff >= 10000000000000000ull)
      bcoeff = 0;
  } else {
    exp = (comb >> 2) & 0x3ff;
    bcoeff = (x & 0x001fffffffffffffull);
  }
  D61 = 2305843009ull; /* Floor(2^61 / 10^9) */
  /* Multiply the binary coefficient by ceil(2^64 / 1000), and take the upper
     64-bits in order to compute a division by 1000. */
  yhi = (D61 * (UINT64)(bcoeff >> (UINT64)27)) >> (UINT64)34;
  ylo = bcoeff - 1000000000ull * yhi;
  if (ylo >= 1000000000) {
    ylo = ylo - 1000000000;
    yhi = yhi + 1;
  }
  d103 = 0x4189374c;
  B34 = ((UINT64) ylo * d103) >> (32 + 8);
  B01 = ((UINT64) yhi * d103) >> (32 + 8);
  b5 = ylo - B34 * 1000;
  b2 = yhi - B01 * 1000;
  b3 = ((UINT64) B34 * d103) >> (32 + 8);
  b0 = ((UINT64) B01 * d103) >> (32 + 8);
  b4 = (unsigned int) B34 - (unsigned int) b3 *1000;
  b1 = (unsigned int) B01 - (unsigned int) dm103[b0];
  dcoeff = b2d[b5] | b2d2[b4] | b2d3[b3] | b2d4[b2] | b2d5[b1];
  if (b0 >= 8) /* is b0 8 or 9? */
    res = sign | ((0x1800 | ((exp >> 8) << 9) | ((b0 & 1) << 8) |
                   (exp & 0xff)) << 50) | dcoeff;
  else /* else b0 is 0..7 */
    res = sign | ((((exp >> 8) << 11) | (b0 << 8) |
                     (exp & 0xff)) << 50) | dcoeff;
  *pres = res;
}

void _dpd_to_bid64 (_Decimal64 *, _Decimal64 *);

void
_dpd_to_bid64 (_Decimal64 *pres, _Decimal64 *px) {
  UINT64 res;
  UINT64 sign, comb, exp;
  UINT64 trailing;
  UINT64 d0, d1, d2;
  unsigned int d3, d4, d5;
  UINT64 bcoeff, mask;
  _Decimal64 x = *px;

  sign = (x & 0x8000000000000000ull);
  comb = (x & 0x7ffc000000000000ull) >> 50;
  trailing = (x & 0x0003ffffffffffffull);
  if ((comb & 0x1e00) == 0x1e00) {
    *pres = x;
    return;
  }
  /* normal number */
  if ((comb & 0x1800) == 0x1800) { /* G0..G1 = 11 -> d0 = 8 + G4 */
    d0 = d2b6[((comb >> 8) & 1) | 8]; /* d0 = (comb & 0x0100 ? 9 : 8); */
    exp = (comb & 0x600) >> 1; /* exp = (comb & 0x0400 ? 1 : 0) * 0x200 +
        (comb & 0x0200 ? 1 : 0) * 0x100; exp leading bits are G2..G3 */
  } else {
    d0 = d2b6[(comb >> 8) & 0x7];
    exp = (comb & 0x1800) >> 3; /* exp = (comb & 0x1000 ? 1 : 0) * 0x200 +
        (comb & 0x0800 ? 1 : 0) * 0x100; exp loading bits are G0..G1 */
  }
  d1 = d2b5[(trailing >> 40) & 0x3ff];
  d2 = d2b4[(trailing >> 30) & 0x3ff];
  d3 = d2b3[(trailing >> 20) & 0x3ff];
  d4 = d2b2[(trailing >> 10) & 0x3ff];
  d5 = d2b[(trailing) & 0x3ff];
  bcoeff = (d5 + d4 + d3) + d2 + d1 + d0;
  exp += (comb & 0xff);
  mask = 1;
  mask <<= 53;
  if (bcoeff < mask) { /* check whether coefficient fits in 10*5+3 bits */
    res = exp;
    res <<= 53;
    res |= (bcoeff | sign);
    *pres = res;
    return;
  }
  /* special format */
  res = (exp << 51) | (sign | 0x6000000000000000ull);
  /* add coeff, without leading bits */
  mask = (mask >> 2) - 1;
  bcoeff &= mask;
  res |= bcoeff;
  *pres = res;
}

void _bid_to_dpd128 (_Decimal128 *, _Decimal128 *);

void
_bid_to_dpd128 (_Decimal128 *pres, _Decimal128 *px) {
  UINT128 res;
  UINT128 sign;
  unsigned int comb;
  UINT128 bcoeff;
  UINT128 dcoeff;
  UINT128 BH, d1018, BT2, BT1;
  UINT64 exp, BL, d109;
  UINT64 d106, d103;
  UINT64 k1, k2, k4, k5, k7, k8, k10, k11;
  unsigned int BHH32, BLL32, BHL32, BLH32, k0, k3, k6, k9, amount;
  _Decimal128 x = *px;

  sign.w[1] = (x.w[1] & 0x8000000000000000ull);
  sign.w[0] = 0;
  comb = (x.w[1] /*& 0x7fffc00000000000ull */ ) >> 46;
  exp = 0;
  if ((comb & 0x1e000) == 0x1e000) {
    res = x;
  } else { /* normal number */
    if ((comb & 0x18000) == 0x18000) {
      /* Noncanonical significand (prepending 8 or 9 to any 110-bit
	 trailing significand field produces a value above 10^34).  */
      exp = (comb & 0x7fff) >> 1;
      bcoeff.w[1] = 0;
      bcoeff.w[0] = 0;
    } else {
      exp = ((x.w[1] & 0x7fff000000000000ull) >> 49) & 0x3fff;
      bcoeff.w[1] = (x.w[1] & 0x0001ffffffffffffull);
      bcoeff.w[0] = x.w[0];
      if (bcoeff.w[1] > 0x1ed09bead87c0ull
	  || (bcoeff.w[1] == 0x1ed09bead87c0ull
	      && bcoeff.w[0] >= 0x378d8e6400000000ull)) {
	bcoeff.w[1] = 0;
	bcoeff.w[0] = 0;
      }
    }
    d1018 = reciprocals10_128[18];
    __mul_128x128_high (BH, bcoeff, d1018);
    amount = recip_scale[18];
    BH.w[0] = (BH.w[0] >> amount) | (BH.w[1] << (64 - amount));
    BL = bcoeff.w[0] - BH.w[0] * 1000000000000000000ull;
    d109 = reciprocals10_64[9];
    __mul_64x64_to_128 (BT1, BH.w[0], d109);
    BHH32 = (unsigned int) (BT1.w[1] >> short_recip_scale[9]);
    BHL32 = (unsigned int) BH.w[0] - BHH32 * 1000000000;
    __mul_64x64_to_128 (BT2, BL, d109);
    BLH32 = (unsigned int) (BT2.w[1] >> short_recip_scale[9]);
    BLL32 = (unsigned int) BL - BLH32 * 1000000000;
    d106 = 0x431BDE83;
    d103 = 0x4189374c;
    k0 = ((UINT64) BHH32 * d106) >> (32 + 18);
    BHH32 -= (unsigned int) k0 *1000000;
    k1 = ((UINT64) BHH32 * d103) >> (32 + 8);
    k2 = BHH32 - (unsigned int) k1 *1000;
    k3 = ((UINT64) BHL32 * d106) >> (32 + 18);
    BHL32 -= (unsigned int) k3 *1000000;
    k4 = ((UINT64) BHL32 * d103) >> (32 + 8);
    k5 = BHL32 - (unsigned int) k4 *1000;
    k6 = ((UINT64) BLH32 * d106) >> (32 + 18);
    BLH32 -= (unsigned int) k6 *1000000;
    k7 = ((UINT64) BLH32 * d103) >> (32 + 8);
    k8 = BLH32 - (unsigned int) k7 *1000;
    k9 = ((UINT64) BLL32 * d106) >> (32 + 18);
    BLL32 -= (unsigned int) k9 *1000000;
    k10 = ((UINT64) BLL32 * d103) >> (32 + 8);
    k11 = BLL32 - (unsigned int) k10 *1000;
    dcoeff.w[1] = (b2d[k5] >> 4) | (b2d[k4] << 6) | (b2d[k3] << 16) |
      (b2d[k2] << 26) | (b2d[k1] << 36);
    dcoeff.w[0] = b2d[k11] | (b2d[k10] << 10) | (b2d[k9] << 20) |
      (b2d[k8] << 30) | (b2d[k7] << 40) | (b2d[k6] << 50) | (b2d[k5] << 60);
    res.w[0] = dcoeff.w[0];
    if (k0 >= 8) {
      res.w[1] = sign.w[1] | ((0x18000 | ((exp >> 12) << 13) |
          ((k0 & 1) << 12) | (exp & 0xfff)) << 46) | dcoeff.w[1];
    } else {
      res.w[1] = sign.w[1] | ((((exp >> 12) << 15) | (k0 << 12) |
          (exp & 0xfff)) << 46) | dcoeff.w[1];
    }
  }
  *pres = res;
}

void _dpd_to_bid128 (_Decimal128 *, _Decimal128 *);

void
_dpd_to_bid128 (_Decimal128 *pres, _Decimal128 *px) {
  UINT128 res;
  UINT128 sign;
  UINT64 exp, comb;
  UINT128 trailing;
  UINT64 d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11;
  UINT128 bcoeff;
  UINT64 tl, th;
  _Decimal128 x = *px;

  sign.w[1] = (x.w[1] & 0x8000000000000000ull);
  sign.w[0] = 0;
  comb = (x.w[1] & 0x7fffc00000000000ull) >> 46;
  trailing.w[1] = x.w[1];
  trailing.w[0] = x.w[0];
  if ((comb & 0x1e000) == 0x1e000) {
      *pres = x;
      return;
  }
  if ((comb & 0x18000) == 0x18000) { /* G0..G1 = 11 -> d0 = 8 + G4 */
    d0 = d2b6[8 + ((comb & 0x01000) >> 12)];
    exp = (comb & 0x06000) >> 1;  /* exp leading bits are G2..G3 */
  } else {
    d0 = d2b6[((comb & 0x07000) >> 12)];
    exp = (comb & 0x18000) >> 3;  /* exp loading bits are G0..G1 */
  }
  d11 = d2b[(trailing.w[0]) & 0x3ff];
  d10 = d2b2[(trailing.w[0] >> 10) & 0x3ff];
  d9 = d2b3[(trailing.w[0] >> 20) & 0x3ff];
  d8 = d2b4[(trailing.w[0] >> 30) & 0x3ff];
  d7 = d2b5[(trailing.w[0] >> 40) & 0x3ff];
  d6 = d2b6[(trailing.w[0] >> 50) & 0x3ff];
  d5 = d2b[(trailing.w[0] >> 60) | ((trailing.w[1] & 0x3f) << 4)];
  d4 = d2b2[(trailing.w[1] >> 6) & 0x3ff];
  d3 = d2b3[(trailing.w[1] >> 16) & 0x3ff];
  d2 = d2b4[(trailing.w[1] >> 26) & 0x3ff];
  d1 = d2b5[(trailing.w[1] >> 36) & 0x3ff];
  tl = d11 + d10 + d9 + d8 + d7 + d6;
  th = d5 + d4 + d3 + d2 + d1 + d0;
  __mul_64x64_to_128 (bcoeff, th, 1000000000000000000ull);
  __add_128_64 (bcoeff, bcoeff, tl);
  exp += (comb & 0xfff);
  res.w[0] = bcoeff.w[0];
  res.w[1] = (exp << 49) | sign.w[1] | bcoeff.w[1];
  *pres = res;
}