`/* Implementation of the FINDLOC intrinsic
Copyright (C) 2018-2020 Free Software Foundation, Inc.
Contributed by Thomas König <tk@tkoenig.net>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <assert.h>
#if defined (HAVE_'atype_name`)
'header1`
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const 'atype_name`'` * restrict base;
index_type * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
int continue_loop;
/* Make dim zero based to avoid confusion. */
rank = GFC_DESCRIPTOR_RANK (array) - 1;
dim = (*pdim) - 1;
if (unlikely (dim < 0 || dim > rank))
{
runtime_error ("Dim argument incorrect in FINDLOC intrinsic: "
"is %ld, should be between 1 and %ld",
(long int) dim + 1, (long int) rank + 1);
}
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len < 0)
len = 0;
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->base_addr == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype.rank = rank;
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
retarray->base_addr = xmallocarray (alloc_size, sizeof (index_type));
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" FINDLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "FINDLOC");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
dest = retarray->base_addr;
continue_loop = 1;
base = array->base_addr;
while (continue_loop)
{
const 'atype_name`'` * restrict src;
index_type result;
result = 0;
if (back)
{
src = base + (len - 1) * delta * 'base_mult`;
for (n = len; n > 0; n--, src -= delta * 'base_mult`)
{
if ('comparison`'`)
{
result = n;
break;
}
}
}
else
{
src = base;
for (n = 1; n <= len; n++, src += delta * 'base_mult`)
{
if ('comparison`'`)
{
result = n;
break;
}
}
}
*dest = result;
count[0]++;
base += sstride[0] * 'base_mult`;
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
count[n] = 0;
base -= sstride[n] * extent[n] * 'base_mult`;
dest -= dstride[n] * extent[n];
n++;
if (n >= rank)
{
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n] * 'base_mult`;
dest += dstride[n];
}
}
}
}
'header2`'`
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const 'atype_name`'` * restrict base;
const GFC_LOGICAL_1 * restrict mbase;
index_type * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
index_type dim;
int mask_kind;
int continue_loop;
/* Make dim zero based to avoid confusion. */
rank = GFC_DESCRIPTOR_RANK (array) - 1;
dim = (*pdim) - 1;
if (unlikely (dim < 0 || dim > rank))
{
runtime_error ("Dim argument incorrect in FINDLOC intrinsic: "
"is %ld, should be between 1 and %ld",
(long int) dim + 1, (long int) rank + 1);
}
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len < 0)
len = 0;
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
mbase = mask->base_addr;
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
internal_error (NULL, "Funny sized logical array");
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->base_addr == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype.rank = rank;
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
retarray->base_addr = xmallocarray (alloc_size, sizeof (index_type));
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" FINDLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "FINDLOC");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
dest = retarray->base_addr;
continue_loop = 1;
base = array->base_addr;
while (continue_loop)
{
const 'atype_name`'` * restrict src;
const GFC_LOGICAL_1 * restrict msrc;
index_type result;
result = 0;
if (back)
{
src = base + (len - 1) * delta * 'base_mult`;
msrc = mbase + (len - 1) * mdelta;
for (n = len; n > 0; n--, src -= delta * 'base_mult`, msrc -= mdelta)
{
if (*msrc && 'comparison`'`)
{
result = n;
break;
}
}
}
else
{
src = base;
msrc = mbase;
for (n = 1; n <= len; n++, src += delta * 'base_mult`, msrc += mdelta)
{
if (*msrc && 'comparison`'`)
{
result = n;
break;
}
}
}
*dest = result;
count[0]++;
base += sstride[0] * 'base_mult`;
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
count[n] = 0;
base -= sstride[n] * extent[n] * 'base_mult`;
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n >= rank)
{
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n] * 'base_mult`;
dest += dstride[n];
}
}
}
}
'header3`'`
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
index_type * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type dim;
bool continue_loop;
if (mask == NULL || *mask)
{
findloc1_'atype_code`'` (retarray, array, value, pdim, back'len_arg`'`);
return;
}
/* Make dim zero based to avoid confusion. */
rank = GFC_DESCRIPTOR_RANK (array) - 1;
dim = (*pdim) - 1;
if (unlikely (dim < 0 || dim > rank))
{
runtime_error ("Dim argument incorrect in FINDLOC intrinsic: "
"is %ld, should be between 1 and %ld",
(long int) dim + 1, (long int) rank + 1);
}
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len < 0)
len = 0;
for (n = 0; n < dim; n++)
{
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] <= 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
extent[n] =
GFC_DESCRIPTOR_EXTENT(array,n + 1);
if (extent[n] <= 0)
extent[n] = 0;
}
if (retarray->base_addr == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype.rank = rank;
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
retarray->base_addr = xmallocarray (alloc_size, sizeof (index_type));
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" FINDLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "FINDLOC");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
dest = retarray->base_addr;
continue_loop = 1;
while (continue_loop)
{
*dest = 0;
count[0]++;
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
count[n] = 0;
dest -= dstride[n] * extent[n];
n++;
if (n >= rank)
{
continue_loop = 0;
break;
}
else
{
count[n]++;
dest += dstride[n];
}
}
}
}
#endif'