Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/**
This module implements a singly-linked list container.
It can be used as a stack.

This module is a submodule of $(MREF std, container).

Source: $(PHOBOSSRC std/container/_slist.d)

Copyright: 2010- Andrei Alexandrescu. All rights reserved by the respective holders.

License: Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at $(HTTP
boost.org/LICENSE_1_0.txt)).

Authors: $(HTTP erdani.com, Andrei Alexandrescu)

$(SCRIPT inhibitQuickIndex = 1;)
*/
module std.container.slist;

///
@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.container : SList;

    auto s = SList!int(1, 2, 3);
    assert(equal(s[], [1, 2, 3]));

    s.removeFront();
    assert(equal(s[], [2, 3]));

    s.insertFront([5, 6]);
    assert(equal(s[], [5, 6, 2, 3]));

    // If you want to apply range operations, simply slice it.
    import std.algorithm.searching : countUntil;
    import std.range : popFrontN, walkLength;

    auto sl = SList!int(1, 2, 3, 4, 5);
    assert(countUntil(sl[], 2) == 1);

    auto r = sl[];
    popFrontN(r, 2);
    assert(walkLength(r) == 3);
}

public import std.container.util;

/**
   Implements a simple and fast singly-linked list.
   It can be used as a stack.

   $(D SList) uses reference semantics.
 */
struct SList(T)
{
    import std.exception : enforce;
    import std.range : Take;
    import std.range.primitives : isInputRange, isForwardRange, ElementType;
    import std.traits : isImplicitlyConvertible;

    private struct Node
    {
        Node * _next;
        T _payload;
    }
    private struct NodeWithoutPayload
    {
        Node* _next;
    }
    static assert(NodeWithoutPayload._next.offsetof == Node._next.offsetof);

    private Node * _root;

    private void initialize() @trusted nothrow pure
    {
        if (_root) return;
        _root = cast (Node*) new NodeWithoutPayload();
    }

    private ref inout(Node*) _first() @property @safe nothrow pure inout
    {
        assert(_root);
        return _root._next;
    }

    private static Node * findLastNode(Node * n)
    {
        assert(n);
        auto ahead = n._next;
        while (ahead)
        {
            n = ahead;
            ahead = n._next;
        }
        return n;
    }

    private static Node * findLastNode(Node * n, size_t limit)
    {
        assert(n && limit);
        auto ahead = n._next;
        while (ahead)
        {
            if (!--limit) break;
            n = ahead;
            ahead = n._next;
        }
        return n;
    }

    private static Node * findNode(Node * n, Node * findMe)
    {
        assert(n);
        auto ahead = n._next;
        while (ahead != findMe)
        {
            n = ahead;
            enforce(n);
            ahead = n._next;
        }
        return n;
    }

/**
Constructor taking a number of nodes
     */
    this(U)(U[] values...) if (isImplicitlyConvertible!(U, T))
    {
        insertFront(values);
    }

/**
Constructor taking an input range
     */
    this(Stuff)(Stuff stuff)
    if (isInputRange!Stuff
            && isImplicitlyConvertible!(ElementType!Stuff, T)
            && !is(Stuff == T[]))
    {
        insertFront(stuff);
    }

/**
Comparison for equality.

Complexity: $(BIGOH min(n, n1)) where $(D n1) is the number of
elements in $(D rhs).
     */
    bool opEquals(const SList rhs) const
    {
        return opEquals(rhs);
    }

    /// ditto
    bool opEquals(ref const SList rhs) const
    {
        if (_root is rhs._root) return true;
        if (_root is null) return rhs._root is null || rhs._first is null;
        if (rhs._root is null) return _root is null || _first is null;

        const(Node) * n1 = _first, n2 = rhs._first;

        for (;; n1 = n1._next, n2 = n2._next)
        {
            if (!n1) return !n2;
            if (!n2 || n1._payload != n2._payload) return false;
        }
    }

/**
Defines the container's primary range, which embodies a forward range.
     */
    struct Range
    {
        private Node * _head;
        private this(Node * p) { _head = p; }

        /// Input range primitives.
        @property bool empty() const { return !_head; }

        /// ditto
        @property ref T front()
        {
            assert(!empty, "SList.Range.front: Range is empty");
            return _head._payload;
        }

        /// ditto
        void popFront()
        {
            assert(!empty, "SList.Range.popFront: Range is empty");
            _head = _head._next;
        }

        /// Forward range primitive.
        @property Range save() { return this; }

        T moveFront()
        {
            import std.algorithm.mutation : move;

            assert(!empty, "SList.Range.moveFront: Range is empty");
            return move(_head._payload);
        }

        bool sameHead(Range rhs)
        {
            return _head && _head == rhs._head;
        }
    }

    @safe unittest
    {
        static assert(isForwardRange!Range);
    }

/**
Property returning $(D true) if and only if the container has no
elements.

Complexity: $(BIGOH 1)
     */
    @property bool empty() const
    {
        return _root is null || _first is null;
    }

/**
Duplicates the container. The elements themselves are not transitively
duplicated.

Complexity: $(BIGOH n).
     */
    @property SList dup()
    {
        return SList(this[]);
    }

/**
Returns a range that iterates over all elements of the container, in
forward order.

Complexity: $(BIGOH 1)
     */
    Range opSlice()
    {
        if (empty)
            return Range(null);
        else
            return Range(_first);
    }

/**
Forward to $(D opSlice().front).

Complexity: $(BIGOH 1)
     */
    @property ref T front()
    {
        assert(!empty, "SList.front: List is empty");
        return _first._payload;
    }

    @safe unittest
    {
        auto s = SList!int(1, 2, 3);
        s.front = 42;
        assert(s == SList!int(42, 2, 3));
    }

/**
Returns a new $(D SList) that's the concatenation of $(D this) and its
argument. $(D opBinaryRight) is only defined if $(D Stuff) does not
define $(D opBinary).
     */
    SList opBinary(string op, Stuff)(Stuff rhs)
    if (op == "~" && is(typeof(SList(rhs))))
    {
        auto toAdd = SList(rhs);
        if (empty) return toAdd;
        // TODO: optimize
        auto result = dup;
        auto n = findLastNode(result._first);
        n._next = toAdd._first;
        return result;
    }

    /// ditto
    SList opBinaryRight(string op, Stuff)(Stuff lhs)
    if (op == "~" && !is(typeof(lhs.opBinary!"~"(this))) && is(typeof(SList(lhs))))
    {
        auto toAdd = SList(lhs);
        if (empty) return toAdd;
        auto result = dup;
        result.insertFront(toAdd[]);
        return result;
    }

/**
Removes all contents from the $(D SList).

Postcondition: $(D empty)

Complexity: $(BIGOH 1)
     */
    void clear()
    {
        if (_root)
            _first = null;
    }

/**
Reverses SList in-place. Performs no memory allocation.

Complexity: $(BIGOH n)
     */
    void reverse()
    {
        if (!empty)
        {
            Node* prev;
            while (_first)
            {
                auto next = _first._next;
                _first._next = prev;
                prev = _first;
                _first = next;
            }
            _first = prev;
        }
    }

/**
Inserts $(D stuff) to the front of the container. $(D stuff) can be a
value convertible to $(D T) or a range of objects convertible to $(D
T). The stable version behaves the same, but guarantees that ranges
iterating over the container are never invalidated.

Returns: The number of elements inserted

Complexity: $(BIGOH m), where $(D m) is the length of $(D stuff)
     */
    size_t insertFront(Stuff)(Stuff stuff)
    if (isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T))
    {
        initialize();
        size_t result;
        Node * n, newRoot;
        foreach (item; stuff)
        {
            auto newNode = new Node(null, item);
            (newRoot ? n._next : newRoot) = newNode;
            n = newNode;
            ++result;
        }
        if (!n) return 0;
        // Last node points to the old root
        n._next = _first;
        _first = newRoot;
        return result;
    }

    /// ditto
    size_t insertFront(Stuff)(Stuff stuff)
    if (isImplicitlyConvertible!(Stuff, T))
    {
        initialize();
        auto newRoot = new Node(_first, stuff);
        _first = newRoot;
        return 1;
    }

/// ditto
    alias insert = insertFront;

/// ditto
    alias stableInsert = insert;

    /// ditto
    alias stableInsertFront = insertFront;

/**
Picks one value in an unspecified position in the container, removes
it from the container, and returns it. The stable version behaves the same,
but guarantees that ranges iterating over the container are never invalidated.

Precondition: $(D !empty)

Returns: The element removed.

Complexity: $(BIGOH 1).
     */
    T removeAny()
    {
        import std.algorithm.mutation : move;

        assert(!empty, "SList.removeAny: List is empty");
        auto result = move(_first._payload);
        _first = _first._next;
        return result;
    }
    /// ditto
    alias stableRemoveAny = removeAny;

/**
Removes the value at the front of the container. The stable version
behaves the same, but guarantees that ranges iterating over the
container are never invalidated.

Precondition: $(D !empty)

Complexity: $(BIGOH 1).
     */
    void removeFront()
    {
        assert(!empty, "SList.removeFront: List is empty");
        _first = _first._next;
    }

    /// ditto
    alias stableRemoveFront = removeFront;

/**
Removes $(D howMany) values at the front or back of the
container. Unlike the unparameterized versions above, these functions
do not throw if they could not remove $(D howMany) elements. Instead,
if $(D howMany > n), all elements are removed. The returned value is
the effective number of elements removed. The stable version behaves
the same, but guarantees that ranges iterating over the container are
never invalidated.

Returns: The number of elements removed

Complexity: $(BIGOH howMany * log(n)).
     */
    size_t removeFront(size_t howMany)
    {
        size_t result;
        while (_first && result < howMany)
        {
            _first = _first._next;
            ++result;
        }
        return result;
    }

    /// ditto
    alias stableRemoveFront = removeFront;

/**
Inserts $(D stuff) after range $(D r), which must be a range
previously extracted from this container. Given that all ranges for a
list end at the end of the list, this function essentially appends to
the list and uses $(D r) as a potentially fast way to reach the last
node in the list. Ideally $(D r) is positioned near or at the last
element of the list.

$(D stuff) can be a value convertible to $(D T) or a range of objects
convertible to $(D T). The stable version behaves the same, but
guarantees that ranges iterating over the container are never
invalidated.

Returns: The number of values inserted.

Complexity: $(BIGOH k + m), where $(D k) is the number of elements in
$(D r) and $(D m) is the length of $(D stuff).

Example:
--------------------
auto sl = SList!string(["a", "b", "d"]);
sl.insertAfter(sl[], "e"); // insert at the end (slowest)
assert(std.algorithm.equal(sl[], ["a", "b", "d", "e"]));
sl.insertAfter(std.range.take(sl[], 2), "c"); // insert after "b"
assert(std.algorithm.equal(sl[], ["a", "b", "c", "d", "e"]));
--------------------
     */

    size_t insertAfter(Stuff)(Range r, Stuff stuff)
    {
        initialize();
        if (!_first)
        {
            enforce(!r._head);
            return insertFront(stuff);
        }
        enforce(r._head);
        auto n = findLastNode(r._head);
        SList tmp;
        auto result = tmp.insertFront(stuff);
        n._next = tmp._first;
        return result;
    }

/**
Similar to $(D insertAfter) above, but accepts a range bounded in
count. This is important for ensuring fast insertions in the middle of
the list.  For fast insertions after a specified position $(D r), use
$(D insertAfter(take(r, 1), stuff)). The complexity of that operation
only depends on the number of elements in $(D stuff).

Precondition: $(D r.original.empty || r.maxLength > 0)

Returns: The number of values inserted.

Complexity: $(BIGOH k + m), where $(D k) is the number of elements in
$(D r) and $(D m) is the length of $(D stuff).
     */
    size_t insertAfter(Stuff)(Take!Range r, Stuff stuff)
    {
        auto orig = r.source;
        if (!orig._head)
        {
            // Inserting after a null range counts as insertion to the
            // front
            return insertFront(stuff);
        }
        enforce(!r.empty);
        // Find the last valid element in the range
        foreach (i; 1 .. r.maxLength)
        {
            if (!orig._head._next) break;
            orig.popFront();
        }
        // insert here
        SList tmp;
        tmp.initialize();
        tmp._first = orig._head._next;
        auto result = tmp.insertFront(stuff);
        orig._head._next = tmp._first;
        return result;
    }

/// ditto
    alias stableInsertAfter = insertAfter;

/**
Removes a range from the list in linear time.

Returns: An empty range.

Complexity: $(BIGOH n)
     */
    Range linearRemove(Range r)
    {
        if (!_first)
        {
            enforce(!r._head);
            return this[];
        }
        auto n = findNode(_root, r._head);
        n._next = null;
        return Range(null);
    }

/**
Removes a $(D Take!Range) from the list in linear time.

Returns: A range comprehending the elements after the removed range.

Complexity: $(BIGOH n)
     */
    Range linearRemove(Take!Range r)
    {
        auto orig = r.source;
        // We have something to remove here
        if (orig._head == _first)
        {
            // remove straight from the head of the list
            for (; !r.empty; r.popFront())
            {
                removeFront();
            }
            return this[];
        }
        if (!r.maxLength)
        {
            // Nothing to remove, return the range itself
            return orig;
        }
        // Remove from somewhere in the middle of the list
        enforce(_first);
        auto n1 = findNode(_root, orig._head);
        auto n2 = findLastNode(orig._head, r.maxLength);
        n1._next = n2._next;
        return Range(n1._next);
    }

/// ditto
    alias stableLinearRemove = linearRemove;
}

@safe unittest
{
    import std.algorithm.comparison : equal;

    auto a = SList!int(5);
    auto b = a;
    auto r = a[];
    a.insertFront(1);
    b.insertFront(2);
    assert(equal(a[], [2, 1, 5]));
    assert(equal(b[], [2, 1, 5]));
    r.front = 9;
    assert(equal(a[], [2, 1, 9]));
    assert(equal(b[], [2, 1, 9]));
}

@safe unittest
{
    auto s = SList!int(1, 2, 3);
    auto n = s.findLastNode(s._root);
    assert(n && n._payload == 3);
}

@safe unittest
{
    import std.range.primitives;
    auto s = SList!int(1, 2, 5, 10);
    assert(walkLength(s[]) == 4);
}

@safe unittest
{
    import std.range : take;
    auto src = take([0, 1, 2, 3], 3);
    auto s = SList!int(src);
    assert(s == SList!int(0, 1, 2));
}

@safe unittest
{
    auto a = SList!int();
    auto b = SList!int();
    auto c = a ~ b[];
    assert(c.empty);
}

@safe unittest
{
    auto a = SList!int(1, 2, 3);
    auto b = SList!int(4, 5, 6);
    auto c = a ~ b[];
    assert(c == SList!int(1, 2, 3, 4, 5, 6));
}

@safe unittest
{
    auto a = SList!int(1, 2, 3);
    auto b = [4, 5, 6];
    auto c = a ~ b;
    assert(c == SList!int(1, 2, 3, 4, 5, 6));
}

@safe unittest
{
    auto a = SList!int(1, 2, 3);
    auto c = a ~ 4;
    assert(c == SList!int(1, 2, 3, 4));
}

@safe unittest
{
    auto a = SList!int(2, 3, 4);
    auto b = 1 ~ a;
    assert(b == SList!int(1, 2, 3, 4));
}

@safe unittest
{
    auto a = [1, 2, 3];
    auto b = SList!int(4, 5, 6);
    auto c = a ~ b;
    assert(c == SList!int(1, 2, 3, 4, 5, 6));
}

@safe unittest
{
    auto s = SList!int(1, 2, 3, 4);
    s.insertFront([ 42, 43 ]);
    assert(s == SList!int(42, 43, 1, 2, 3, 4));
}

@safe unittest
{
    auto s = SList!int(1, 2, 3);
    assert(s.removeAny() == 1);
    assert(s == SList!int(2, 3));
    assert(s.stableRemoveAny() == 2);
    assert(s == SList!int(3));
}

@safe unittest
{
    import std.algorithm.comparison : equal;

    auto s = SList!int(1, 2, 3);
    s.removeFront();
    assert(equal(s[], [2, 3]));
    s.stableRemoveFront();
    assert(equal(s[], [3]));
}

@safe unittest
{
    auto s = SList!int(1, 2, 3, 4, 5, 6, 7);
    assert(s.removeFront(3) == 3);
    assert(s == SList!int(4, 5, 6, 7));
}

@safe unittest
{
    auto a = SList!int(1, 2, 3);
    auto b = SList!int(1, 2, 3);
    assert(a.insertAfter(a[], b[]) == 3);
}

@safe unittest
{
    import std.range : take;
    auto s = SList!int(1, 2, 3, 4);
    auto r = take(s[], 2);
    assert(s.insertAfter(r, 5) == 1);
    assert(s == SList!int(1, 2, 5, 3, 4));
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.range : take;

    // insertAfter documentation example
    auto sl = SList!string(["a", "b", "d"]);
    sl.insertAfter(sl[], "e"); // insert at the end (slowest)
    assert(equal(sl[], ["a", "b", "d", "e"]));
    sl.insertAfter(take(sl[], 2), "c"); // insert after "b"
    assert(equal(sl[], ["a", "b", "c", "d", "e"]));
}

@safe unittest
{
    import std.range.primitives;
    auto s = SList!int(1, 2, 3, 4, 5);
    auto r = s[];
    popFrontN(r, 3);
    auto r1 = s.linearRemove(r);
    assert(s == SList!int(1, 2, 3));
    assert(r1.empty);
}

@safe unittest
{
    auto s = SList!int(1, 2, 3, 4, 5);
    auto r = s[];
    auto r1 = s.linearRemove(r);
    assert(s == SList!int());
    assert(r1.empty);
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.range;

    auto s = SList!int(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
    auto r = s[];
    popFrontN(r, 3);
    auto r1 = take(r, 4);
    assert(equal(r1, [4, 5, 6, 7]));
    auto r2 = s.linearRemove(r1);
    assert(s == SList!int(1, 2, 3, 8, 9, 10));
    assert(equal(r2, [8, 9, 10]));
}

@safe unittest
{
    import std.range.primitives;
    auto lst = SList!int(1, 5, 42, 9);
    assert(!lst.empty);
    assert(lst.front == 1);
    assert(walkLength(lst[]) == 4);

    auto lst2 = lst ~ [ 1, 2, 3 ];
    assert(walkLength(lst2[]) == 7);

    auto lst3 = lst ~ [ 7 ];
    assert(walkLength(lst3[]) == 5);
}

@safe unittest
{
    auto s = make!(SList!int)(1, 2, 3);
}

@safe unittest
{
    // 5193
    static struct Data
    {
        const int val;
    }
    SList!Data list;
}

@safe unittest
{
    auto s = SList!int([1, 2, 3]);
    s.front = 5; //test frontAssign
    assert(s.front == 5);
    auto r = s[];
    r.front = 1; //test frontAssign
    assert(r.front == 1);
}

@safe unittest
{
    // issue 14920
    SList!int s;
    s.insertAfter(s[], 1);
    assert(s.front == 1);
}

@safe unittest
{
    // issue 15659
    SList!int s;
    s.clear();
}

@safe unittest
{
    SList!int s;
    s.reverse();
}

@safe unittest
{
    import std.algorithm.comparison : equal;

    auto s = SList!int([1, 2, 3]);
    assert(s[].equal([1, 2, 3]));

    s.reverse();
    assert(s[].equal([3, 2, 1]));
}