Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/*
    Implementation of std.regex IR, an intermediate representation
    of a regular expression pattern.

    This is a common ground between frontend regex component (parser)
    and backend components - generators, matchers and other "filters".
*/
module std.regex.internal.ir;

package(std.regex):

import std.exception, std.meta, std.range.primitives, std.traits, std.uni;

debug(std_regex_parser) import std.stdio;
// just a common trait, may be moved elsewhere
alias BasicElementOf(Range) = Unqual!(ElementEncodingType!Range);

enum privateUseStart = '\U000F0000', privateUseEnd ='\U000FFFFD';

// heuristic value determines maximum CodepointSet length suitable for linear search
enum maxCharsetUsed = 6;

// another variable to tweak behavior of caching generated Tries for character classes
enum maxCachedMatchers = 8;

alias Trie = CodepointSetTrie!(13, 8);
alias makeTrie = codepointSetTrie!(13, 8);

CharMatcher[CodepointSet] matcherCache;

//accessor with caching
@trusted CharMatcher getMatcher(CodepointSet set)
{// @@@BUG@@@ 6357 almost all properties of AA are not @safe
    if (__ctfe || maxCachedMatchers == 0)
        return CharMatcher(set);
    else
    {
        auto p = set in matcherCache;
        if (p)
            return *p;
        if (matcherCache.length == maxCachedMatchers)
        {
            // flush enmatchers in trieCache
            matcherCache = null;
        }
        return (matcherCache[set] = CharMatcher(set));
    }
}

@trusted auto memoizeExpr(string expr)()
{
    if (__ctfe)
        return mixin(expr);
    alias T = typeof(mixin(expr));
    static T slot;
    static bool initialized;
    if (!initialized)
    {
        slot =  mixin(expr);
        initialized = true;
    }
    return slot;
}

//property for \w character class
@property CodepointSet wordCharacter()
{
    return memoizeExpr!("unicode.Alphabetic | unicode.Mn | unicode.Mc
        | unicode.Me | unicode.Nd | unicode.Pc")();
}

@property CharMatcher wordMatcher()
{
    return memoizeExpr!("CharMatcher(wordCharacter)")();
}

// some special Unicode white space characters
private enum NEL = '\u0085', LS = '\u2028', PS = '\u2029';

// Characters that need escaping in string posed as regular expressions
alias Escapables = AliasSeq!('[', ']', '\\', '^', '$', '.', '|', '?', ',', '-',
    ';', ':', '#', '&', '%', '/', '<', '>', '`',  '*', '+', '(', ')', '{', '}',  '~');

//Regular expression engine/parser options:
// global - search  all nonoverlapping matches in input
// casefold - case insensitive matching, do casefolding on match in unicode mode
// freeform - ignore whitespace in pattern, to match space use [ ] or \s
// multiline - switch  ^, $ detect start and end of linesinstead of just start and end of input
enum RegexOption: uint {
    global = 0x1,
    casefold = 0x2,
    freeform = 0x4,
    nonunicode = 0x8,
    multiline = 0x10,
    singleline = 0x20
}
//do not reorder this list
alias RegexOptionNames = AliasSeq!('g', 'i', 'x', 'U', 'm', 's');
static assert( RegexOption.max < 0x80);
// flags that allow guide execution of engine
enum RegexInfo : uint { oneShot = 0x80 }

// IR bit pattern: 0b1_xxxxx_yy
// where yy indicates class of instruction, xxxxx for actual operation code
//     00: atom, a normal instruction
//     01: open, opening of a group, has length of contained IR in the low bits
//     10: close, closing of a group, has length of contained IR in the low bits
//     11 unused
//
// Loops with Q (non-greedy, with ? mark) must have the same size / other properties as non Q version
// Possible changes:
//* merge group, option, infinite/repeat start (to never copy during parsing of (a|b){1,2})
//* reorganize groups to make n args easier to find, or simplify the check for groups of similar ops
//  (like lookaround), or make it easier to identify hotspots.

enum IR:uint {
    Char              = 0b1_00000_00, //a character
    Any               = 0b1_00001_00, //any character
    CodepointSet      = 0b1_00010_00, //a most generic CodepointSet [...]
    Trie              = 0b1_00011_00, //CodepointSet implemented as Trie
    //match with any of a consecutive OrChar's in this sequence
    //(used for case insensitive match)
    //OrChar holds in upper two bits of data total number of OrChars in this _sequence_
    //the drawback of this representation is that it is difficult
    // to detect a jump in the middle of it
    OrChar             = 0b1_00100_00,
    Nop                = 0b1_00101_00, //no operation (padding)
    End                = 0b1_00110_00, //end of program
    Bol                = 0b1_00111_00, //beginning of a line ^
    Eol                = 0b1_01000_00, //end of a line $
    Wordboundary       = 0b1_01001_00, //boundary of a word
    Notwordboundary    = 0b1_01010_00, //not a word boundary
    Backref            = 0b1_01011_00, //backreference to a group (that has to be pinned, i.e. locally unique) (group index)
    GroupStart         = 0b1_01100_00, //start of a group (x) (groupIndex+groupPinning(1bit))
    GroupEnd           = 0b1_01101_00, //end of a group (x) (groupIndex+groupPinning(1bit))
    Option             = 0b1_01110_00, //start of an option within an alternation x | y (length)
    GotoEndOr          = 0b1_01111_00, //end of an option (length of the rest)
    Bof                = 0b1_10000_00, //begining of "file" (string) ^
    Eof                = 0b1_10001_00, //end of "file" (string) $
    //... any additional atoms here

    OrStart            = 0b1_00000_01, //start of alternation group  (length)
    OrEnd              = 0b1_00000_10, //end of the or group (length,mergeIndex)
    //with this instruction order
    //bit mask 0b1_00001_00 could be used to test/set greediness
    InfiniteStart      = 0b1_00001_01, //start of an infinite repetition x* (length)
    InfiniteEnd        = 0b1_00001_10, //end of infinite repetition x* (length,mergeIndex)
    InfiniteQStart     = 0b1_00010_01, //start of a non eager infinite repetition x*? (length)
    InfiniteQEnd       = 0b1_00010_10, //end of non eager infinite repetition x*? (length,mergeIndex)
    InfiniteBloomStart = 0b1_00011_01, //start of an filtered infinite repetition x* (length)
    InfiniteBloomEnd   = 0b1_00011_10, //end of filtered infinite repetition x* (length,mergeIndex)
    RepeatStart        = 0b1_00100_01, //start of a {n,m} repetition (length)
    RepeatEnd          = 0b1_00100_10, //end of x{n,m} repetition (length,step,minRep,maxRep)
    RepeatQStart       = 0b1_00101_01, //start of a non eager x{n,m}? repetition (length)
    RepeatQEnd         = 0b1_00101_10, //end of non eager x{n,m}? repetition (length,step,minRep,maxRep)

    //
    LookaheadStart     = 0b1_00110_01, //begin of the lookahead group (length)
    LookaheadEnd       = 0b1_00110_10, //end of a lookahead group (length)
    NeglookaheadStart  = 0b1_00111_01, //start of a negative lookahead (length)
    NeglookaheadEnd    = 0b1_00111_10, //end of a negative lookahead (length)
    LookbehindStart    = 0b1_01000_01, //start of a lookbehind (length)
    LookbehindEnd      = 0b1_01000_10, //end of a lookbehind (length)
    NeglookbehindStart = 0b1_01001_01, //start of a negative lookbehind (length)
    NeglookbehindEnd   = 0b1_01001_10, //end of negative lookbehind (length)
}

//a shorthand for IR length - full length of specific opcode evaluated at compile time
template IRL(IR code)
{
    enum uint IRL =  lengthOfIR(code);
}
static assert(IRL!(IR.LookaheadStart) == 3);

//how many parameters follow the IR, should be optimized fixing some IR bits
int immediateParamsIR(IR i){
    switch (i)
    {
    case IR.OrEnd,IR.InfiniteEnd,IR.InfiniteQEnd:
        return 1;  // merge table index
    case IR.InfiniteBloomEnd:
        return 2;  // bloom filter index + merge table index
    case IR.RepeatEnd, IR.RepeatQEnd:
        return 4;
    case IR.LookaheadStart, IR.NeglookaheadStart, IR.LookbehindStart, IR.NeglookbehindStart:
        return 2;  // start-end of captures used
    default:
        return 0;
    }
}

//full length of IR instruction inlcuding all parameters that might follow it
int lengthOfIR(IR i)
{
    return 1 + immediateParamsIR(i);
}

//full length of the paired IR instruction inlcuding all parameters that might follow it
int lengthOfPairedIR(IR i)
{
    return 1 + immediateParamsIR(pairedIR(i));
}

//if the operation has a merge point (this relies on the order of the ops)
bool hasMerge(IR i)
{
    return (i&0b11)==0b10 && i <= IR.RepeatQEnd;
}

//is an IR that opens a "group"
bool isStartIR(IR i)
{
    return (i&0b11)==0b01;
}

//is an IR that ends a "group"
bool isEndIR(IR i)
{
    return (i&0b11)==0b10;
}

//is a standalone IR
bool isAtomIR(IR i)
{
    return (i&0b11)==0b00;
}

//makes respective pair out of IR i, swapping start/end bits of instruction
IR pairedIR(IR i)
{
    assert(isStartIR(i) || isEndIR(i));
    return cast(IR)(i ^ 0b11);
}

//encoded IR instruction
struct Bytecode
{
    uint raw;
    //natural constraints
    enum maxSequence = 2+4;
    enum maxData = 1 << 22;
    enum maxRaw = 1 << 31;

    this(IR code, uint data)
    {
        assert(data < (1 << 22) && code < 256);
        raw = code << 24 | data;
    }

    this(IR code, uint data, uint seq)
    {
        assert(data < (1 << 22) && code < 256 );
        assert(seq >= 2 && seq < maxSequence);
        raw = code << 24 | (seq - 2)<<22 | data;
    }

    //store raw data
    static Bytecode fromRaw(uint data)
    {
        Bytecode t;
        t.raw = data;
        return t;
    }

    //bit twiddling helpers
    //0-arg template due to @@@BUG@@@ 10985
    @property uint data()() const { return raw & 0x003f_ffff; }

    @property void data()(uint val)
    {
        raw = (raw & ~0x003f_ffff) | (val & 0x003f_ffff);
    }

    //ditto
    //0-arg template due to @@@BUG@@@ 10985
    @property uint sequence()() const { return 2 + (raw >> 22 & 0x3); }

    //ditto
    //0-arg template due to @@@BUG@@@ 10985
    @property IR code()() const { return cast(IR)(raw >> 24); }

    //ditto
    @property bool hotspot() const { return hasMerge(code); }

    //test the class of this instruction
    @property bool isAtom() const { return isAtomIR(code); }

    //ditto
    @property bool isStart() const { return isStartIR(code); }

    //ditto
    @property bool isEnd() const { return isEndIR(code); }

    //number of arguments for this instruction
    @property int args() const { return immediateParamsIR(code); }

    //mark this GroupStart or GroupEnd as referenced in backreference
    void setBackrefence()
    {
        assert(code == IR.GroupStart || code == IR.GroupEnd);
        raw = raw | 1 << 23;
    }

    //is referenced
    @property bool backreference() const
    {
        assert(code == IR.GroupStart || code == IR.GroupEnd);
        return cast(bool)(raw & 1 << 23);
    }

    //mark as local reference (for backrefs in lookarounds)
    void setLocalRef()
    {
        assert(code == IR.Backref);
        raw = raw | 1 << 23;
    }

    //is a local ref
    @property bool localRef() const
    {
        assert(code == IR.Backref);
        return cast(bool)(raw & 1 << 23);
    }

    //human readable name of instruction
    @trusted @property string mnemonic()() const
    {//@@@BUG@@@ to is @system
        import std.conv : to;
        return to!string(code);
    }

    //full length of instruction
    @property uint length() const
    {
        return lengthOfIR(code);
    }

    //full length of respective start/end of this instruction
    @property uint pairedLength() const
    {
        return lengthOfPairedIR(code);
    }

    //returns bytecode of paired instruction (assuming this one is start or end)
    @property Bytecode paired() const
    {//depends on bit and struct layout order
        assert(isStart || isEnd);
        return Bytecode.fromRaw(raw ^ 0b11 << 24);
    }

    //gets an index into IR block of the respective pair
    uint indexOfPair(uint pc) const
    {
        assert(isStart || isEnd);
        return isStart ? pc + data + length  : pc - data - lengthOfPairedIR(code);
    }
}

static assert(Bytecode.sizeof == 4);


//index entry structure for name --> number of submatch
struct NamedGroup
{
    string name;
    uint group;
}

//holds pair of start-end markers for a submatch
struct Group(DataIndex)
{
    DataIndex begin, end;
    @trusted string toString()() const
    {
        import std.array : appender;
        import std.format : formattedWrite;
        auto a = appender!string();
        formattedWrite(a, "%s..%s", begin, end);
        return a.data;
    }
}

//debugging tool, prints out instruction along with opcodes
@trusted string disassemble(in Bytecode[] irb, uint pc, in NamedGroup[] dict=[])
{
    import std.array : appender;
    import std.format : formattedWrite;
    auto output = appender!string();
    formattedWrite(output,"%s", irb[pc].mnemonic);
    switch (irb[pc].code)
    {
    case IR.Char:
        formattedWrite(output, " %s (0x%x)",cast(dchar) irb[pc].data, irb[pc].data);
        break;
    case IR.OrChar:
        formattedWrite(output, " %s (0x%x) seq=%d", cast(dchar) irb[pc].data, irb[pc].data, irb[pc].sequence);
        break;
    case IR.RepeatStart, IR.InfiniteStart, IR.InfiniteBloomStart,
    IR.Option, IR.GotoEndOr, IR.OrStart:
        //forward-jump instructions
        uint len = irb[pc].data;
        formattedWrite(output, " pc=>%u", pc+len+IRL!(IR.RepeatStart));
        break;
    case IR.RepeatEnd, IR.RepeatQEnd: //backward-jump instructions
        uint len = irb[pc].data;
        formattedWrite(output, " pc=>%u min=%u max=%u step=%u",
            pc - len, irb[pc + 3].raw, irb[pc + 4].raw, irb[pc + 2].raw);
        break;
    case IR.InfiniteEnd, IR.InfiniteQEnd, IR.InfiniteBloomEnd, IR.OrEnd: //ditto
        uint len = irb[pc].data;
        formattedWrite(output, " pc=>%u", pc-len);
        break;
    case  IR.LookaheadEnd, IR.NeglookaheadEnd: //ditto
        uint len = irb[pc].data;
        formattedWrite(output, " pc=>%u", pc-len);
        break;
    case IR.GroupStart, IR.GroupEnd:
        uint n = irb[pc].data;
        string name;
        foreach (v;dict)
            if (v.group == n)
            {
                name = "'"~v.name~"'";
                break;
            }
        formattedWrite(output, " %s #%u " ~ (irb[pc].backreference ? "referenced" : ""),
                name, n);
        break;
    case IR.LookaheadStart, IR.NeglookaheadStart, IR.LookbehindStart, IR.NeglookbehindStart:
        uint len = irb[pc].data;
        uint start = irb[pc+1].raw, end = irb[pc+2].raw;
        formattedWrite(output, " pc=>%u [%u..%u]", pc + len + IRL!(IR.LookaheadStart), start, end);
        break;
    case IR.Backref: case IR.CodepointSet: case IR.Trie:
        uint n = irb[pc].data;
        formattedWrite(output, " %u",  n);
        if (irb[pc].code == IR.Backref)
            formattedWrite(output, " %s", irb[pc].localRef ? "local" : "global");
        break;
    default://all data-free instructions
    }
    if (irb[pc].hotspot)
        formattedWrite(output, " Hotspot %u", irb[pc+1].raw);
    return output.data;
}

//disassemble the whole chunk
@trusted void printBytecode()(in Bytecode[] slice, in NamedGroup[] dict=[])
{
    import std.stdio : writeln;
    for (uint pc=0; pc<slice.length; pc += slice[pc].length)
        writeln("\t", disassemble(slice, pc, dict));
}

/++
    $(D Regex) object holds regular expression pattern in compiled form.
    Instances of this object are constructed via calls to $(D regex).
    This is an intended form for caching and storage of frequently
    used regular expressions.
+/
struct Regex(Char)
{
    //temporary workaround for identifier lookup
    CodepointSet[] charsets; //
    Bytecode[] ir;      //compiled bytecode of pattern


    @safe @property bool empty() const nothrow {  return ir is null; }

    @safe @property auto namedCaptures()
    {
        static struct NamedGroupRange
        {
        private:
            NamedGroup[] groups;
            size_t start;
            size_t end;
        public:
            this(NamedGroup[] g, size_t s, size_t e)
            {
                assert(s <= e);
                assert(e <= g.length);
                groups = g;
                start = s;
                end = e;
            }

            @property string front() { return groups[start].name; }
            @property string back() { return groups[end-1].name; }
            @property bool empty() { return start >= end; }
            @property size_t length() { return end - start; }
            alias opDollar = length;
            @property NamedGroupRange save()
            {
                return NamedGroupRange(groups, start, end);
            }
            void popFront() { assert(!empty); start++; }
            void popBack() { assert(!empty); end--; }
            string opIndex()(size_t i)
            {
                assert(start + i < end,
                       "Requested named group is out of range.");
                return groups[start+i].name;
            }
            NamedGroupRange opSlice(size_t low, size_t high) {
                assert(low <= high);
                assert(start + high <= end);
                return NamedGroupRange(groups, start + low, start + high);
            }
            NamedGroupRange opSlice() { return this.save; }
        }
        return NamedGroupRange(dict, 0, dict.length);
    }

package(std.regex):
    import std.regex.internal.kickstart : Kickstart; //TODO: get rid of this dependency
    NamedGroup[] dict;                     // maps name -> user group number
    uint ngroup;                           // number of internal groups
    uint maxCounterDepth;                  // max depth of nested {n,m} repetitions
    uint hotspotTableSize;                 // number of entries in merge table
    uint threadCount;                      // upper bound on number of Thompson VM threads
    uint flags;                            // global regex flags
    public const(CharMatcher)[]  matchers; // tables that represent character sets
    public const(BitTable)[] filters;      // bloom filters for conditional loops
    uint[] backrefed;                      // bit array of backreferenced submatches
    Kickstart!Char kickstart;

    //bit access helper
    uint isBackref(uint n)
    {
        if (n/32 >= backrefed.length)
            return 0;
        return backrefed[n / 32] & (1 << (n & 31));
    }

    //check if searching is not needed
    void checkIfOneShot()
    {
    L_CheckLoop:
        for (uint i = 0; i < ir.length; i += ir[i].length)
        {
            switch (ir[i].code)
            {
                case IR.Bof:
                    flags |= RegexInfo.oneShot;
                    break L_CheckLoop;
                case IR.GroupStart, IR.GroupEnd, IR.Bol, IR.Eol, IR.Eof,
                IR.Wordboundary, IR.Notwordboundary:
                    break;
                default:
                    break L_CheckLoop;
            }
        }
    }

    //print out disassembly a program's IR
    @trusted debug(std_regex_parser) void print() const
    {//@@@BUG@@@ write is system
        for (uint i = 0; i < ir.length; i += ir[i].length)
        {
            writefln("%d\t%s ", i, disassemble(ir, i, dict));
        }
        writeln("Total merge table size: ", hotspotTableSize);
        writeln("Max counter nesting depth: ", maxCounterDepth);
    }

}

//@@@BUG@@@ (unreduced) - public makes it inaccessible in std.regex.package (!)
/*public*/ struct StaticRegex(Char)
{
package(std.regex):
    import std.regex.internal.backtracking : BacktrackingMatcher;
    alias Matcher = BacktrackingMatcher!(true);
    alias MatchFn = bool function(ref Matcher!Char) @trusted;
    MatchFn nativeFn;
public:
    Regex!Char _regex;
    alias _regex this;
    this(Regex!Char re, MatchFn fn)
    {
        _regex = re;
        nativeFn = fn;

    }

}

// The stuff below this point is temporarrily part of IR module
// but may need better place in the future (all internals)
package(std.regex):

//Simple UTF-string abstraction compatible with stream interface
struct Input(Char)
if (is(Char :dchar))
{
    import std.utf : decode;
    alias DataIndex = size_t;
    enum bool isLoopback = false;
    alias String = const(Char)[];
    String _origin;
    size_t _index;

    //constructs Input object out of plain string
    this(String input, size_t idx = 0)
    {
        _origin = input;
        _index = idx;
    }

    //codepoint at current stream position
    pragma(inline, true) bool nextChar(ref dchar res, ref size_t pos)
    {
        pos = _index;
        // DMD's inliner hates multiple return functions
        // but can live with single statement if/else bodies
        bool n = !(_index == _origin.length);
        if (n)
            res = decode(_origin, _index);
        return n;
    }
    @property bool atEnd(){
        return _index == _origin.length;
    }
    bool search(Kickstart)(ref Kickstart kick, ref dchar res, ref size_t pos)
    {
        size_t idx = kick.search(_origin, _index);
        _index = idx;
        return nextChar(res, pos);
    }

    //index of at End position
    @property size_t lastIndex(){   return _origin.length; }

    //support for backtracker engine, might not be present
    void reset(size_t index){   _index = index;  }

    String opSlice(size_t start, size_t end){   return _origin[start .. end]; }

    auto loopBack(size_t index){   return BackLooper!Input(this, index); }
}

struct BackLooperImpl(Input)
{
    import std.utf : strideBack;
    alias DataIndex = size_t;
    alias String = Input.String;
    enum bool isLoopback = true;
    String _origin;
    size_t _index;
    this(Input input, size_t index)
    {
        _origin = input._origin;
        _index = index;
    }
    @trusted bool nextChar(ref dchar res,ref size_t pos)
    {
        pos = _index;
        if (_index == 0)
            return false;

        res = _origin[0.._index].back;
        _index -= strideBack(_origin, _index);

        return true;
    }
    @property atEnd(){ return _index == 0 || _index == strideBack(_origin, _index); }
    auto loopBack(size_t index){   return Input(_origin, index); }

    //support for backtracker engine, might not be present
    //void reset(size_t index){   _index = index ? index-std.utf.strideBack(_origin, index) : 0;  }
    void reset(size_t index){   _index = index;  }

    String opSlice(size_t start, size_t end){   return _origin[end .. start]; }
    //index of at End position
    @property size_t lastIndex(){   return 0; }
}

template BackLooper(E)
{
    static if (is(E : BackLooperImpl!U, U))
    {
        alias BackLooper = U;
    }
    else
    {
        alias BackLooper = BackLooperImpl!E;
    }
}

//both helpers below are internal, on its own are quite "explosive"
//unsafe, no initialization of elements
@system T[] mallocArray(T)(size_t len)
{
    import core.stdc.stdlib : malloc;
    return (cast(T*) malloc(len * T.sizeof))[0 .. len];
}

//very unsafe, no initialization
@system T[] arrayInChunk(T)(size_t len, ref void[] chunk)
{
    auto ret = (cast(T*) chunk.ptr)[0 .. len];
    chunk = chunk[len * T.sizeof .. $];
    return ret;
}

//
@trusted uint lookupNamedGroup(String)(NamedGroup[] dict, String name)
{//equal is @system?
    import std.algorithm.comparison : equal;
    import std.algorithm.iteration : map;
    import std.conv : text;
    import std.range : assumeSorted;

    auto fnd = assumeSorted!"cmp(a,b) < 0"(map!"a.name"(dict)).lowerBound(name).length;
    enforce(fnd < dict.length && equal(dict[fnd].name, name),
        text("no submatch named ", name));
    return dict[fnd].group;
}

//whether ch is one of unicode newline sequences
//0-arg template due to @@@BUG@@@ 10985
bool endOfLine()(dchar front, bool seenCr)
{
    return ((front == '\n') ^ seenCr) || front == '\r'
    || front == NEL || front == LS || front == PS;
}

//
//0-arg template due to @@@BUG@@@ 10985
bool startOfLine()(dchar back, bool seenNl)
{
    return ((back == '\r') ^ seenNl) || back == '\n'
    || back == NEL || back == LS || back == PS;
}

///Exception object thrown in case of errors during regex compilation.
public class RegexException : Exception
{
    mixin basicExceptionCtors;
}

// simple 128-entry bit-table used with a hash function
struct BitTable {
    uint[4] filter;

    this(CodepointSet set){
        foreach (iv; set.byInterval)
        {
            foreach (v; iv.a .. iv.b)
                add(v);
        }
    }

    void add()(dchar ch){
        immutable i = index(ch);
        filter[i >> 5]  |=  1<<(i & 31);
    }
    // non-zero -> might be present, 0 -> absent
    bool opIndex()(dchar ch) const{
        immutable i = index(ch);
        return (filter[i >> 5]>>(i & 31)) & 1;
    }

    static uint index()(dchar ch){
        return ((ch >> 7) ^ ch) & 0x7F;
    }
}

struct CharMatcher {
    BitTable ascii; // fast path for ASCII
    Trie trie;      // slow path for Unicode

    this(CodepointSet set)
    {
        auto asciiSet = set & unicode.ASCII;
        ascii = BitTable(asciiSet);
        trie = makeTrie(set);
    }

    bool opIndex()(dchar ch) const
    {
        if (ch < 0x80)
            return ascii[ch];
        else
            return trie[ch];
    }
}