Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
#!/usr/bin/python

# Script to statistically compare two sets of log files with -ftime-report
# output embedded within them.

# Contributed by Lawrence Crowl <crowl@google.com>
#
# Copyright (C) 2012 Free Software Foundation, Inc.
#
# This file is part of GCC.
#
# GCC is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GCC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING.  If not, write to
# the Free Software Foundation, 51 Franklin Street, Fifth Floor,
# Boston, MA 02110-1301, USA.


""" Compare two sets of compile-time performance numbers.

The intent of this script is to compare compile-time performance of two
different versions of the compiler.  Each version of the compiler must be
run at least three times with the -ftime-report option.  Each log file
represents a data point, or trial.  The set of trials for each compiler
version constitutes a sample.  The ouput of the script is a description
of the statistically significant difference between the two version of
the compiler.

The parameters to the script are:

  Two file patterns that each match a set of log files.  You will probably
  need to quote the patterns before passing them to the script.

    Each pattern corresponds to a version of the compiler.

  A regular expression that finds interesting lines in the log files.
  If you want to match the beginning of the line, you will need to add
  the ^ operator.  The filtering uses Python regular expression syntax.

    The default is "TOTAL".

    All of the interesting lines in a single log file are summed to produce
    a single trial (data point).

  A desired statistical confidence within the range 60% to 99.9%.  Due to
  the implementation, this confidence will be rounded down to one of 60%,
  70%, 80%, 90%, 95%, 98%, 99%, 99.5%, 99.8%, and 99.9%.

    The default is 95.

    If the computed confidence is lower than desired, the script will
    estimate the number of trials needed to meet the desired confidence.
    This estimate is not very good, as the variance tends to change as
    you increase the number of trials.

The most common use of the script is total compile-time comparison between
logfiles stored in different directories.

compare_two_ftime_report_sets "Log1/*perf" "Log2/*perf"

One can also look at parsing time, but expecting a lower confidence.

compare_two_ftime_report_sets "Log1/*perf" "Log2/*perf" "^phase parsing" 75

"""


import os
import sys
import fnmatch
import glob
import re
import math


####################################################################### Utility


def divide(dividend, divisor):
  """ Return the quotient, avoiding division by zero.
  """
  if divisor == 0:
    return sys.float_info.max
  else:
    return dividend / divisor


################################################################# File and Line


# Should you repurpose this script, this code might help.
#
#def find_files(topdir, filepat):
#  """ Find a set of file names, under a given directory,
#  matching a Unix shell file pattern.
#  Returns an iterator over the file names.
#  """
#  for path, dirlist, filelist in os.walk(topdir):
#    for name in fnmatch.filter(filelist, filepat):
#      yield os.path.join(path, name)


def match_files(fileglob):
  """ Find a set of file names matching a Unix shell glob pattern.
  Returns an iterator over the file names.
  """
  return glob.iglob(os.path.expanduser(fileglob))


def lines_in_file(filename):
  """ Return an iterator over lines in the named file.  """
  filedesc = open(filename, "r")
  for line in filedesc:
    yield line
  filedesc.close()


def lines_containing_pattern(pattern, lines):
  """ Find lines by a Python regular-expression.
  Returns an iterator over lines containing the expression.
  """
  parser = re.compile(pattern)
  for line in lines:
    if parser.search(line):
      yield line


############################################################# Number Formatting


def strip_redundant_digits(numrep):
  if numrep.find(".") == -1:
    return numrep
  return numrep.rstrip("0").rstrip(".")


def text_number(number):
  return strip_redundant_digits("%g" % number)


def round_significant(digits, number):
  if number == 0:
    return 0
  magnitude = abs(number)
  significance = math.floor(math.log10(magnitude))
  least_position = int(significance - digits + 1)
  return round(number, -least_position)


def text_significant(digits, number):
  return text_number(round_significant(digits, number))


def text_percent(number):
  return text_significant(3, number*100) + "%"


################################################################ T-Distribution


# This section of code provides functions for using Student's t-distribution.


# The functions are implemented using table lookup
# to facilitate implementation of inverse functions.


# The table is comprised of row 0 listing the alpha values,
# column 0 listing the degree-of-freedom values,
# and the other entries listing the corresponding t-distribution values.

t_dist_table = [
[  0, 0.200, 0.150, 0.100, 0.050, 0.025, 0.010, 0.005, .0025, 0.001, .0005],
[  1, 1.376, 1.963, 3.078, 6.314, 12.71, 31.82, 63.66, 127.3, 318.3, 636.6],
[  2, 1.061, 1.386, 1.886, 2.920, 4.303, 6.965, 9.925, 14.09, 22.33, 31.60],
[  3, 0.978, 1.250, 1.638, 2.353, 3.182, 4.541, 5.841, 7.453, 10.21, 12.92],
[  4, 0.941, 1.190, 1.533, 2.132, 2.776, 3.747, 4.604, 5.598, 7.173, 8.610],
[  5, 0.920, 1.156, 1.476, 2.015, 2.571, 3.365, 4.032, 4.773, 5.894, 6.869],
[  6, 0.906, 1.134, 1.440, 1.943, 2.447, 3.143, 3.707, 4.317, 5.208, 5.959],
[  7, 0.896, 1.119, 1.415, 1.895, 2.365, 2.998, 3.499, 4.029, 4.785, 5.408],
[  8, 0.889, 1.108, 1.397, 1.860, 2.306, 2.896, 3.355, 3.833, 4.501, 5.041],
[  9, 0.883, 1.100, 1.383, 1.833, 2.262, 2.821, 3.250, 3.690, 4.297, 4.781],
[ 10, 0.879, 1.093, 1.372, 1.812, 2.228, 2.764, 3.169, 3.581, 4.144, 4.587],
[ 11, 0.876, 1.088, 1.363, 1.796, 2.201, 2.718, 3.106, 3.497, 4.025, 4.437],
[ 12, 0.873, 1.083, 1.356, 1.782, 2.179, 2.681, 3.055, 3.428, 3.930, 4.318],
[ 13, 0.870, 1.079, 1.350, 1.771, 2.160, 2.650, 3.012, 3.372, 3.852, 4.221],
[ 14, 0.868, 1.076, 1.345, 1.761, 2.145, 2.624, 2.977, 3.326, 3.787, 4.140],
[ 15, 0.866, 1.074, 1.341, 1.753, 2.131, 2.602, 2.947, 3.286, 3.733, 4.073],
[ 16, 0.865, 1.071, 1.337, 1.746, 2.120, 2.583, 2.921, 3.252, 3.686, 4.015],
[ 17, 0.863, 1.069, 1.333, 1.740, 2.110, 2.567, 2.898, 3.222, 3.646, 3.965],
[ 18, 0.862, 1.067, 1.330, 1.734, 2.101, 2.552, 2.878, 3.197, 3.610, 3.922],
[ 19, 0.861, 1.066, 1.328, 1.729, 2.093, 2.539, 2.861, 3.174, 3.579, 3.883],
[ 20, 0.860, 1.064, 1.325, 1.725, 2.086, 2.528, 2.845, 3.153, 3.552, 3.850],
[ 21, 0.859, 1.063, 1.323, 1.721, 2.080, 2.518, 2.831, 3.135, 3.527, 3.819],
[ 22, 0.858, 1.061, 1.321, 1.717, 2.074, 2.508, 2.819, 3.119, 3.505, 3.792],
[ 23, 0.858, 1.060, 1.319, 1.714, 2.069, 2.500, 2.807, 3.104, 3.485, 3.768],
[ 24, 0.857, 1.059, 1.318, 1.711, 2.064, 2.492, 2.797, 3.091, 3.467, 3.745],
[ 25, 0.856, 1.058, 1.316, 1.708, 2.060, 2.485, 2.787, 3.078, 3.450, 3.725],
[ 26, 0.856, 1.058, 1.315, 1.706, 2.056, 2.479, 2.779, 3.067, 3.435, 3.707],
[ 27, 0.855, 1.057, 1.314, 1.703, 2.052, 2.473, 2.771, 3.057, 3.421, 3.689],
[ 28, 0.855, 1.056, 1.313, 1.701, 2.048, 2.467, 2.763, 3.047, 3.408, 3.674],
[ 29, 0.854, 1.055, 1.311, 1.699, 2.045, 2.462, 2.756, 3.038, 3.396, 3.660],
[ 30, 0.854, 1.055, 1.310, 1.697, 2.042, 2.457, 2.750, 3.030, 3.385, 3.646],
[ 31, 0.853, 1.054, 1.309, 1.696, 2.040, 2.453, 2.744, 3.022, 3.375, 3.633],
[ 32, 0.853, 1.054, 1.309, 1.694, 2.037, 2.449, 2.738, 3.015, 3.365, 3.622],
[ 33, 0.853, 1.053, 1.308, 1.692, 2.035, 2.445, 2.733, 3.008, 3.356, 3.611],
[ 34, 0.852, 1.052, 1.307, 1.691, 2.032, 2.441, 2.728, 3.002, 3.348, 3.601],
[ 35, 0.852, 1.052, 1.306, 1.690, 2.030, 2.438, 2.724, 2.996, 3.340, 3.591],
[ 36, 0.852, 1.052, 1.306, 1.688, 2.028, 2.434, 2.719, 2.990, 3.333, 3.582],
[ 37, 0.851, 1.051, 1.305, 1.687, 2.026, 2.431, 2.715, 2.985, 3.326, 3.574],
[ 38, 0.851, 1.051, 1.304, 1.686, 2.024, 2.429, 2.712, 2.980, 3.319, 3.566],
[ 39, 0.851, 1.050, 1.304, 1.685, 2.023, 2.426, 2.708, 2.976, 3.313, 3.558],
[ 40, 0.851, 1.050, 1.303, 1.684, 2.021, 2.423, 2.704, 2.971, 3.307, 3.551],
[ 50, 0.849, 1.047, 1.299, 1.676, 2.009, 2.403, 2.678, 2.937, 3.261, 3.496],
[ 60, 0.848, 1.045, 1.296, 1.671, 2.000, 2.390, 2.660, 2.915, 3.232, 3.460],
[ 80, 0.846, 1.043, 1.292, 1.664, 1.990, 2.374, 2.639, 2.887, 3.195, 3.416],
[100, 0.845, 1.042, 1.290, 1.660, 1.984, 2.364, 2.626, 2.871, 3.174, 3.390],
[150, 0.844, 1.040, 1.287, 1.655, 1.976, 2.351, 2.609, 2.849, 3.145, 3.357] ]


# The functions use the following parameter name conventions:
# alpha - the alpha parameter
# degree - the degree-of-freedom parameter
# value - the t-distribution value for some alpha and degree
# deviations - a confidence interval radius,
#   expressed as a multiple of the standard deviation of the sample
# ax - the alpha parameter index
# dx - the degree-of-freedom parameter index

# The interface to this section of code is the last three functions,
# find_t_dist_value, find_t_dist_alpha, and find_t_dist_degree.


def t_dist_alpha_at_index(ax):
  if ax == 0:
    return .25 # effectively no confidence
  else:
    return t_dist_table[0][ax]


def t_dist_degree_at_index(dx):
  return t_dist_table[dx][0]


def t_dist_value_at_index(ax, dx):
  return t_dist_table[dx][ax]


def t_dist_index_of_degree(degree):
  limit = len(t_dist_table) - 1
  dx = 0
  while dx < limit and t_dist_degree_at_index(dx+1) <= degree:
    dx += 1
  return dx


def t_dist_index_of_alpha(alpha):
  limit = len(t_dist_table[0]) - 1
  ax = 0
  while ax < limit and t_dist_alpha_at_index(ax+1) >= alpha:
    ax += 1
  return ax


def t_dist_index_of_value(dx, value):
  limit = len(t_dist_table[dx]) - 1
  ax = 0
  while ax < limit and t_dist_value_at_index(ax+1, dx) < value:
    ax += 1
  return ax


def t_dist_value_within_deviations(dx, ax, deviations):
  degree = t_dist_degree_at_index(dx)
  count = degree + 1
  root = math.sqrt(count)
  value = t_dist_value_at_index(ax, dx)
  nominal = value / root
  comparison = nominal <= deviations
  return comparison


def t_dist_index_of_degree_for_deviations(ax, deviations):
  limit = len(t_dist_table) - 1
  dx = 1
  while dx < limit and not t_dist_value_within_deviations(dx, ax, deviations):
    dx += 1
  return dx


def find_t_dist_value(alpha, degree):
  """ Return the t-distribution value.
  The parameters are alpha and degree of freedom.
  """
  dx = t_dist_index_of_degree(degree)
  ax = t_dist_index_of_alpha(alpha)
  return t_dist_value_at_index(ax, dx)


def find_t_dist_alpha(value, degree):
  """ Return the alpha.
  The parameters are the t-distribution value for a given degree of freedom.
  """
  dx = t_dist_index_of_degree(degree)
  ax = t_dist_index_of_value(dx, value)
  return t_dist_alpha_at_index(ax)


def find_t_dist_degree(alpha, deviations):
  """ Return the degree-of-freedom.
  The parameters are the desired alpha and the number of standard deviations
  away from the mean that the degree should handle.
  """
  ax = t_dist_index_of_alpha(alpha)
  dx = t_dist_index_of_degree_for_deviations(ax, deviations)
  return t_dist_degree_at_index(dx)


############################################################## Core Statistical


# This section provides the core statistical classes and functions.


class Accumulator:

  """ An accumulator for statistical information using arithmetic mean.  """

  def __init__(self):
    self.count = 0
    self.mean = 0
    self.sumsqdiff = 0

  def insert(self, value):
    self.count += 1
    diff = value - self.mean
    self.mean += diff / self.count
    self.sumsqdiff += (self.count - 1) * diff * diff / self.count


def fill_accumulator_from_values(values):
  accumulator = Accumulator()
  for value in values:
    accumulator.insert(value)
  return accumulator


def alpha_from_confidence(confidence):
  scrubbed = min(99.99, max(confidence, 60))
  return (100.0 - scrubbed) / 200.0


def confidence_from_alpha(alpha):
  return 100 - 200 * alpha


class Sample:

  """ A description of a sample using an arithmetic mean.  """

  def __init__(self, accumulator, alpha):
    if accumulator.count < 3:
      sys.exit("Samples must contain three trials.")
    self.count = accumulator.count
    self.mean = accumulator.mean
    variance = accumulator.sumsqdiff / (self.count - 1)
    self.deviation = math.sqrt(variance)
    self.error = self.deviation / math.sqrt(self.count)
    self.alpha = alpha
    self.radius = find_t_dist_value(alpha, self.count - 1) * self.error

  def alpha_for_radius(self, radius):
    return find_t_dist_alpha(divide(radius, self.error), self.count)

  def degree_for_radius(self, radius):
    return find_t_dist_degree(self.alpha, divide(radius, self.deviation))

  def __str__(self):
    text = "trial count is " + text_number(self.count)
    text += ", mean is " + text_number(self.mean)
    text += " (" + text_number(confidence_from_alpha(self.alpha)) +"%"
    text += " confidence in " + text_number(self.mean - self.radius)
    text += " to " + text_number(self.mean + self.radius) + ")"
    text += ",\nstd.deviation is " + text_number(self.deviation)
    text += ", std.error is " + text_number(self.error)
    return text


def sample_from_values(values, alpha):
  accumulator = fill_accumulator_from_values(values)
  return Sample(accumulator, alpha)


class Comparison:

  """ A comparison of two samples using arithmetic means.  """

  def __init__(self, first, second, alpha):
    if first.mean > second.mean:
      self.upper = first
      self.lower = second
      self.larger = "first"
    else:
      self.upper = second
      self.lower = first
      self.larger = "second"
    self.a_wanted = alpha
    radius = self.upper.mean - self.lower.mean
    rising = self.lower.alpha_for_radius(radius)
    falling = self.upper.alpha_for_radius(radius)
    self.a_actual = max(rising, falling)
    rising = self.lower.degree_for_radius(radius)
    falling = self.upper.degree_for_radius(radius)
    self.count = max(rising, falling) + 1

  def __str__(self):
    message = "The " + self.larger + " sample appears to be "
    change = divide(self.upper.mean, self.lower.mean) - 1
    message += text_percent(change) + " larger,\n"
    confidence = confidence_from_alpha(self.a_actual)
    if confidence >= 60:
      message += "with " + text_number(confidence) + "% confidence"
      message += " of being larger."
    else:
      message += "but with no confidence of actually being larger."
    if self.a_actual > self.a_wanted:
      confidence = confidence_from_alpha(self.a_wanted)
      message += "\nTo reach " + text_number(confidence) + "% confidence,"
      if self.count < 100:
        message += " you need roughly " + text_number(self.count) + " trials,\n"
        message += "assuming the standard deviation is stable, which is iffy."
      else:
        message += "\nyou need to reduce the larger deviation"
        message += " or increase the number of trials."
    return message


############################################################ Single Value Files


# This section provides functions to compare two raw data files,
# each containing a whole sample consisting of single number per line.


# Should you repurpose this script, this code might help.
#
#def values_from_data_file(filename):
#  for line in lines_in_file(filename):
#    yield float(line)


# Should you repurpose this script, this code might help.
#
#def sample_from_data_file(filename, alpha):
#  confidence = confidence_from_alpha(alpha)
#  text = "\nArithmetic sample for data file\n\"" + filename + "\""
#  text += " with desired confidence " + text_number(confidence) + " is "
#  print text
#  values = values_from_data_file(filename)
#  sample = sample_from_values(values, alpha)
#  print sample
#  return sample


# Should you repurpose this script, this code might help.
#
#def compare_two_data_files(filename1, filename2, confidence):
#  alpha = alpha_from_confidence(confidence)
#  sample1 = sample_from_data_file(filename1, alpha)
#  sample2 = sample_from_data_file(filename2, alpha)
#  print 
#  print Comparison(sample1, sample2, alpha)


# Should you repurpose this script, this code might help.
#
#def command_two_data_files():
#  argc = len(sys.argv)
#  if argc < 2 or 4 < argc:
#    message = "usage: " + sys.argv[0]
#    message += " file-name file-name [confidence]"
#    print message
#  else:
#    filename1 = sys.argv[1]
#    filename2 = sys.argv[2]
#    if len(sys.argv) >= 4:
#      confidence = int(sys.argv[3])
#    else:
#      confidence = 95
#  compare_two_data_files(filename1, filename2, confidence)


############################################### -ftime-report TimeVar Log Files


# This section provides functions to compare two sets of -ftime-report log
# files.  Each set is a sample, where each data point is derived from the
# sum of values in a single log file.


label = r"^ *([^:]*[^: ]) *:"
number = r" *([0-9.]*) *"
percent = r"\( *[0-9]*\%\)"
numpct = number + percent
total_format = label + number + number + number + number + " kB\n"
total_parser = re.compile(total_format)
tmvar_format = label + numpct + " usr" + numpct + " sys"
tmvar_format += numpct + " wall" + number + " kB " + percent + " ggc\n"
tmvar_parser = re.compile(tmvar_format)
replace = r"\2\t\3\t\4\t\5\t\1"


def split_time_report(lines, pattern):
  if pattern == "TOTAL":
    parser = total_parser
  else:
    parser = tmvar_parser
  for line in lines:
    modified = parser.sub(replace, line)
    if modified != line:
      yield re.split("\t", modified)


def extract_cpu_time(tvtuples):
  for tuple in tvtuples:
    yield float(tuple[0]) + float(tuple[1])


def sum_values(values):
  sum = 0
  for value in values:
    sum += value
  return sum


def extract_time_for_timevar_log(filename, pattern):
  lines = lines_in_file(filename)
  tmvars = lines_containing_pattern(pattern, lines)
  tuples = split_time_report(tmvars, pattern)
  times = extract_cpu_time(tuples)
  return sum_values(times)


def extract_times_for_timevar_logs(filelist, pattern):
  for filename in filelist:
    yield extract_time_for_timevar_log(filename, pattern)


def sample_from_timevar_logs(fileglob, pattern, alpha):
  confidence = confidence_from_alpha(alpha)
  text = "\nArithmetic sample for timevar log files\n\"" + fileglob + "\""
  text += "\nand selecting lines containing \"" + pattern + "\""
  text += " with desired confidence " + text_number(confidence) + " is "
  print text
  filelist = match_files(fileglob)
  values = extract_times_for_timevar_logs(filelist, pattern)
  sample = sample_from_values(values, alpha)
  print sample
  return sample


def compare_two_timevar_logs(fileglob1, fileglob2, pattern, confidence):
  alpha = alpha_from_confidence(confidence)
  sample1 = sample_from_timevar_logs(fileglob1, pattern, alpha)
  sample2 = sample_from_timevar_logs(fileglob2, pattern, alpha)
  print
  print Comparison(sample1, sample2, alpha)


def command_two_timevar_logs():
  argc = len(sys.argv)
  if argc < 3 or 5 < argc:
    message = "usage: " + sys.argv[0]
    message += " file-pattern file-pattern [line-pattern [confidence]]"
    print message
  else:
    filepat1 = sys.argv[1]
    filepat2 = sys.argv[2]
    if len(sys.argv) >= 5:
      confidence = int(sys.argv[4])
    else:
      confidence = 95
    if len(sys.argv) >= 4:
      linepat = sys.argv[3]
    else:
      linepat = "TOTAL"
    compare_two_timevar_logs(filepat1, filepat2, linepat, confidence)


########################################################################## Main


# This section is the main code, implementing the command.


command_two_timevar_logs()