Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
/**
Computes $(LINK2 https://en.wikipedia.org/wiki/MurmurHash, MurmurHash) hashes
of arbitrary data. MurmurHash is a non-cryptographic hash function suitable
for general hash-based lookup. It is optimized for x86 but can be used on
all architectures.

The current version is MurmurHash3, which yields a 32-bit or 128-bit hash value.
The older MurmurHash 1 and 2 are currently not supported.

MurmurHash3 comes in three flavors, listed in increasing order of throughput:
$(UL
$(LI `MurmurHash3!32` produces a 32-bit value and is optimized for 32-bit architectures)
$(LI $(D MurmurHash3!(128, 32)) produces a 128-bit value and is optimized for 32-bit architectures)
$(LI $(D MurmurHash3!(128, 64)) produces a 128-bit value and is optimized for 64-bit architectures)
)

Note:
$(UL
$(LI $(D MurmurHash3!(128, 32)) and $(D MurmurHash3!(128, 64)) produce different values.)
$(LI The current implementation is optimized for little endian architectures.
  It will exhibit different results on big endian architectures and a slightly
  less uniform distribution.)
)

This module conforms to the APIs defined in $(MREF std, digest).

This module publicly imports $(MREF std, digest) and can be used as a stand-alone module.

Source: $(PHOBOSSRC std/digest/murmurhash.d)
License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: Guillaume Chatelet
References: $(LINK2 https://github.com/aappleby/smhasher, Reference implementation)
$(BR) $(LINK2 https://en.wikipedia.org/wiki/MurmurHash, Wikipedia)
*/
/* Copyright Guillaume Chatelet 2016.
 * Distributed under the Boost Software License, Version 1.0.
 * (See LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */
module std.digest.murmurhash;

version (X86)
    version = HaveUnalignedLoads;
else version (X86_64)
    version = HaveUnalignedLoads;

///
@safe unittest
{
    // MurmurHash3!32, MurmurHash3!(128, 32) and MurmurHash3!(128, 64) implement
    // the std.digest Template API.
    static assert(isDigest!(MurmurHash3!32));
    // The convenient digest template allows for quick hashing of any data.
    ubyte[4] hashed = digest!(MurmurHash3!32)([1, 2, 3, 4]);
    assert(hashed == [0, 173, 69, 68]);
}

///
@safe unittest
{
    // One can also hash ubyte data piecewise by instanciating a hasher and call
    // the 'put' method.
    const(ubyte)[] data1 = [1, 2, 3];
    const(ubyte)[] data2 = [4, 5, 6, 7];
    // The incoming data will be buffered and hashed element by element.
    MurmurHash3!32 hasher;
    hasher.put(data1);
    hasher.put(data2);
    // The call to 'finish' ensures:
    // - the remaining bits are processed
    // - the hash gets finalized
    auto hashed = hasher.finish();
    assert(hashed == [181, 151, 88, 252]);
}

///
@safe unittest
{
    // Using `putElements`, `putRemainder` and `finalize` you gain full
    // control over which part of the algorithm to run.
    // This allows for maximum throughput but needs extra care.

    // Data type must be the same as the hasher's element type:
    // - uint for MurmurHash3!32
    // - uint[4] for MurmurHash3!(128, 32)
    // - ulong[2] for MurmurHash3!(128, 64)
    const(uint)[] data = [1, 2, 3, 4];
    // Note the hasher starts with 'Fast'.
    MurmurHash3!32 hasher;
    // Push as many array of elements as you need. The less calls the better.
    hasher.putElements(data);
    // Put remainder bytes if needed. This method can be called only once.
    hasher.putRemainder(ubyte(1), ubyte(1), ubyte(1));
    // Call finalize to incorporate data length in the hash.
    hasher.finalize();
    // Finally get the hashed value.
    auto hashed = hasher.getBytes();
    assert(hashed == [188, 165, 108, 2]);
}

public import std.digest;

@safe:

/*
Performance notes:
 - To help a bit with the performance when compiling with DMD some
   functions have been rewritten to pass by value instead of by reference.
 - GDC and LDC are on par with their C++ counterpart.
 - DMD is typically between 20% to 50% of the GCC version.
*/

/++
 + Implements the MurmurHash3 functions. You can specify the `size` of the
 + hash in bit. For 128 bit hashes you can specify whether to optimize for 32
 + or 64 bit architectures. If you don't specify the `opt` value it will select
 + the fastest version of the host platform.
 +
 + This hasher is compatible with the `Digest` API:
 + $(UL
 + $(LI `void start()`)
 + $(LI `void put(scope const(ubyte)[] data...)`)
 + $(LI `ubyte[Element.sizeof] finish()`)
 + )
 +
 + It also provides a faster, low level API working with data of size
 + `Element.sizeof`:
 + $(UL
 + $(LI `void putElements(scope const(Element[]) elements...)`)
 + $(LI `void putRemainder(scope const(ubyte[]) data...)`)
 + $(LI `void finalize()`)
 + $(LI `Element get()`)
 + $(LI `ubyte[Element.sizeof] getBytes()`)
 + )
 +/
struct MurmurHash3(uint size /* 32 or 128 */ , uint opt = size_t.sizeof == 8 ? 64 : 32)
{
    enum blockSize = size; // Number of bits of the hashed value.
    size_t element_count; // The number of full elements pushed, this is used for finalization.

    static if (size == 32)
    {
        private enum uint c1 = 0xcc9e2d51;
        private enum uint c2 = 0x1b873593;
        private uint h1;
        alias Element = uint; /// The element type for 32-bit implementation.

        this(uint seed)
        {
            h1 = seed;
        }
        /++
        Adds a single Element of data without increasing `element_count`.
        Make sure to increase `element_count` by `Element.sizeof` for each call to `putElement`.
        +/
        void putElement(uint block) pure nothrow @nogc
        {
            h1 = update(h1, block, 0, c1, c2, 15, 13, 0xe6546b64U);
        }

        /// Put remainder bytes. This must be called only once after `putElement` and before `finalize`.
        void putRemainder(scope const(ubyte[]) data...) pure nothrow @nogc
        {
            assert(data.length < Element.sizeof);
            assert(data.length >= 0);
            element_count += data.length;
            uint k1 = 0;
            final switch (data.length & 3)
            {
            case 3:
                k1 ^= data[2] << 16;
                goto case;
            case 2:
                k1 ^= data[1] << 8;
                goto case;
            case 1:
                k1 ^= data[0];
                h1 ^= shuffle(k1, c1, c2, 15);
                goto case;
            case 0:
            }
        }

        /// Incorporate `element_count` and finalizes the hash.
        void finalize() pure nothrow @nogc
        {
            h1 ^= element_count;
            h1 = fmix(h1);
        }

        /// Returns the hash as an uint value.
        Element get() pure nothrow @nogc
        {
            return h1;
        }

        /// Returns the current hashed value as an ubyte array.
        ubyte[4] getBytes() pure nothrow @nogc
        {
            return cast(typeof(return)) cast(uint[1])[get()];
        }
    }
    else static if (size == 128 && opt == 32)
    {
        private enum uint c1 = 0x239b961b;
        private enum uint c2 = 0xab0e9789;
        private enum uint c3 = 0x38b34ae5;
        private enum uint c4 = 0xa1e38b93;
        private uint h4, h3, h2, h1;

        alias Element = uint[4]; /// The element type for 128-bit implementation.

        this(uint seed4, uint seed3, uint seed2, uint seed1) pure nothrow @nogc
        {
            h4 = seed4;
            h3 = seed3;
            h2 = seed2;
            h1 = seed1;
        }

        this(uint seed) pure nothrow @nogc
        {
            h4 = h3 = h2 = h1 = seed;
        }

        /++
        Adds a single Element of data without increasing element_count.
        Make sure to increase `element_count` by `Element.sizeof` for each call to `putElement`.
        +/
        void putElement(Element block) pure nothrow @nogc
        {
            h1 = update(h1, block[0], h2, c1, c2, 15, 19, 0x561ccd1bU);
            h2 = update(h2, block[1], h3, c2, c3, 16, 17, 0x0bcaa747U);
            h3 = update(h3, block[2], h4, c3, c4, 17, 15, 0x96cd1c35U);
            h4 = update(h4, block[3], h1, c4, c1, 18, 13, 0x32ac3b17U);
        }

        /// Put remainder bytes. This must be called only once after `putElement` and before `finalize`.
        void putRemainder(scope const(ubyte[]) data...) pure nothrow @nogc
        {
            assert(data.length < Element.sizeof);
            assert(data.length >= 0);
            element_count += data.length;
            uint k1 = 0;
            uint k2 = 0;
            uint k3 = 0;
            uint k4 = 0;

            final switch (data.length & 15)
            {
            case 15:
                k4 ^= data[14] << 16;
                goto case;
            case 14:
                k4 ^= data[13] << 8;
                goto case;
            case 13:
                k4 ^= data[12] << 0;
                h4 ^= shuffle(k4, c4, c1, 18);
                goto case;
            case 12:
                k3 ^= data[11] << 24;
                goto case;
            case 11:
                k3 ^= data[10] << 16;
                goto case;
            case 10:
                k3 ^= data[9] << 8;
                goto case;
            case 9:
                k3 ^= data[8] << 0;
                h3 ^= shuffle(k3, c3, c4, 17);
                goto case;
            case 8:
                k2 ^= data[7] << 24;
                goto case;
            case 7:
                k2 ^= data[6] << 16;
                goto case;
            case 6:
                k2 ^= data[5] << 8;
                goto case;
            case 5:
                k2 ^= data[4] << 0;
                h2 ^= shuffle(k2, c2, c3, 16);
                goto case;
            case 4:
                k1 ^= data[3] << 24;
                goto case;
            case 3:
                k1 ^= data[2] << 16;
                goto case;
            case 2:
                k1 ^= data[1] << 8;
                goto case;
            case 1:
                k1 ^= data[0] << 0;
                h1 ^= shuffle(k1, c1, c2, 15);
                goto case;
            case 0:
            }
        }

        /// Incorporate `element_count` and finalizes the hash.
        void finalize() pure nothrow @nogc
        {
            h1 ^= element_count;
            h2 ^= element_count;
            h3 ^= element_count;
            h4 ^= element_count;

            h1 += h2;
            h1 += h3;
            h1 += h4;
            h2 += h1;
            h3 += h1;
            h4 += h1;

            h1 = fmix(h1);
            h2 = fmix(h2);
            h3 = fmix(h3);
            h4 = fmix(h4);

            h1 += h2;
            h1 += h3;
            h1 += h4;
            h2 += h1;
            h3 += h1;
            h4 += h1;
        }

        /// Returns the hash as an uint[4] value.
        Element get() pure nothrow @nogc
        {
            return [h1, h2, h3, h4];
        }

        /// Returns the current hashed value as an ubyte array.
        ubyte[16] getBytes() pure nothrow @nogc
        {
            return cast(typeof(return)) get();
        }
    }
    else static if (size == 128 && opt == 64)
    {
        private enum ulong c1 = 0x87c37b91114253d5;
        private enum ulong c2 = 0x4cf5ad432745937f;
        private ulong h2, h1;

        alias Element = ulong[2]; /// The element type for 128-bit implementation.

        this(ulong seed) pure nothrow @nogc
        {
            h2 = h1 = seed;
        }

        this(ulong seed2, ulong seed1) pure nothrow @nogc
        {
            h2 = seed2;
            h1 = seed1;
        }

        /++
        Adds a single Element of data without increasing `element_count`.
        Make sure to increase `element_count` by `Element.sizeof` for each call to `putElement`.
        +/
        void putElement(Element block) pure nothrow @nogc
        {
            h1 = update(h1, block[0], h2, c1, c2, 31, 27, 0x52dce729U);
            h2 = update(h2, block[1], h1, c2, c1, 33, 31, 0x38495ab5U);
        }

        /// Put remainder bytes. This must be called only once after `putElement` and before `finalize`.
        void putRemainder(scope const(ubyte[]) data...) pure nothrow @nogc
        {
            assert(data.length < Element.sizeof);
            assert(data.length >= 0);
            element_count += data.length;
            ulong k1 = 0;
            ulong k2 = 0;
            final switch (data.length & 15)
            {
            case 15:
                k2 ^= ulong(data[14]) << 48;
                goto case;
            case 14:
                k2 ^= ulong(data[13]) << 40;
                goto case;
            case 13:
                k2 ^= ulong(data[12]) << 32;
                goto case;
            case 12:
                k2 ^= ulong(data[11]) << 24;
                goto case;
            case 11:
                k2 ^= ulong(data[10]) << 16;
                goto case;
            case 10:
                k2 ^= ulong(data[9]) << 8;
                goto case;
            case 9:
                k2 ^= ulong(data[8]) << 0;
                h2 ^= shuffle(k2, c2, c1, 33);
                goto case;
            case 8:
                k1 ^= ulong(data[7]) << 56;
                goto case;
            case 7:
                k1 ^= ulong(data[6]) << 48;
                goto case;
            case 6:
                k1 ^= ulong(data[5]) << 40;
                goto case;
            case 5:
                k1 ^= ulong(data[4]) << 32;
                goto case;
            case 4:
                k1 ^= ulong(data[3]) << 24;
                goto case;
            case 3:
                k1 ^= ulong(data[2]) << 16;
                goto case;
            case 2:
                k1 ^= ulong(data[1]) << 8;
                goto case;
            case 1:
                k1 ^= ulong(data[0]) << 0;
                h1 ^= shuffle(k1, c1, c2, 31);
                goto case;
            case 0:
            }
        }

        /// Incorporate `element_count` and finalizes the hash.
        void finalize() pure nothrow @nogc
        {
            h1 ^= element_count;
            h2 ^= element_count;

            h1 += h2;
            h2 += h1;
            h1 = fmix(h1);
            h2 = fmix(h2);
            h1 += h2;
            h2 += h1;
        }

        /// Returns the hash as an ulong[2] value.
        Element get() pure nothrow @nogc
        {
            return [h1, h2];
        }

        /// Returns the current hashed value as an ubyte array.
        ubyte[16] getBytes() pure nothrow @nogc
        {
            return cast(typeof(return)) get();
        }
    }
    else
    {
        alias Element = char; // This is needed to trigger the following error message.
        static assert(false, "MurmurHash3(" ~ size.stringof ~ ", " ~ opt.stringof ~ ") is not implemented");
    }

    /++
    Pushes an array of elements at once. It is more efficient to push as much data as possible in a single call.
    On platforms that do not support unaligned reads (MIPS or old ARM chips), the compiler may produce slower code to ensure correctness.
    +/
    void putElements(scope const(Element[]) elements...) pure nothrow @nogc
    {
        foreach (const block; elements)
        {
            putElement(block);
        }
        element_count += elements.length * Element.sizeof;
    }

    //-------------------------------------------------------------------------
    // Implementation of the Digest API.
    //-------------------------------------------------------------------------

    private union BufferUnion
    {
        Element block;
        ubyte[Element.sizeof] data;
    }

    private BufferUnion buffer;
    private size_t bufferSize;

    @disable this(this);

    // Initialize
    void start()
    {
        this = this.init;
    }

    /++
    Adds data to the digester. This function can be called many times in a row
    after start but before finish.
    +/
    void put(scope const(ubyte)[] data...) pure nothrow
    {
        // Buffer should never be full while entering this function.
        assert(bufferSize < Element.sizeof);

        // Check if the incoming data doesn't fill up a whole block buffer.
        if (bufferSize + data.length < Element.sizeof)
        {
            buffer.data[bufferSize .. bufferSize + data.length] = data[];
            bufferSize += data.length;
            return;
        }

        // Check if there's some leftover data in the first block buffer, and
        // fill the remaining space first.
        if (bufferSize != 0)
        {
            const bufferLeeway = Element.sizeof - bufferSize;
            buffer.data[bufferSize .. $] = data[0 .. bufferLeeway];
            putElement(buffer.block);
            element_count += Element.sizeof;
            data = data[bufferLeeway .. $];
        }

        // Do main work: process chunks of `Element.sizeof` bytes.
        const numElements = data.length / Element.sizeof;
        const remainderStart = numElements * Element.sizeof;
        version (HaveUnalignedLoads)
        {
            foreach (ref const Element block; cast(const(Element[])) data[0 .. remainderStart])
            {
                putElement(block);
            }
        }
        else
        {
            void processChunks(T)() @trusted
            {
                alias TChunk = T[Element.sizeof / T.sizeof];
                foreach (ref const chunk; cast(const(TChunk[])) data[0 .. remainderStart])
                {
                    static if (T.alignof >= Element.alignof)
                    {
                        putElement(*cast(const(Element)*) chunk.ptr);
                    }
                    else
                    {
                        Element[1] alignedCopy = void;
                        (cast(T[]) alignedCopy)[] = chunk[];
                        putElement(alignedCopy[0]);
                    }
                }
            }

            const startAddress = cast(size_t) data.ptr;
            static if (size >= 64)
            {
                if ((startAddress & 7) == 0)
                {
                    processChunks!ulong();
                    goto L_end;
                }
            }
            static assert(size >= 32);
            if ((startAddress & 3) == 0)
                processChunks!uint();
            else if ((startAddress & 1) == 0)
                processChunks!ushort();
            else
                processChunks!ubyte();

L_end:
        }
        element_count += numElements * Element.sizeof;
        data = data[remainderStart .. $];

        // Now add remaining data to buffer.
        assert(data.length < Element.sizeof);
        bufferSize = data.length;
        buffer.data[0 .. data.length] = data[];
    }

    /++
    Finalizes the computation of the hash and returns the computed value.
    Note that `finish` can be called only once and that no subsequent calls
    to `put` is allowed.
    +/
    ubyte[Element.sizeof] finish() pure nothrow
    {
        auto tail = buffer.data[0 .. bufferSize];
        if (tail.length > 0)
        {
            putRemainder(tail);
        }
        finalize();
        return getBytes();
    }

    //-------------------------------------------------------------------------
    // MurmurHash3 utils
    //-------------------------------------------------------------------------

    private T rotl(T)(T x, uint y)
    in
    {
        import std.traits : isUnsigned;

        static assert(isUnsigned!T);
        debug assert(y >= 0 && y <= (T.sizeof * 8));
    }
    do
    {
        return ((x << y) | (x >> ((T.sizeof * 8) - y)));
    }

    private T shuffle(T)(T k, T c1, T c2, ubyte r1)
    {
        import std.traits : isUnsigned;

        static assert(isUnsigned!T);
        k *= c1;
        k = rotl(k, r1);
        k *= c2;
        return k;
    }

    private T update(T)(ref T h, T k, T mixWith, T c1, T c2, ubyte r1, ubyte r2, T n)
    {
        import std.traits : isUnsigned;

        static assert(isUnsigned!T);
        h ^= shuffle(k, c1, c2, r1);
        h = rotl(h, r2);
        h += mixWith;
        return h * 5 + n;
    }

    private uint fmix(uint h) pure nothrow @nogc
    {
        h ^= h >> 16;
        h *= 0x85ebca6b;
        h ^= h >> 13;
        h *= 0xc2b2ae35;
        h ^= h >> 16;
        return h;
    }

    private ulong fmix(ulong k) pure nothrow @nogc
    {
        k ^= k >> 33;
        k *= 0xff51afd7ed558ccd;
        k ^= k >> 33;
        k *= 0xc4ceb9fe1a85ec53;
        k ^= k >> 33;
        return k;
    }
}


/// The convenient digest template allows for quick hashing of any data.
@safe unittest
{
    ubyte[4] hashed = digest!(MurmurHash3!32)([1, 2, 3, 4]);
    assert(hashed == [0, 173, 69, 68]);
}

/**
One can also hash ubyte data piecewise by instanciating a hasher and call
the 'put' method.
*/
@safe unittest
{
    const(ubyte)[] data1 = [1, 2, 3];
    const(ubyte)[] data2 = [4, 5, 6, 7];
    // The incoming data will be buffered and hashed element by element.
    MurmurHash3!32 hasher;
    hasher.put(data1);
    hasher.put(data2);
    // The call to 'finish' ensures:
    // - the remaining bits are processed
    // - the hash gets finalized
    auto hashed = hasher.finish();
    assert(hashed == [181, 151, 88, 252]);
}

version (unittest)
{
    private auto hash(H, Element = H.Element)(string data)
    {
        H hasher;
        immutable elements = data.length / Element.sizeof;
        hasher.putElements(cast(const(Element)[]) data[0 .. elements * Element.sizeof]);
        hasher.putRemainder(cast(const(ubyte)[]) data[elements * Element.sizeof .. $]);
        hasher.finalize();
        return hasher.getBytes();
    }

    private void checkResult(H)(in string[string] groundtruth)
    {
        foreach (data, expectedHash; groundtruth)
        {
            assert(data.digest!H.toHexString() == expectedHash);
            assert(data.hash!H.toHexString() == expectedHash);
            H hasher;
            foreach (element; data)
            {
                hasher.put(element);
            }
            assert(hasher.finish.toHexString() == expectedHash);
        }
    }
}

@safe unittest
{
    // dfmt off
    checkResult!(MurmurHash3!32)([
        "" : "00000000",
        "a" : "B269253C",
        "ab" : "5FD7BF9B",
        "abc" : "FA93DDB3",
        "abcd" : "6A67ED43",
        "abcde" : "F69A9BE8",
        "abcdef" : "85C08161",
        "abcdefg" : "069B3C88",
        "abcdefgh" : "C4CCDD49",
        "abcdefghi" : "F0061442",
        "abcdefghij" : "91779288",
        "abcdefghijk" : "DF253B5F",
        "abcdefghijkl" : "273D6FA3",
        "abcdefghijklm" : "1B1612F2",
        "abcdefghijklmn" : "F06D52F8",
        "abcdefghijklmno" : "D2F7099D",
        "abcdefghijklmnop" : "ED9162E7",
        "abcdefghijklmnopq" : "4A5E65B6",
        "abcdefghijklmnopqr" : "94A819C2",
        "abcdefghijklmnopqrs" : "C15BBF85",
        "abcdefghijklmnopqrst" : "9A711CBE",
        "abcdefghijklmnopqrstu" : "ABE7195A",
        "abcdefghijklmnopqrstuv" : "C73CB670",
        "abcdefghijklmnopqrstuvw" : "1C4D1EA5",
        "abcdefghijklmnopqrstuvwx" : "3939F9B0",
        "abcdefghijklmnopqrstuvwxy" : "1A568338",
        "abcdefghijklmnopqrstuvwxyz" : "6D034EA3"]);
    // dfmt on
}

@safe unittest
{
    // dfmt off
    checkResult!(MurmurHash3!(128,32))([
        "" : "00000000000000000000000000000000",
        "a" : "3C9394A71BB056551BB056551BB05655",
        "ab" : "DF5184151030BE251030BE251030BE25",
        "abc" : "D1C6CD75A506B0A2A506B0A2A506B0A2",
        "abcd" : "AACCB6962EC6AF452EC6AF452EC6AF45",
        "abcde" : "FB2E40C5BCC5245D7701725A7701725A",
        "abcdef" : "0AB97CE12127AFA1F9DFBEA9F9DFBEA9",
        "abcdefg" : "D941B590DE3A86092869774A2869774A",
        "abcdefgh" : "3611F4AE8714B1AD92806CFA92806CFA",
        "abcdefghi" : "1C8C05AD6F590622107DD2147C4194DD",
        "abcdefghij" : "A72ED9F50E90379A2AAA92C77FF12F69",
        "abcdefghijk" : "DDC9C8A01E111FCA2DF1FE8257975EBD",
        "abcdefghijkl" : "FE038573C02482F4ADDFD42753E58CD2",
        "abcdefghijklm" : "15A23AC1ECA1AEDB66351CF470DE2CD9",
        "abcdefghijklmn" : "8E11EC75D71F5D60F4456F944D89D4F1",
        "abcdefghijklmno" : "691D6DEEAED51A4A5714CE84A861A7AD",
        "abcdefghijklmnop" : "2776D29F5612B990218BCEE445BA93D1",
        "abcdefghijklmnopq" : "D3A445046F5C51642ADC6DD99D07111D",
        "abcdefghijklmnopqr" : "AA5493A0DA291D966A9E7128585841D9",
        "abcdefghijklmnopqrs" : "281B6A4F9C45B9BFC3B77850930F2C20",
        "abcdefghijklmnopqrst" : "19342546A8216DB62873B49E545DCB1F",
        "abcdefghijklmnopqrstu" : "A6C0F30D6C738620E7B9590D2E088D99",
        "abcdefghijklmnopqrstuv" : "A7D421D9095CDCEA393CBBA908342384",
        "abcdefghijklmnopqrstuvw" : "C3A93D572B014949317BAD7EE809158F",
        "abcdefghijklmnopqrstuvwx" : "802381D77956833791F87149326E4801",
        "abcdefghijklmnopqrstuvwxy" : "0AC619A5302315755A80D74ADEFAA842",
        "abcdefghijklmnopqrstuvwxyz" : "1306343E662F6F666E56F6172C3DE344"]);
    // dfmt on
}

@safe unittest
{
    // dfmt off
    checkResult!(MurmurHash3!(128,64))([
        "" : "00000000000000000000000000000000",
        "a" : "897859F6655555855A890E51483AB5E6",
        "ab" : "2E1BED16EA118B93ADD4529B01A75EE6",
        "abc" : "6778AD3F3F3F96B4522DCA264174A23B",
        "abcd" : "4FCD5646D6B77BB875E87360883E00F2",
        "abcde" : "B8BB96F491D036208CECCF4BA0EEC7C5",
        "abcdef" : "55BFA3ACBF867DE45C842133990971B0",
        "abcdefg" : "99E49EC09F2FCDA6B6BB55B13AA23A1C",
        "abcdefgh" : "028CEF37B00A8ACCA14069EB600D8948",
        "abcdefghi" : "64793CF1CFC0470533E041B7F53DB579",
        "abcdefghij" : "998C2F770D5BC1B6C91A658CDC854DA2",
        "abcdefghijk" : "029D78DFB8D095A871E75A45E2317CBB",
        "abcdefghijkl" : "94E17AE6B19BF38E1C62FF7232309E1F",
        "abcdefghijklm" : "73FAC0A78D2848167FCCE70DFF7B652E",
        "abcdefghijklmn" : "E075C3F5A794D09124336AD2276009EE",
        "abcdefghijklmno" : "FB2F0C895124BE8A612A969C2D8C546A",
        "abcdefghijklmnop" : "23B74C22A33CCAC41AEB31B395D63343",
        "abcdefghijklmnopq" : "57A6BD887F746475E40D11A19D49DAEC",
        "abcdefghijklmnopqr" : "508A7F90EC8CF0776BC7005A29A8D471",
        "abcdefghijklmnopqrs" : "886D9EDE23BC901574946FB62A4D8AA6",
        "abcdefghijklmnopqrst" : "F1E237F926370B314BD016572AF40996",
        "abcdefghijklmnopqrstu" : "3CC9FF79E268D5C9FB3C9BE9C148CCD7",
        "abcdefghijklmnopqrstuv" : "56F8ABF430E388956DA9F4A8741FDB46",
        "abcdefghijklmnopqrstuvw" : "8E234F9DBA0A4840FFE9541CEBB7BE83",
        "abcdefghijklmnopqrstuvwx" : "F72CDED40F96946408F22153A3CF0F79",
        "abcdefghijklmnopqrstuvwxy" : "0F96072FA4CBE771DBBD9E398115EEED",
        "abcdefghijklmnopqrstuvwxyz" : "A94A6F517E9D9C7429D5A7B6899CADE9"]);
    // dfmt on
}

@safe unittest
{
    // Pushing unaligned data and making sure the result is still coherent.
    void testUnalignedHash(H)()
    {
        immutable ubyte[1028] data = 0xAC;
        immutable alignedHash = digest!H(data[0 .. 1024]);
        foreach (i; 1 .. 5)
        {
            immutable unalignedHash = digest!H(data[i .. 1024 + i]);
            assert(alignedHash == unalignedHash);
        }
    }

    testUnalignedHash!(MurmurHash3!32)();
    testUnalignedHash!(MurmurHash3!(128, 32))();
    testUnalignedHash!(MurmurHash3!(128, 64))();
}