Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/**
This module is a submodule of $(MREF std, range).

The main $(MREF std, range) module provides template-based tools for working with
ranges, but sometimes an object-based interface for ranges is needed, such as
when runtime polymorphism is required. For this purpose, this submodule
provides a number of object and $(D interface) definitions that can be used to
wrap around _range objects created by the $(MREF std, range) templates.

$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE ,
    $(TR $(TD $(LREF InputRange))
        $(TD Wrapper for input ranges.
    ))
    $(TR $(TD $(LREF InputAssignable))
        $(TD Wrapper for input ranges with assignable elements.
    ))
    $(TR $(TD $(LREF ForwardRange))
        $(TD Wrapper for forward ranges.
    ))
    $(TR $(TD $(LREF ForwardAssignable))
        $(TD Wrapper for forward ranges with assignable elements.
    ))
    $(TR $(TD $(LREF BidirectionalRange))
        $(TD Wrapper for bidirectional ranges.
    ))
    $(TR $(TD $(LREF BidirectionalAssignable))
        $(TD Wrapper for bidirectional ranges with assignable elements.
    ))
    $(TR $(TD $(LREF RandomAccessFinite))
        $(TD Wrapper for finite random-access ranges.
    ))
    $(TR $(TD $(LREF RandomAccessAssignable))
        $(TD Wrapper for finite random-access ranges with assignable elements.
    ))
    $(TR $(TD $(LREF RandomAccessInfinite))
        $(TD Wrapper for infinite random-access ranges.
    ))
    $(TR $(TD $(LREF OutputRange))
        $(TD Wrapper for output ranges.
    ))
    $(TR $(TD $(LREF OutputRangeObject))
        $(TD Class that implements the $(D OutputRange) interface and wraps the
        $(D put) methods in virtual functions.
    $(TR $(TD $(LREF outputRangeObject))
        Convenience function for creating an $(D OutputRangeObject) with a base
        range of type R that accepts types E.
    ))
    $(TR $(TD $(LREF InputRangeObject))
        $(TD Class that implements the $(D InputRange) interface and wraps the
        input _range methods in virtual functions.
    ))
    $(TR $(TD $(LREF inputRangeObject))
        $(TD Convenience function for creating an $(D InputRangeObject)
        of the proper type.
    ))
    $(TR $(TD $(LREF MostDerivedInputRange))
        $(TD Returns the interface type that best matches the range.)
    ))
)


Source: $(PHOBOSSRC std/range/_interfaces.d)

License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).

Authors: $(HTTP erdani.com, Andrei Alexandrescu), David Simcha,
and Jonathan M Davis. Credit for some of the ideas in building this module goes
to $(HTTP fantascienza.net/leonardo/so/, Leonardo Maffi).
*/
module std.range.interfaces;

import std.meta;
import std.range.primitives;
import std.traits;

/**These interfaces are intended to provide virtual function-based wrappers
 * around input ranges with element type E.  This is useful where a well-defined
 * binary interface is required, such as when a DLL function or virtual function
 * needs to accept a generic range as a parameter. Note that
 * $(REF_ALTTEXT isInputRange, isInputRange, std, range, primitives)
 * and friends check for conformance to structural interfaces
 * not for implementation of these $(D interface) types.
 *
 * Limitations:
 *
 * These interfaces are not capable of forwarding $(D ref) access to elements.
 *
 * Infiniteness of the wrapped range is not propagated.
 *
 * Length is not propagated in the case of non-random access ranges.
 *
 * See_Also:
 * $(LREF inputRangeObject)
 */
interface InputRange(E) {
    ///
    @property E front();

    ///
    E moveFront();

    ///
    void popFront();

    ///
    @property bool empty();

    /* Measurements of the benefits of using opApply instead of range primitives
     * for foreach, using timings for iterating over an iota(100_000_000) range
     * with an empty loop body, using the same hardware in each case:
     *
     * Bare Iota struct, range primitives:  278 milliseconds
     * InputRangeObject, opApply:           436 milliseconds  (1.57x penalty)
     * InputRangeObject, range primitives:  877 milliseconds  (3.15x penalty)
     */

    /**$(D foreach) iteration uses opApply, since one delegate call per loop
     * iteration is faster than three virtual function calls.
     */
    int opApply(scope int delegate(E));

    /// Ditto
    int opApply(scope int delegate(size_t, E));

}

///
@safe unittest
{
    import std.algorithm.iteration : map;
    import std.range : iota;

    void useRange(InputRange!int range) {
        // Function body.
    }

    // Create a range type.
    auto squares = map!"a * a"(iota(10));

    // Wrap it in an interface.
    auto squaresWrapped = inputRangeObject(squares);

    // Use it.
    useRange(squaresWrapped);
}

/**Interface for a forward range of type $(D E).*/
interface ForwardRange(E) : InputRange!E {
    ///
    @property ForwardRange!E save();
}

/**Interface for a bidirectional range of type $(D E).*/
interface BidirectionalRange(E) : ForwardRange!(E) {
    ///
    @property BidirectionalRange!E save();

    ///
    @property E back();

    ///
    E moveBack();

    ///
    void popBack();
}

/**Interface for a finite random access range of type $(D E).*/
interface RandomAccessFinite(E) : BidirectionalRange!(E) {
    ///
    @property RandomAccessFinite!E save();

    ///
    E opIndex(size_t);

    ///
    E moveAt(size_t);

    ///
    @property size_t length();

    ///
    alias opDollar = length;

    // Can't support slicing until issues with requiring slicing for all
    // finite random access ranges are fully resolved.
    version (none)
    {
        ///
        RandomAccessFinite!E opSlice(size_t, size_t);
    }
}

/**Interface for an infinite random access range of type $(D E).*/
interface RandomAccessInfinite(E) : ForwardRange!E {
    ///
    E moveAt(size_t);

    ///
    @property RandomAccessInfinite!E save();

    ///
    E opIndex(size_t);
}

/**Adds assignable elements to InputRange.*/
interface InputAssignable(E) : InputRange!E {
    ///
    @property void front(E newVal);

    alias front = InputRange!E.front; // overload base interface method
}

@safe unittest
{
    static assert(isInputRange!(InputAssignable!int));
}

/**Adds assignable elements to ForwardRange.*/
interface ForwardAssignable(E) : InputAssignable!E, ForwardRange!E {
    ///
    @property ForwardAssignable!E save();
}

/**Adds assignable elements to BidirectionalRange.*/
interface BidirectionalAssignable(E) : ForwardAssignable!E, BidirectionalRange!E {
    ///
    @property BidirectionalAssignable!E save();

    ///
    @property void back(E newVal);
}

/**Adds assignable elements to RandomAccessFinite.*/
interface RandomFiniteAssignable(E) : RandomAccessFinite!E, BidirectionalAssignable!E {
    ///
    @property RandomFiniteAssignable!E save();

    ///
    void opIndexAssign(E val, size_t index);
}

/**Interface for an output range of type $(D E).  Usage is similar to the
 * $(D InputRange) interface and descendants.*/
interface OutputRange(E) {
    ///
    void put(E);
}

@safe unittest
{
    // 6973
    static assert(isOutputRange!(OutputRange!int, int));
}


// CTFE function that generates mixin code for one put() method for each
// type E.
private string putMethods(E...)()
{
    import std.conv : to;

    string ret;

    foreach (ti, Unused; E)
    {
        ret ~= "void put(E[" ~ to!string(ti) ~ "] e) { .put(_range, e); }";
    }

    return ret;
}

/**Implements the $(D OutputRange) interface for all types E and wraps the
 * $(D put) method for each type $(D E) in a virtual function.
 */
class OutputRangeObject(R, E...) : staticMap!(OutputRange, E) {
    // @BUG 4689:  There should be constraints on this template class, but
    // DMD won't let me put them in.
    private R _range;

    ///
    this(R range) {
        this._range = range;
    }

    mixin(putMethods!E());
}


/**Returns the interface type that best matches $(D R).*/
template MostDerivedInputRange(R)
if (isInputRange!(Unqual!R))
{
    private alias E = ElementType!R;

    static if (isRandomAccessRange!R)
    {
        static if (isInfinite!R)
        {
            alias MostDerivedInputRange = RandomAccessInfinite!E;
        }
        else static if (hasAssignableElements!R)
        {
            alias MostDerivedInputRange = RandomFiniteAssignable!E;
        }
        else
        {
            alias MostDerivedInputRange = RandomAccessFinite!E;
        }
    }
    else static if (isBidirectionalRange!R)
    {
        static if (hasAssignableElements!R)
        {
            alias MostDerivedInputRange = BidirectionalAssignable!E;
        }
        else
        {
            alias MostDerivedInputRange = BidirectionalRange!E;
        }
    }
    else static if (isForwardRange!R)
    {
        static if (hasAssignableElements!R)
        {
            alias MostDerivedInputRange = ForwardAssignable!E;
        }
        else
        {
            alias MostDerivedInputRange = ForwardRange!E;
        }
    }
    else
    {
        static if (hasAssignableElements!R)
        {
            alias MostDerivedInputRange = InputAssignable!E;
        }
        else
        {
            alias MostDerivedInputRange = InputRange!E;
        }
    }
}

/**Implements the most derived interface that $(D R) works with and wraps
 * all relevant range primitives in virtual functions.  If $(D R) is already
 * derived from the $(D InputRange) interface, aliases itself away.
 */
template InputRangeObject(R)
if (isInputRange!(Unqual!R))
{
    static if (is(R : InputRange!(ElementType!R)))
    {
        alias InputRangeObject = R;
    }
    else static if (!is(Unqual!R == R))
    {
        alias InputRangeObject = InputRangeObject!(Unqual!R);
    }
    else
    {

        ///
        class InputRangeObject : MostDerivedInputRange!(R) {
            private R _range;
            private alias E = ElementType!R;

            this(R range) {
                this._range = range;
            }

            @property E front() { return _range.front; }

            E moveFront() {
                return _range.moveFront();
            }

            void popFront() { _range.popFront(); }
            @property bool empty() { return _range.empty; }

            static if (isForwardRange!R)
            {
                @property typeof(this) save() {
                    return new typeof(this)(_range.save);
                }
            }

            static if (hasAssignableElements!R)
            {
                @property void front(E newVal) {
                    _range.front = newVal;
                }
            }

            static if (isBidirectionalRange!R)
            {
                @property E back() { return _range.back; }

                E moveBack() {
                    return _range.moveBack();
                }

                void popBack() { return _range.popBack(); }

                static if (hasAssignableElements!R)
                {
                    @property void back(E newVal) {
                        _range.back = newVal;
                    }
                }
            }

            static if (isRandomAccessRange!R)
            {
                E opIndex(size_t index) {
                    return _range[index];
                }

                E moveAt(size_t index) {
                    return _range.moveAt(index);
                }

                static if (hasAssignableElements!R)
                {
                    void opIndexAssign(E val, size_t index) {
                        _range[index] = val;
                    }
                }

                static if (!isInfinite!R)
                {
                    @property size_t length() {
                        return _range.length;
                    }

                    alias opDollar = length;

                    // Can't support slicing until all the issues with
                    // requiring slicing support for finite random access
                    // ranges are resolved.
                    version (none)
                    {
                        typeof(this) opSlice(size_t lower, size_t upper) {
                            return new typeof(this)(_range[lower .. upper]);
                        }
                    }
                }
            }

            // Optimization:  One delegate call is faster than three virtual
            // function calls.  Use opApply for foreach syntax.
            int opApply(scope int delegate(E) dg) {
                int res;

                for (auto r = _range; !r.empty; r.popFront())
                {
                    res = dg(r.front);
                    if (res) break;
                }

                return res;
            }

            int opApply(scope int delegate(size_t, E) dg) {
                int res;

                size_t i = 0;
                for (auto r = _range; !r.empty; r.popFront())
                {
                    res = dg(i, r.front);
                    if (res) break;
                    i++;
                }

                return res;
            }
        }
    }
}

/**Convenience function for creating an $(D InputRangeObject) of the proper type.
 * See $(LREF InputRange) for an example.
 */
InputRangeObject!R inputRangeObject(R)(R range)
if (isInputRange!R)
{
    static if (is(R : InputRange!(ElementType!R)))
    {
        return range;
    }
    else
    {
        return new InputRangeObject!R(range);
    }
}

/**Convenience function for creating an $(D OutputRangeObject) with a base range
 * of type $(D R) that accepts types $(D E).
*/
template outputRangeObject(E...) {

    ///
    OutputRangeObject!(R, E) outputRangeObject(R)(R range) {
        return new OutputRangeObject!(R, E)(range);
    }
}

///
@safe unittest
{
     import std.array;
     auto app = appender!(uint[])();
     auto appWrapped = outputRangeObject!(uint, uint[])(app);
     static assert(is(typeof(appWrapped) : OutputRange!(uint[])));
     static assert(is(typeof(appWrapped) : OutputRange!(uint)));
}

@system unittest
{
    import std.algorithm.comparison : equal;
    import std.array;
    import std.internal.test.dummyrange;

    static void testEquality(R)(iInputRange r1, R r2) {
        assert(equal(r1, r2));
    }

    auto arr = [1,2,3,4];
    RandomFiniteAssignable!int arrWrapped = inputRangeObject(arr);
    static assert(isRandomAccessRange!(typeof(arrWrapped)));
    //    static assert(hasSlicing!(typeof(arrWrapped)));
    static assert(hasLength!(typeof(arrWrapped)));
    arrWrapped[0] = 0;
    assert(arr[0] == 0);
    assert(arr.moveFront() == 0);
    assert(arr.moveBack() == 4);
    assert(arr.moveAt(1) == 2);

    foreach (elem; arrWrapped) {}
    foreach (i, elem; arrWrapped) {}

    assert(inputRangeObject(arrWrapped) is arrWrapped);

    foreach (DummyType; AllDummyRanges)
    {
        auto d = DummyType.init;
        static assert(propagatesRangeType!(DummyType,
                        typeof(inputRangeObject(d))));
        static assert(propagatesRangeType!(DummyType,
                        MostDerivedInputRange!DummyType));
        InputRange!uint wrapped = inputRangeObject(d);
        assert(equal(wrapped, d));
    }

    // Test output range stuff.
    auto app = appender!(uint[])();
    auto appWrapped = outputRangeObject!(uint, uint[])(app);
    static assert(is(typeof(appWrapped) : OutputRange!(uint[])));
    static assert(is(typeof(appWrapped) : OutputRange!(uint)));

    appWrapped.put(1);
    appWrapped.put([2, 3]);
    assert(app.data.length == 3);
    assert(equal(app.data, [1,2,3]));
}