Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
// <future> -*- C++ -*-

// Copyright (C) 2009-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/future
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_FUTURE
#define _GLIBCXX_FUTURE 1

#pragma GCC system_header

#if __cplusplus < 201103L
# include <bits/c++0x_warning.h>
#else

#include <mutex>
#include <thread>
#include <condition_variable>
#include <system_error>
#include <atomic>
#include <bits/atomic_futex.h>
#include <bits/functexcept.h>
#include <bits/invoke.h>
#include <bits/unique_ptr.h>
#include <bits/shared_ptr.h>
#include <bits/std_function.h>
#include <bits/uses_allocator.h>
#include <bits/allocated_ptr.h>
#include <ext/aligned_buffer.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @defgroup futures Futures
   * @ingroup concurrency
   *
   * Classes for futures support.
   * @{
   */

  /// Error code for futures
  enum class future_errc
  {
    future_already_retrieved = 1,
    promise_already_satisfied,
    no_state,
    broken_promise
  };

  /// Specialization.
  template<>
    struct is_error_code_enum<future_errc> : public true_type { };

  /// Points to a statically-allocated object derived from error_category.
  const error_category&
  future_category() noexcept;

  /// Overload for make_error_code.
  inline error_code
  make_error_code(future_errc __errc) noexcept
  { return error_code(static_cast<int>(__errc), future_category()); }

  /// Overload for make_error_condition.
  inline error_condition
  make_error_condition(future_errc __errc) noexcept
  { return error_condition(static_cast<int>(__errc), future_category()); }

  /**
   *  @brief Exception type thrown by futures.
   *  @ingroup exceptions
   */
  class future_error : public logic_error
  {
  public:
    explicit
    future_error(future_errc __errc)
    : future_error(std::make_error_code(__errc))
    { }

    virtual ~future_error() noexcept;

    virtual const char*
    what() const noexcept;

    const error_code&
    code() const noexcept { return _M_code; }

  private:
    explicit
    future_error(error_code __ec)
    : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
    { }

    friend void __throw_future_error(int);

    error_code 			_M_code;
  };

  // Forward declarations.
  template<typename _Res>
    class future;

  template<typename _Res>
    class shared_future;

  template<typename _Signature>
    class packaged_task;

  template<typename _Res>
    class promise;

  /// Launch code for futures
  enum class launch
  {
    async = 1,
    deferred = 2
  };

  constexpr launch operator&(launch __x, launch __y)
  {
    return static_cast<launch>(
	static_cast<int>(__x) & static_cast<int>(__y));
  }

  constexpr launch operator|(launch __x, launch __y)
  {
    return static_cast<launch>(
	static_cast<int>(__x) | static_cast<int>(__y));
  }

  constexpr launch operator^(launch __x, launch __y)
  {
    return static_cast<launch>(
	static_cast<int>(__x) ^ static_cast<int>(__y));
  }

  constexpr launch operator~(launch __x)
  { return static_cast<launch>(~static_cast<int>(__x)); }

  inline launch& operator&=(launch& __x, launch __y)
  { return __x = __x & __y; }

  inline launch& operator|=(launch& __x, launch __y)
  { return __x = __x | __y; }

  inline launch& operator^=(launch& __x, launch __y)
  { return __x = __x ^ __y; }

  /// Status code for futures
  enum class future_status
  {
    ready,
    timeout,
    deferred
  };

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2021. Further incorrect usages of result_of
  template<typename _Fn, typename... _Args>
    using __async_result_of = typename __invoke_result<
      typename decay<_Fn>::type, typename decay<_Args>::type...>::type;

  template<typename _Fn, typename... _Args>
    future<__async_result_of<_Fn, _Args...>>
    async(launch __policy, _Fn&& __fn, _Args&&... __args);

  template<typename _Fn, typename... _Args>
    future<__async_result_of<_Fn, _Args...>>
    async(_Fn&& __fn, _Args&&... __args);

#if defined(_GLIBCXX_HAS_GTHREADS)

  /// Base class and enclosing scope.
  struct __future_base
  {
    /// Base class for results.
    struct _Result_base
    {
      exception_ptr		_M_error;

      _Result_base(const _Result_base&) = delete;
      _Result_base& operator=(const _Result_base&) = delete;

      // _M_destroy() allows derived classes to control deallocation
      virtual void _M_destroy() = 0;

      struct _Deleter
      {
	void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
      };

    protected:
      _Result_base();
      virtual ~_Result_base();
    };

    /// A unique_ptr for result objects.
    template<typename _Res>
      using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;

    /// A result object that has storage for an object of type _Res.
    template<typename _Res>
      struct _Result : _Result_base
      {
      private:
	__gnu_cxx::__aligned_buffer<_Res>	_M_storage;
	bool 					_M_initialized;

      public:
	typedef _Res result_type;

	_Result() noexcept : _M_initialized() { }

	~_Result()
	{
	  if (_M_initialized)
	    _M_value().~_Res();
	}

	// Return lvalue, future will add const or rvalue-reference
	_Res&
	_M_value() noexcept { return *_M_storage._M_ptr(); }

	void
	_M_set(const _Res& __res)
	{
	  ::new (_M_storage._M_addr()) _Res(__res);
	  _M_initialized = true;
	}

	void
	_M_set(_Res&& __res)
	{
	  ::new (_M_storage._M_addr()) _Res(std::move(__res));
	  _M_initialized = true;
	}

      private:
	void _M_destroy() { delete this; }
    };

    /// A result object that uses an allocator.
    template<typename _Res, typename _Alloc>
      struct _Result_alloc final : _Result<_Res>, _Alloc
      {
	using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;

        explicit
	_Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
	{ }

      private:
	void _M_destroy()
	{
	  __allocator_type __a(*this);
	  __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
	  this->~_Result_alloc();
	}
      };

    // Create a result object that uses an allocator.
    template<typename _Res, typename _Allocator>
      static _Ptr<_Result_alloc<_Res, _Allocator>>
      _S_allocate_result(const _Allocator& __a)
      {
	using __result_type = _Result_alloc<_Res, _Allocator>;
	typename __result_type::__allocator_type __a2(__a);
	auto __guard = std::__allocate_guarded(__a2);
	__result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
	__guard = nullptr;
	return _Ptr<__result_type>(__p);
      }

    // Keep it simple for std::allocator.
    template<typename _Res, typename _Tp>
      static _Ptr<_Result<_Res>>
      _S_allocate_result(const std::allocator<_Tp>& __a)
      {
	return _Ptr<_Result<_Res>>(new _Result<_Res>);
      }

    // Base class for various types of shared state created by an
    // asynchronous provider (such as a std::promise) and shared with one
    // or more associated futures.
    class _State_baseV2
    {
      typedef _Ptr<_Result_base> _Ptr_type;

      enum _Status : unsigned {
	__not_ready,
	__ready
      };

      _Ptr_type			_M_result;
      __atomic_futex_unsigned<>	_M_status;
      atomic_flag         	_M_retrieved = ATOMIC_FLAG_INIT;
      once_flag			_M_once;

    public:
      _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
	{ }
      _State_baseV2(const _State_baseV2&) = delete;
      _State_baseV2& operator=(const _State_baseV2&) = delete;
      virtual ~_State_baseV2() = default;

      _Result_base&
      wait()
      {
	// Run any deferred function or join any asynchronous thread:
	_M_complete_async();
	// Acquire MO makes sure this synchronizes with the thread that made
	// the future ready.
	_M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
	return *_M_result;
      }

      template<typename _Rep, typename _Period>
        future_status
        wait_for(const chrono::duration<_Rep, _Period>& __rel)
        {
	  // First, check if the future has been made ready.  Use acquire MO
	  // to synchronize with the thread that made it ready.
	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
	    return future_status::ready;

	  if (_M_is_deferred_future())
	    return future_status::deferred;

	  // Don't wait unless the relative time is greater than zero.
	  if (__rel > __rel.zero()
	      && _M_status._M_load_when_equal_for(_Status::__ready,
						  memory_order_acquire,
						  __rel))
	    {
	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
	      // 2100.  timed waiting functions must also join
	      // This call is a no-op by default except on an async future,
	      // in which case the async thread is joined.  It's also not a
	      // no-op for a deferred future, but such a future will never
	      // reach this point because it returns future_status::deferred
	      // instead of waiting for the future to become ready (see
	      // above).  Async futures synchronize in this call, so we need
	      // no further synchronization here.
	      _M_complete_async();

	      return future_status::ready;
	    }
	  return future_status::timeout;
	}

      template<typename _Clock, typename _Duration>
        future_status
        wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
        {
#if __cplusplus > 201703L
	  static_assert(chrono::is_clock_v<_Clock>);
#endif
	  // First, check if the future has been made ready.  Use acquire MO
	  // to synchronize with the thread that made it ready.
	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
	    return future_status::ready;

	  if (_M_is_deferred_future())
	    return future_status::deferred;

	  if (_M_status._M_load_when_equal_until(_Status::__ready,
						 memory_order_acquire,
						 __abs))
	    {
	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
	      // 2100.  timed waiting functions must also join
	      // See wait_for(...) above.
	      _M_complete_async();

	      return future_status::ready;
	    }
	  return future_status::timeout;
	}

      // Provide a result to the shared state and make it ready.
      // Calls at most once: _M_result = __res();
      void
      _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
      {
	bool __did_set = false;
        // all calls to this function are serialized,
        // side-effects of invoking __res only happen once
	call_once(_M_once, &_State_baseV2::_M_do_set, this,
		  std::__addressof(__res), std::__addressof(__did_set));
	if (__did_set)
	  // Use release MO to synchronize with observers of the ready state.
	  _M_status._M_store_notify_all(_Status::__ready,
					memory_order_release);
	else if (!__ignore_failure)
          __throw_future_error(int(future_errc::promise_already_satisfied));
      }

      // Provide a result to the shared state but delay making it ready
      // until the calling thread exits.
      // Calls at most once: _M_result = __res();
      void
      _M_set_delayed_result(function<_Ptr_type()> __res,
			    weak_ptr<_State_baseV2> __self)
      {
	bool __did_set = false;
	unique_ptr<_Make_ready> __mr{new _Make_ready};
        // all calls to this function are serialized,
        // side-effects of invoking __res only happen once
	call_once(_M_once, &_State_baseV2::_M_do_set, this,
		  std::__addressof(__res), std::__addressof(__did_set));
	if (!__did_set)
          __throw_future_error(int(future_errc::promise_already_satisfied));
	__mr->_M_shared_state = std::move(__self);
	__mr->_M_set();
	__mr.release();
      }

      // Abandon this shared state.
      void
      _M_break_promise(_Ptr_type __res)
      {
	if (static_cast<bool>(__res))
	  {
	    __res->_M_error =
	      make_exception_ptr(future_error(future_errc::broken_promise));
	    // This function is only called when the last asynchronous result
	    // provider is abandoning this shared state, so noone can be
	    // trying to make the shared state ready at the same time, and
	    // we can access _M_result directly instead of through call_once.
	    _M_result.swap(__res);
	    // Use release MO to synchronize with observers of the ready state.
	    _M_status._M_store_notify_all(_Status::__ready,
					  memory_order_release);
	  }
      }

      // Called when this object is first passed to a future.
      void
      _M_set_retrieved_flag()
      {
	if (_M_retrieved.test_and_set())
	  __throw_future_error(int(future_errc::future_already_retrieved));
      }

      template<typename _Res, typename _Arg>
        struct _Setter;

      // set lvalues
      template<typename _Res, typename _Arg>
        struct _Setter<_Res, _Arg&>
        {
          // check this is only used by promise<R>::set_value(const R&)
          // or promise<R&>::set_value(R&)
          static_assert(is_same<_Res, _Arg&>::value  // promise<R&>
              || is_same<const _Res, _Arg>::value,   // promise<R>
              "Invalid specialisation");

	  // Used by std::promise to copy construct the result.
          typename promise<_Res>::_Ptr_type operator()() const
          {
            _M_promise->_M_storage->_M_set(*_M_arg);
            return std::move(_M_promise->_M_storage);
          }
          promise<_Res>*    _M_promise;
          _Arg*             _M_arg;
        };

      // set rvalues
      template<typename _Res>
        struct _Setter<_Res, _Res&&>
        {
	  // Used by std::promise to move construct the result.
          typename promise<_Res>::_Ptr_type operator()() const
          {
            _M_promise->_M_storage->_M_set(std::move(*_M_arg));
            return std::move(_M_promise->_M_storage);
          }
          promise<_Res>*    _M_promise;
          _Res*             _M_arg;
        };

      // set void
      template<typename _Res>
	struct _Setter<_Res, void>
	{
	  static_assert(is_void<_Res>::value, "Only used for promise<void>");

	  typename promise<_Res>::_Ptr_type operator()() const
	  { return std::move(_M_promise->_M_storage); }

	  promise<_Res>*    _M_promise;
	};

      struct __exception_ptr_tag { };

      // set exceptions
      template<typename _Res>
        struct _Setter<_Res, __exception_ptr_tag>
        {
	  // Used by std::promise to store an exception as the result.
          typename promise<_Res>::_Ptr_type operator()() const
          {
            _M_promise->_M_storage->_M_error = *_M_ex;
            return std::move(_M_promise->_M_storage);
          }

          promise<_Res>*   _M_promise;
          exception_ptr*    _M_ex;
        };

      template<typename _Res, typename _Arg>
	__attribute__((__always_inline__))
        static _Setter<_Res, _Arg&&>
        __setter(promise<_Res>* __prom, _Arg&& __arg) noexcept
        {
          return _Setter<_Res, _Arg&&>{ __prom, std::__addressof(__arg) };
        }

      template<typename _Res>
	__attribute__((__always_inline__))
        static _Setter<_Res, __exception_ptr_tag>
        __setter(exception_ptr& __ex, promise<_Res>* __prom) noexcept
        {
          return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
        }

      template<typename _Res>
	__attribute__((__always_inline__))
	static _Setter<_Res, void>
	__setter(promise<_Res>* __prom) noexcept
	{
	  return _Setter<_Res, void>{ __prom };
	}

      template<typename _Tp>
        static void
        _S_check(const shared_ptr<_Tp>& __p)
        {
          if (!static_cast<bool>(__p))
            __throw_future_error((int)future_errc::no_state);
        }

    private:
      // The function invoked with std::call_once(_M_once, ...).
      void
      _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
      {
        _Ptr_type __res = (*__f)();
        // Notify the caller that we did try to set; if we do not throw an
        // exception, the caller will be aware that it did set (e.g., see
        // _M_set_result).
	*__did_set = true;
        _M_result.swap(__res); // nothrow
      }

      // Wait for completion of async function.
      virtual void _M_complete_async() { }

      // Return true if state corresponds to a deferred function.
      virtual bool _M_is_deferred_future() const { return false; }

      struct _Make_ready final : __at_thread_exit_elt
      {
	weak_ptr<_State_baseV2> _M_shared_state;
	static void _S_run(void*);
	void _M_set();
      };
    };

#ifdef _GLIBCXX_ASYNC_ABI_COMPAT
    class _State_base;
    class _Async_state_common;
#else
    using _State_base = _State_baseV2;
    class _Async_state_commonV2;
#endif

    template<typename _BoundFn,
	     typename _Res = decltype(std::declval<_BoundFn&>()())>
      class _Deferred_state;

    template<typename _BoundFn,
	     typename _Res = decltype(std::declval<_BoundFn&>()())>
      class _Async_state_impl;

    template<typename _Signature>
      class _Task_state_base;

    template<typename _Fn, typename _Alloc, typename _Signature>
      class _Task_state;

    template<typename _BoundFn>
      static std::shared_ptr<_State_base>
      _S_make_deferred_state(_BoundFn&& __fn);

    template<typename _BoundFn>
      static std::shared_ptr<_State_base>
      _S_make_async_state(_BoundFn&& __fn);

    template<typename _Res_ptr, typename _Fn,
	     typename _Res = typename _Res_ptr::element_type::result_type>
      struct _Task_setter;

    template<typename _Res_ptr, typename _BoundFn>
      static _Task_setter<_Res_ptr, _BoundFn>
      _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
      {
	return { std::__addressof(__ptr), std::__addressof(__call) };
      }
  };

  /// Partial specialization for reference types.
  template<typename _Res>
    struct __future_base::_Result<_Res&> : __future_base::_Result_base
    {
      typedef _Res& result_type;

      _Result() noexcept : _M_value_ptr() { }

      void
      _M_set(_Res& __res) noexcept
      { _M_value_ptr = std::addressof(__res); }

      _Res& _M_get() noexcept { return *_M_value_ptr; }

    private:
      _Res* 			_M_value_ptr;

      void _M_destroy() { delete this; }
    };

  /// Explicit specialization for void.
  template<>
    struct __future_base::_Result<void> : __future_base::_Result_base
    {
      typedef void result_type;

    private:
      void _M_destroy() { delete this; }
    };

#ifndef _GLIBCXX_ASYNC_ABI_COMPAT

  // Allow _Setter objects to be stored locally in std::function
  template<typename _Res, typename _Arg>
    struct __is_location_invariant
    <__future_base::_State_base::_Setter<_Res, _Arg>>
    : true_type { };

  // Allow _Task_setter objects to be stored locally in std::function
  template<typename _Res_ptr, typename _Fn, typename _Res>
    struct __is_location_invariant
    <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
    : true_type { };

  /// Common implementation for future and shared_future.
  template<typename _Res>
    class __basic_future : public __future_base
    {
    protected:
      typedef shared_ptr<_State_base>		__state_type;
      typedef __future_base::_Result<_Res>&	__result_type;

    private:
      __state_type 		_M_state;

    public:
      // Disable copying.
      __basic_future(const __basic_future&) = delete;
      __basic_future& operator=(const __basic_future&) = delete;

      bool
      valid() const noexcept { return static_cast<bool>(_M_state); }

      void
      wait() const
      {
        _State_base::_S_check(_M_state);
        _M_state->wait();
      }

      template<typename _Rep, typename _Period>
        future_status
        wait_for(const chrono::duration<_Rep, _Period>& __rel) const
        {
          _State_base::_S_check(_M_state);
          return _M_state->wait_for(__rel);
        }

      template<typename _Clock, typename _Duration>
        future_status
        wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
        {
          _State_base::_S_check(_M_state);
          return _M_state->wait_until(__abs);
        }

    protected:
      /// Wait for the state to be ready and rethrow any stored exception
      __result_type
      _M_get_result() const
      {
        _State_base::_S_check(_M_state);
        _Result_base& __res = _M_state->wait();
        if (!(__res._M_error == 0))
          rethrow_exception(__res._M_error);
        return static_cast<__result_type>(__res);
      }

      void _M_swap(__basic_future& __that) noexcept
      {
        _M_state.swap(__that._M_state);
      }

      // Construction of a future by promise::get_future()
      explicit
      __basic_future(const __state_type& __state) : _M_state(__state)
      {
        _State_base::_S_check(_M_state);
        _M_state->_M_set_retrieved_flag();
      }

      // Copy construction from a shared_future
      explicit
      __basic_future(const shared_future<_Res>&) noexcept;

      // Move construction from a shared_future
      explicit
      __basic_future(shared_future<_Res>&&) noexcept;

      // Move construction from a future
      explicit
      __basic_future(future<_Res>&&) noexcept;

      constexpr __basic_future() noexcept : _M_state() { }

      struct _Reset
      {
        explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
        ~_Reset() { _M_fut._M_state.reset(); }
        __basic_future& _M_fut;
      };
    };


  /// Primary template for future.
  template<typename _Res>
    class future : public __basic_future<_Res>
    {
      friend class promise<_Res>;
      template<typename> friend class packaged_task;
      template<typename _Fn, typename... _Args>
        friend future<__async_result_of<_Fn, _Args...>>
        async(launch, _Fn&&, _Args&&...);

      typedef __basic_future<_Res> _Base_type;
      typedef typename _Base_type::__state_type __state_type;

      explicit
      future(const __state_type& __state) : _Base_type(__state) { }

    public:
      constexpr future() noexcept : _Base_type() { }

      /// Move constructor
      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }

      // Disable copying
      future(const future&) = delete;
      future& operator=(const future&) = delete;

      future& operator=(future&& __fut) noexcept
      {
        future(std::move(__fut))._M_swap(*this);
        return *this;
      }

      /// Retrieving the value
      _Res
      get()
      {
        typename _Base_type::_Reset __reset(*this);
        return std::move(this->_M_get_result()._M_value());
      }

      shared_future<_Res> share() noexcept;
    };

  /// Partial specialization for future<R&>
  template<typename _Res>
    class future<_Res&> : public __basic_future<_Res&>
    {
      friend class promise<_Res&>;
      template<typename> friend class packaged_task;
      template<typename _Fn, typename... _Args>
        friend future<__async_result_of<_Fn, _Args...>>
        async(launch, _Fn&&, _Args&&...);

      typedef __basic_future<_Res&> _Base_type;
      typedef typename _Base_type::__state_type __state_type;

      explicit
      future(const __state_type& __state) : _Base_type(__state) { }

    public:
      constexpr future() noexcept : _Base_type() { }

      /// Move constructor
      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }

      // Disable copying
      future(const future&) = delete;
      future& operator=(const future&) = delete;

      future& operator=(future&& __fut) noexcept
      {
        future(std::move(__fut))._M_swap(*this);
        return *this;
      }

      /// Retrieving the value
      _Res&
      get()
      {
        typename _Base_type::_Reset __reset(*this);
        return this->_M_get_result()._M_get();
      }

      shared_future<_Res&> share() noexcept;
    };

  /// Explicit specialization for future<void>
  template<>
    class future<void> : public __basic_future<void>
    {
      friend class promise<void>;
      template<typename> friend class packaged_task;
      template<typename _Fn, typename... _Args>
        friend future<__async_result_of<_Fn, _Args...>>
        async(launch, _Fn&&, _Args&&...);

      typedef __basic_future<void> _Base_type;
      typedef typename _Base_type::__state_type __state_type;

      explicit
      future(const __state_type& __state) : _Base_type(__state) { }

    public:
      constexpr future() noexcept : _Base_type() { }

      /// Move constructor
      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }

      // Disable copying
      future(const future&) = delete;
      future& operator=(const future&) = delete;

      future& operator=(future&& __fut) noexcept
      {
        future(std::move(__fut))._M_swap(*this);
        return *this;
      }

      /// Retrieving the value
      void
      get()
      {
        typename _Base_type::_Reset __reset(*this);
        this->_M_get_result();
      }

      shared_future<void> share() noexcept;
    };


  /// Primary template for shared_future.
  template<typename _Res>
    class shared_future : public __basic_future<_Res>
    {
      typedef __basic_future<_Res> _Base_type;

    public:
      constexpr shared_future() noexcept : _Base_type() { }

      /// Copy constructor
      shared_future(const shared_future& __sf) noexcept : _Base_type(__sf) { }

      /// Construct from a future rvalue
      shared_future(future<_Res>&& __uf) noexcept
      : _Base_type(std::move(__uf))
      { }

      /// Construct from a shared_future rvalue
      shared_future(shared_future&& __sf) noexcept
      : _Base_type(std::move(__sf))
      { }

      shared_future& operator=(const shared_future& __sf) noexcept
      {
        shared_future(__sf)._M_swap(*this);
        return *this;
      }

      shared_future& operator=(shared_future&& __sf) noexcept
      {
        shared_future(std::move(__sf))._M_swap(*this);
        return *this;
      }

      /// Retrieving the value
      const _Res&
      get() const { return this->_M_get_result()._M_value(); }
    };

  /// Partial specialization for shared_future<R&>
  template<typename _Res>
    class shared_future<_Res&> : public __basic_future<_Res&>
    {
      typedef __basic_future<_Res&>           _Base_type;

    public:
      constexpr shared_future() noexcept : _Base_type() { }

      /// Copy constructor
      shared_future(const shared_future& __sf) : _Base_type(__sf) { }

      /// Construct from a future rvalue
      shared_future(future<_Res&>&& __uf) noexcept
      : _Base_type(std::move(__uf))
      { }

      /// Construct from a shared_future rvalue
      shared_future(shared_future&& __sf) noexcept
      : _Base_type(std::move(__sf))
      { }

      shared_future& operator=(const shared_future& __sf)
      {
        shared_future(__sf)._M_swap(*this);
        return *this;
      }

      shared_future& operator=(shared_future&& __sf) noexcept
      {
        shared_future(std::move(__sf))._M_swap(*this);
        return *this;
      }

      /// Retrieving the value
      _Res&
      get() const { return this->_M_get_result()._M_get(); }
    };

  /// Explicit specialization for shared_future<void>
  template<>
    class shared_future<void> : public __basic_future<void>
    {
      typedef __basic_future<void> _Base_type;

    public:
      constexpr shared_future() noexcept : _Base_type() { }

      /// Copy constructor
      shared_future(const shared_future& __sf) : _Base_type(__sf) { }

      /// Construct from a future rvalue
      shared_future(future<void>&& __uf) noexcept
      : _Base_type(std::move(__uf))
      { }

      /// Construct from a shared_future rvalue
      shared_future(shared_future&& __sf) noexcept
      : _Base_type(std::move(__sf))
      { }

      shared_future& operator=(const shared_future& __sf)
      {
        shared_future(__sf)._M_swap(*this);
        return *this;
      }

      shared_future& operator=(shared_future&& __sf) noexcept
      {
        shared_future(std::move(__sf))._M_swap(*this);
        return *this;
      }

      // Retrieving the value
      void
      get() const { this->_M_get_result(); }
    };

  // Now we can define the protected __basic_future constructors.
  template<typename _Res>
    inline __basic_future<_Res>::
    __basic_future(const shared_future<_Res>& __sf) noexcept
    : _M_state(__sf._M_state)
    { }

  template<typename _Res>
    inline __basic_future<_Res>::
    __basic_future(shared_future<_Res>&& __sf) noexcept
    : _M_state(std::move(__sf._M_state))
    { }

  template<typename _Res>
    inline __basic_future<_Res>::
    __basic_future(future<_Res>&& __uf) noexcept
    : _M_state(std::move(__uf._M_state))
    { }

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2556. Wide contract for future::share()
  template<typename _Res>
    inline shared_future<_Res>
    future<_Res>::share() noexcept
    { return shared_future<_Res>(std::move(*this)); }

  template<typename _Res>
    inline shared_future<_Res&>
    future<_Res&>::share() noexcept
    { return shared_future<_Res&>(std::move(*this)); }

  inline shared_future<void>
  future<void>::share() noexcept
  { return shared_future<void>(std::move(*this)); }

  /// Primary template for promise
  template<typename _Res>
    class promise
    {
      typedef __future_base::_State_base 	_State;
      typedef __future_base::_Result<_Res>	_Res_type;
      typedef __future_base::_Ptr<_Res_type>	_Ptr_type;
      template<typename, typename> friend class _State::_Setter;
      friend _State;

      shared_ptr<_State>                        _M_future;
      _Ptr_type                                 _M_storage;

    public:
      promise()
      : _M_future(std::make_shared<_State>()),
	_M_storage(new _Res_type())
      { }

      promise(promise&& __rhs) noexcept
      : _M_future(std::move(__rhs._M_future)),
	_M_storage(std::move(__rhs._M_storage))
      { }

      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator& __a)
        : _M_future(std::allocate_shared<_State>(__a)),
	  _M_storage(__future_base::_S_allocate_result<_Res>(__a))
        { }

      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
        : _M_future(std::move(__rhs._M_future)),
	  _M_storage(std::move(__rhs._M_storage))
        { }

      promise(const promise&) = delete;

      ~promise()
      {
        if (static_cast<bool>(_M_future) && !_M_future.unique())
          _M_future->_M_break_promise(std::move(_M_storage));
      }

      // Assignment
      promise&
      operator=(promise&& __rhs) noexcept
      {
        promise(std::move(__rhs)).swap(*this);
        return *this;
      }

      promise& operator=(const promise&) = delete;

      void
      swap(promise& __rhs) noexcept
      {
        _M_future.swap(__rhs._M_future);
        _M_storage.swap(__rhs._M_storage);
      }

      // Retrieving the result
      future<_Res>
      get_future()
      { return future<_Res>(_M_future); }

      // Setting the result
      void
      set_value(const _Res& __r)
      { _M_state()._M_set_result(_State::__setter(this, __r)); }

      void
      set_value(_Res&& __r)
      { _M_state()._M_set_result(_State::__setter(this, std::move(__r))); }

      void
      set_exception(exception_ptr __p)
      { _M_state()._M_set_result(_State::__setter(__p, this)); }

      void
      set_value_at_thread_exit(const _Res& __r)
      {
	_M_state()._M_set_delayed_result(_State::__setter(this, __r),
					 _M_future);
      }

      void
      set_value_at_thread_exit(_Res&& __r)
      {
	_M_state()._M_set_delayed_result(
	    _State::__setter(this, std::move(__r)), _M_future);
      }

      void
      set_exception_at_thread_exit(exception_ptr __p)
      {
	_M_state()._M_set_delayed_result(_State::__setter(__p, this),
					 _M_future);
      }

    private:
      _State&
      _M_state()
      {
	__future_base::_State_base::_S_check(_M_future);
	return *_M_future;
      }
    };

  template<typename _Res>
    inline void
    swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
    { __x.swap(__y); }

  template<typename _Res, typename _Alloc>
    struct uses_allocator<promise<_Res>, _Alloc>
    : public true_type { };


  /// Partial specialization for promise<R&>
  template<typename _Res>
    class promise<_Res&>
    {
      typedef __future_base::_State_base	_State;
      typedef __future_base::_Result<_Res&>	_Res_type;
      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
      template<typename, typename> friend class _State::_Setter;
      friend _State;

      shared_ptr<_State>                        _M_future;
      _Ptr_type                                 _M_storage;

    public:
      promise()
      : _M_future(std::make_shared<_State>()),
	_M_storage(new _Res_type())
      { }

      promise(promise&& __rhs) noexcept
      : _M_future(std::move(__rhs._M_future)),
	_M_storage(std::move(__rhs._M_storage))
      { }

      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator& __a)
        : _M_future(std::allocate_shared<_State>(__a)),
	  _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
        { }

      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
        : _M_future(std::move(__rhs._M_future)),
	  _M_storage(std::move(__rhs._M_storage))
        { }

      promise(const promise&) = delete;

      ~promise()
      {
        if (static_cast<bool>(_M_future) && !_M_future.unique())
          _M_future->_M_break_promise(std::move(_M_storage));
      }

      // Assignment
      promise&
      operator=(promise&& __rhs) noexcept
      {
        promise(std::move(__rhs)).swap(*this);
        return *this;
      }

      promise& operator=(const promise&) = delete;

      void
      swap(promise& __rhs) noexcept
      {
        _M_future.swap(__rhs._M_future);
        _M_storage.swap(__rhs._M_storage);
      }

      // Retrieving the result
      future<_Res&>
      get_future()
      { return future<_Res&>(_M_future); }

      // Setting the result
      void
      set_value(_Res& __r)
      { _M_state()._M_set_result(_State::__setter(this, __r)); }

      void
      set_exception(exception_ptr __p)
      { _M_state()._M_set_result(_State::__setter(__p, this)); }

      void
      set_value_at_thread_exit(_Res& __r)
      {
	_M_state()._M_set_delayed_result(_State::__setter(this, __r),
					 _M_future);
      }

      void
      set_exception_at_thread_exit(exception_ptr __p)
      {
	_M_state()._M_set_delayed_result(_State::__setter(__p, this),
					 _M_future);
      }

    private:
      _State&
      _M_state()
      {
	__future_base::_State_base::_S_check(_M_future);
	return *_M_future;
      }
    };

  /// Explicit specialization for promise<void>
  template<>
    class promise<void>
    {
      typedef __future_base::_State_base	_State;
      typedef __future_base::_Result<void>	_Res_type;
      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
      template<typename, typename> friend class _State::_Setter;
      friend _State;

      shared_ptr<_State>                        _M_future;
      _Ptr_type                                 _M_storage;

    public:
      promise()
      : _M_future(std::make_shared<_State>()),
	_M_storage(new _Res_type())
      { }

      promise(promise&& __rhs) noexcept
      : _M_future(std::move(__rhs._M_future)),
	_M_storage(std::move(__rhs._M_storage))
      { }

      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator& __a)
        : _M_future(std::allocate_shared<_State>(__a)),
	  _M_storage(__future_base::_S_allocate_result<void>(__a))
        { }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2095.  missing constructors needed for uses-allocator construction
      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
        : _M_future(std::move(__rhs._M_future)),
	  _M_storage(std::move(__rhs._M_storage))
        { }

      promise(const promise&) = delete;

      ~promise()
      {
        if (static_cast<bool>(_M_future) && !_M_future.unique())
          _M_future->_M_break_promise(std::move(_M_storage));
      }

      // Assignment
      promise&
      operator=(promise&& __rhs) noexcept
      {
        promise(std::move(__rhs)).swap(*this);
        return *this;
      }

      promise& operator=(const promise&) = delete;

      void
      swap(promise& __rhs) noexcept
      {
        _M_future.swap(__rhs._M_future);
        _M_storage.swap(__rhs._M_storage);
      }

      // Retrieving the result
      future<void>
      get_future()
      { return future<void>(_M_future); }

      // Setting the result
      void
      set_value()
      { _M_state()._M_set_result(_State::__setter(this)); }

      void
      set_exception(exception_ptr __p)
      { _M_state()._M_set_result(_State::__setter(__p, this)); }

      void
      set_value_at_thread_exit()
      { _M_state()._M_set_delayed_result(_State::__setter(this), _M_future); }

      void
      set_exception_at_thread_exit(exception_ptr __p)
      {
	_M_state()._M_set_delayed_result(_State::__setter(__p, this),
					 _M_future);
      }

    private:
      _State&
      _M_state()
      {
	__future_base::_State_base::_S_check(_M_future);
	return *_M_future;
      }
    };

  template<typename _Ptr_type, typename _Fn, typename _Res>
    struct __future_base::_Task_setter
    {
      // Invoke the function and provide the result to the caller.
      _Ptr_type operator()() const
      {
	__try
	  {
	    (*_M_result)->_M_set((*_M_fn)());
	  }
	__catch(const __cxxabiv1::__forced_unwind&)
	  {
	    __throw_exception_again; // will cause broken_promise
	  }
	__catch(...)
	  {
	    (*_M_result)->_M_error = current_exception();
	  }
	return std::move(*_M_result);
      }
      _Ptr_type*	_M_result;
      _Fn*		_M_fn;
    };

  template<typename _Ptr_type, typename _Fn>
    struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
    {
      _Ptr_type operator()() const
      {
	__try
	  {
	    (*_M_fn)();
	  }
	__catch(const __cxxabiv1::__forced_unwind&)
	  {
	    __throw_exception_again; // will cause broken_promise
	  }
	__catch(...)
	  {
	    (*_M_result)->_M_error = current_exception();
	  }
	return std::move(*_M_result);
      }
      _Ptr_type*	_M_result;
      _Fn*		_M_fn;
    };

  // Holds storage for a packaged_task's result.
  template<typename _Res, typename... _Args>
    struct __future_base::_Task_state_base<_Res(_Args...)>
    : __future_base::_State_base
    {
      typedef _Res _Res_type;

      template<typename _Alloc>
	_Task_state_base(const _Alloc& __a)
	: _M_result(_S_allocate_result<_Res>(__a))
	{ }

      // Invoke the stored task and make the state ready.
      virtual void
      _M_run(_Args&&... __args) = 0;

      // Invoke the stored task and make the state ready at thread exit.
      virtual void
      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;

      virtual shared_ptr<_Task_state_base>
      _M_reset() = 0;

      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
      _Ptr_type _M_result;
    };

  // Holds a packaged_task's stored task.
  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
    struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
    : __future_base::_Task_state_base<_Res(_Args...)>
    {
      template<typename _Fn2>
	_Task_state(_Fn2&& __fn, const _Alloc& __a)
	: _Task_state_base<_Res(_Args...)>(__a),
	  _M_impl(std::forward<_Fn2>(__fn), __a)
	{ }

    private:
      virtual void
      _M_run(_Args&&... __args)
      {
	auto __boundfn = [&] () -> _Res {
	    return std::__invoke_r<_Res>(_M_impl._M_fn,
					 std::forward<_Args>(__args)...);
	};
	this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
      }

      virtual void
      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
      {
	auto __boundfn = [&] () -> _Res {
	    return std::__invoke_r<_Res>(_M_impl._M_fn,
					 std::forward<_Args>(__args)...);
	};
	this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
				    std::move(__self));
      }

      virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
      _M_reset();

      struct _Impl : _Alloc
      {
	template<typename _Fn2>
	  _Impl(_Fn2&& __fn, const _Alloc& __a)
	  : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
	_Fn _M_fn;
      } _M_impl;
    };

  template<typename _Signature, typename _Fn,
	   typename _Alloc = std::allocator<int>>
    static shared_ptr<__future_base::_Task_state_base<_Signature>>
    __create_task_state(_Fn&& __fn, const _Alloc& __a = _Alloc())
    {
      typedef typename decay<_Fn>::type _Fn2;
      typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
      return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
    }

  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
    shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
    __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
    {
      return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
						 static_cast<_Alloc&>(_M_impl));
    }

  /// packaged_task
  template<typename _Res, typename... _ArgTypes>
    class packaged_task<_Res(_ArgTypes...)>
    {
      typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
      shared_ptr<_State_type>                   _M_state;

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 3039. Unnecessary decay in thread and packaged_task
      template<typename _Fn, typename _Fn2 = __remove_cvref_t<_Fn>>
	using __not_same
	  = typename enable_if<!is_same<packaged_task, _Fn2>::value>::type;

    public:
      // Construction and destruction
      packaged_task() noexcept { }

      template<typename _Fn, typename = __not_same<_Fn>>
	explicit
	packaged_task(_Fn&& __fn)
	: _M_state(
	    __create_task_state<_Res(_ArgTypes...)>(std::forward<_Fn>(__fn)))
	{ }

#if __cplusplus < 201703L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2097. packaged_task constructors should be constrained
      // 2407. [this constructor should not be] explicit
      // 2921. packaged_task and type-erased allocators
      template<typename _Fn, typename _Alloc, typename = __not_same<_Fn>>
	packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
	: _M_state(__create_task_state<_Res(_ArgTypes...)>(
		   std::forward<_Fn>(__fn), __a))
	{ }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2095.  missing constructors needed for uses-allocator construction
      template<typename _Allocator>
	packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
	{ }

      template<typename _Allocator>
	packaged_task(allocator_arg_t, const _Allocator&,
		      const packaged_task&) = delete;

      template<typename _Allocator>
	packaged_task(allocator_arg_t, const _Allocator&,
		      packaged_task&& __other) noexcept
	{ this->swap(__other); }
#endif

      ~packaged_task()
      {
        if (static_cast<bool>(_M_state) && !_M_state.unique())
	  _M_state->_M_break_promise(std::move(_M_state->_M_result));
      }

      // No copy
      packaged_task(const packaged_task&) = delete;
      packaged_task& operator=(const packaged_task&) = delete;

      // Move support
      packaged_task(packaged_task&& __other) noexcept
      { this->swap(__other); }

      packaged_task& operator=(packaged_task&& __other) noexcept
      {
	packaged_task(std::move(__other)).swap(*this);
	return *this;
      }

      void
      swap(packaged_task& __other) noexcept
      { _M_state.swap(__other._M_state); }

      bool
      valid() const noexcept
      { return static_cast<bool>(_M_state); }

      // Result retrieval
      future<_Res>
      get_future()
      { return future<_Res>(_M_state); }

      // Execution
      void
      operator()(_ArgTypes... __args)
      {
	__future_base::_State_base::_S_check(_M_state);
	_M_state->_M_run(std::forward<_ArgTypes>(__args)...);
      }

      void
      make_ready_at_thread_exit(_ArgTypes... __args)
      {
	__future_base::_State_base::_S_check(_M_state);
	_M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
      }

      void
      reset()
      {
	__future_base::_State_base::_S_check(_M_state);
	packaged_task __tmp;
	__tmp._M_state = _M_state;
	_M_state = _M_state->_M_reset();
      }
    };

  /// swap
  template<typename _Res, typename... _ArgTypes>
    inline void
    swap(packaged_task<_Res(_ArgTypes...)>& __x,
	 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
    { __x.swap(__y); }

#if __cplusplus < 201703L
  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2976. Dangling uses_allocator specialization for packaged_task
  template<typename _Res, typename _Alloc>
    struct uses_allocator<packaged_task<_Res>, _Alloc>
    : public true_type { };
#endif

  // Shared state created by std::async().
  // Holds a deferred function and storage for its result.
  template<typename _BoundFn, typename _Res>
    class __future_base::_Deferred_state final
    : public __future_base::_State_base
    {
    public:
      explicit
      _Deferred_state(_BoundFn&& __fn)
      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
      { }

    private:
      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
      _Ptr_type _M_result;
      _BoundFn _M_fn;

      // Run the deferred function.
      virtual void
      _M_complete_async()
      {
	// Multiple threads can call a waiting function on the future and
	// reach this point at the same time. The call_once in _M_set_result
	// ensures only the first one run the deferred function, stores the
	// result in _M_result, swaps that with the base _M_result and makes
	// the state ready. Tell _M_set_result to ignore failure so all later
	// calls do nothing.
        _M_set_result(_S_task_setter(_M_result, _M_fn), true);
      }

      // Caller should check whether the state is ready first, because this
      // function will return true even after the deferred function has run.
      virtual bool _M_is_deferred_future() const { return true; }
    };

  // Common functionality hoisted out of the _Async_state_impl template.
  class __future_base::_Async_state_commonV2
    : public __future_base::_State_base
  {
  protected:
    ~_Async_state_commonV2() = default;

    // Make waiting functions block until the thread completes, as if joined.
    //
    // This function is used by wait() to satisfy the first requirement below
    // and by wait_for() / wait_until() to satisfy the second.
    //
    // [futures.async]:
    //
    // - a call to a waiting function on an asynchronous return object that
    // shares the shared state created by this async call shall block until
    // the associated thread has completed, as if joined, or else time out.
    //
    // - the associated thread completion synchronizes with the return from
    // the first function that successfully detects the ready status of the
    // shared state or with the return from the last function that releases
    // the shared state, whichever happens first.
    virtual void _M_complete_async() { _M_join(); }

    void _M_join() { std::call_once(_M_once, &thread::join, &_M_thread); }

    thread _M_thread;
    once_flag _M_once;
  };

  // Shared state created by std::async().
  // Starts a new thread that runs a function and makes the shared state ready.
  template<typename _BoundFn, typename _Res>
    class __future_base::_Async_state_impl final
    : public __future_base::_Async_state_commonV2
    {
    public:
      explicit
      _Async_state_impl(_BoundFn&& __fn)
      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
      {
	_M_thread = std::thread{ [this] {
	    __try
	      {
		_M_set_result(_S_task_setter(_M_result, _M_fn));
	      }
	    __catch (const __cxxabiv1::__forced_unwind&)
	      {
		// make the shared state ready on thread cancellation
		if (static_cast<bool>(_M_result))
		  this->_M_break_promise(std::move(_M_result));
		__throw_exception_again;
	      }
        } };
      }

      // Must not destroy _M_result and _M_fn until the thread finishes.
      // Call join() directly rather than through _M_join() because no other
      // thread can be referring to this state if it is being destroyed.
      ~_Async_state_impl() { if (_M_thread.joinable()) _M_thread.join(); }

    private:
      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
      _Ptr_type _M_result;
      _BoundFn _M_fn;
    };

  template<typename _BoundFn>
    inline std::shared_ptr<__future_base::_State_base>
    __future_base::_S_make_deferred_state(_BoundFn&& __fn)
    {
      typedef typename remove_reference<_BoundFn>::type __fn_type;
      typedef _Deferred_state<__fn_type> __state_type;
      return std::make_shared<__state_type>(std::move(__fn));
    }

  template<typename _BoundFn>
    inline std::shared_ptr<__future_base::_State_base>
    __future_base::_S_make_async_state(_BoundFn&& __fn)
    {
      typedef typename remove_reference<_BoundFn>::type __fn_type;
      typedef _Async_state_impl<__fn_type> __state_type;
      return std::make_shared<__state_type>(std::move(__fn));
    }


  /// async
  template<typename _Fn, typename... _Args>
    _GLIBCXX_NODISCARD future<__async_result_of<_Fn, _Args...>>
    async(launch __policy, _Fn&& __fn, _Args&&... __args)
    {
      std::shared_ptr<__future_base::_State_base> __state;
      if ((__policy & launch::async) == launch::async)
	{
	  __try
	    {
	      __state = __future_base::_S_make_async_state(
		  std::thread::__make_invoker(std::forward<_Fn>(__fn),
					      std::forward<_Args>(__args)...)
		  );
	    }
#if __cpp_exceptions
	  catch(const system_error& __e)
	    {
	      if (__e.code() != errc::resource_unavailable_try_again
		  || (__policy & launch::deferred) != launch::deferred)
		throw;
	    }
#endif
	}
      if (!__state)
	{
	  __state = __future_base::_S_make_deferred_state(
	      std::thread::__make_invoker(std::forward<_Fn>(__fn),
					  std::forward<_Args>(__args)...));
	}
      return future<__async_result_of<_Fn, _Args...>>(__state);
    }

  /// async, potential overload
  template<typename _Fn, typename... _Args>
    _GLIBCXX_NODISCARD inline future<__async_result_of<_Fn, _Args...>>
    async(_Fn&& __fn, _Args&&... __args)
    {
      return std::async(launch::async|launch::deferred,
			std::forward<_Fn>(__fn),
			std::forward<_Args>(__args)...);
    }

#endif // _GLIBCXX_ASYNC_ABI_COMPAT
#endif // _GLIBCXX_HAS_GTHREADS

  /// @} group futures
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#endif // C++11

#endif // _GLIBCXX_FUTURE