Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
/* This testcase is part of GDB, the GNU debugger.

   Copyright 2015-2020 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <stddef.h>
#include <stdint.h>

typedef void (*testcase_ftype)(void);

/* Each function checks the correctness of the instruction being
   relocated due to a fast tracepoint.  Call function pass if it is
   correct, otherwise call function fail.  GDB sets a breakpoints on
   pass and fail in order to check the correctness.  */

static void
pass (void)
{
}

static void
fail (void)
{
}

#if (defined __x86_64__ || defined __i386__)

#ifdef SYMBOL_PREFIX
#define SYMBOL(str)     SYMBOL_PREFIX #str
#else
#define SYMBOL(str)     #str
#endif

/* Make sure we can relocate a CALL instruction.  CALL instructions are
   5 bytes long so we can always set a fast tracepoints on them.

     JMP set_point0
   f:
     MOV $1, %[ok]
     JMP end
   set_point0:
     CALL f ; tracepoint here.
   end:

   */

static void
can_relocate_call (void)
{
  int ok = 0;

  asm ("    .global " SYMBOL (set_point0) "\n"
       "  jmp " SYMBOL (set_point0) "\n"
       "0:\n"
       "  mov $1, %[ok]\n"
       "  jmp 1f\n"
       SYMBOL (set_point0) ":\n"
       "  call 0b\n"
       "1:\n"
       : [ok] "=r" (ok));

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate a JMP instruction.  We need the JMP
   instruction to be 5 bytes long in order to set a fast tracepoint on
   it.  To do this, we emit the opcode directly.

     JMP next ; tracepoint here.
   next:
     MOV $1, %[ok]

   */

static void
can_relocate_jump (void)
{
  int ok = 0;

  asm ("    .global " SYMBOL (set_point1) "\n"
       SYMBOL (set_point1) ":\n"
       ".byte 0xe9\n"  /* jmp  */
       ".byte 0x00\n"
       ".byte 0x00\n"
       ".byte 0x00\n"
       ".byte 0x00\n"
       "  mov $1, %[ok]\n"
       : [ok] "=r" (ok));

  if (ok == 1)
    pass ();
  else
    fail ();
}
#elif (defined __aarch64__)

/* Make sure we can relocate a B instruction.

     B set_point0
   set_ok:
     MOV %[ok], #1
     B end
   set_point0:
     B set_ok ; tracepoint here.
     MOV %[ok], #0
   end

   */

static void
can_relocate_b (void)
{
  int ok = 0;

  asm ("  b set_point0\n"
       "0:\n"
       "  mov %[ok], #1\n"
       "  b 1f\n"
       "set_point0:\n"
       "  b 0b\n"
       "  mov %[ok], #0\n"
       "1:\n"
       : [ok] "=r" (ok));

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate a B.cond instruction.

     MOV x0, #8
     TST x0, #8 ; Clear the Z flag.
     B set_point1
   set_ok:
     MOV %[ok], #1
     B end
   set_point1:
     B.NE set_ok ; tracepoint here.
     MOV %[ok], #0
   end

   */

static void
can_relocate_bcond_true (void)
{
  int ok = 0;

  asm ("  mov x0, #8\n"
       "  tst x0, #8\n"
       "  b set_point1\n"
       "0:\n"
       "  mov %[ok], #1\n"
       "  b 1f\n"
       "set_point1:\n"
       "  b.ne 0b\n"
       "  mov %[ok], #0\n"
       "1:\n"
       : [ok] "=r" (ok)
       :
       : "0", "cc");

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate a CBZ instruction.

     MOV x0, #0
     B set_point2
   set_ok:
     MOV %[ok], #1
     B end
   set_point2:
     CBZ x0, set_ok ; tracepoint here.
     MOV %[ok], #0
   end

   */

static void
can_relocate_cbz (void)
{
  int ok = 0;

  asm ("  mov x0, #0\n"
       "  b set_point2\n"
       "0:\n"
       "  mov %[ok], #1\n"
       "  b 1f\n"
       "set_point2:\n"
       "  cbz x0, 0b\n"
       "  mov %[ok], #0\n"
       "1:\n"
       : [ok] "=r" (ok)
       :
       : "0");

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate a CBNZ instruction.

     MOV x0, #8
     B set_point3
   set_ok:
     MOV %[ok], #1
     B end
   set_point3:
     CBNZ x0, set_ok ; tracepoint here.
     MOV %[ok], #0
   end

   */

static void
can_relocate_cbnz (void)
{
  int ok = 0;

  asm ("  mov x0, #8\n"
       "  b set_point3\n"
       "0:\n"
       "  mov %[ok], #1\n"
       "  b 1f\n"
       "set_point3:\n"
       "  cbnz x0, 0b\n"
       "  mov %[ok], #0\n"
       "1:\n"
       : [ok] "=r" (ok)
       :
       : "0");

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate a TBZ instruction.

     MOV x0, #8
     MVN x0, x0 ; Clear bit 3.
     B set_point4
   set_ok:
     MOV %[ok], #1
     B end
   set_point4:
     TBZ x0, #3, set_ok ; tracepoint here.
     MOV %[ok], #0
   end

   */

static void
can_relocate_tbz (void)
{
  int ok = 0;

  asm ("  mov x0, #8\n"
       "  mvn x0, x0\n"
       "  b set_point4\n"
       "0:\n"
       "  mov %[ok], #1\n"
       "  b 1f\n"
       "set_point4:\n"
       "  tbz x0, #3, 0b\n"
       "  mov %[ok], #0\n"
       "1:\n"
       : [ok] "=r" (ok)
       :
       : "0");

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate a TBNZ instruction.

     MOV x0, #8 ; Set bit 3.
     B set_point5
   set_ok:
     MOV %[ok], #1
     B end
   set_point5:
     TBNZ x0, #3, set_ok ; tracepoint here.
     MOV %[ok], #0
   end

   */

static void
can_relocate_tbnz (void)
{
  int ok = 0;

  asm ("  mov x0, #8\n"
       "  b set_point5\n"
       "0:\n"
       "  mov %[ok], #1\n"
       "  b 1f\n"
       "set_point5:\n"
       "  tbnz x0, #3, 0b\n"
       "  mov %[ok], #0\n"
       "1:\n"
       : [ok] "=r" (ok)
       :
       : "0");

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate an ADR instruction with a positive offset.

   set_point6:
     ADR x0, target ; tracepoint here.
     BR x0 ; jump to target
     MOV %[ok], #0
     B end
   target:
     MOV %[ok], #1
   end

   */

static void
can_relocate_adr_forward (void)
{
  int ok = 0;

  asm ("set_point6:\n"
       "  adr x0, 0f\n"
       "  br x0\n"
       "  mov %[ok], #0\n"
       "  b 1f\n"
       "0:\n"
       "  mov %[ok], #1\n"
       "1:\n"
       : [ok] "=r" (ok)
       :
       : "0");

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate an ADR instruction with a negative offset.

     B set_point7
   target:
     MOV %[ok], #1
     B end
   set_point7:
     ADR x0, target ; tracepoint here.
     BR x0 ; jump to target
     MOV %[ok], #0
   end

   */

static void
can_relocate_adr_backward (void)
{
  int ok = 0;

  asm ("b set_point7\n"
       "0:\n"
       "  mov %[ok], #1\n"
       "  b 1f\n"
       "set_point7:\n"
       "  adr x0, 0b\n"
       "  br x0\n"
       "  mov %[ok], #0\n"
       "1:\n"
       : [ok] "=r" (ok)
       :
       : "0");

  if (ok == 1)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate an ADRP instruction.

   set_point8:
     ADRP %[addr], set_point8 ; tracepoint here.
     ADR %[pc], set_point8

   ADR computes the address of the given label.  While ADRP gives us its
   page, on a 4K boundary.  We can check ADRP executed normally by
   making sure the result of ADR and ADRP are equivalent, except for the
   12 lowest bits which should be cleared.

   */

static void
can_relocate_adrp (void)
{
  uintptr_t page;
  uintptr_t pc;

  asm ("set_point8:\n"
       "  adrp %[page], set_point8\n"
       "  adr %[pc], set_point8\n"
       : [page] "=r" (page), [pc] "=r" (pc));

  if (page == (pc & ~0xfff))
    pass ();
  else
    fail ();
}

/* Make sure we can relocate an LDR instruction, where the memory to
   read is an offset from the current PC.

     B set_point9
   data:
     .word 0x0cabba9e
   set_point9:
     LDR %[result], data ; tracepoint here.

   */

static void
can_relocate_ldr (void)
{
  uint32_t result = 0;

  asm ("b set_point9\n"
       "0:\n"
       "  .word 0x0cabba9e\n"
       "set_point9:\n"
       "  ldr %w[result], 0b\n"
       : [result] "=r" (result));

  if (result == 0x0cabba9e)
    pass ();
  else
    fail ();
}

/* Make sure we can relocate a B.cond instruction and condition is false.  */

static void
can_relocate_bcond_false (void)
{
  int ok = 0;

  asm ("  mov x0, #8\n"
       "  tst x0, #8\n" /* Clear the Z flag.  */
       "set_point10:\n" /* Set tracepoint here.  */
       "  b.eq 0b\n"    /* Condition is false.  */
       "  mov %[ok], #1\n"
       "  b 1f\n"
       "0:\n"
       "  mov %[ok], #0\n"
       "1:\n"
       : [ok] "=r" (ok)
       :
       : "0", "cc");

  if (ok == 1)
    pass ();
  else
    fail ();
}

static void
foo (void)
{
}

/* Make sure we can relocate a BL instruction.  */

static void
can_relocate_bl (void)
{
  asm ("set_point11:\n"
       "  bl foo\n"
       "  bl pass\n"
       : : : "x30"); /* Test that LR is updated correctly.  */
}

#endif

/* Functions testing relocations need to be placed here.  GDB will read
   n_testcases to know how many fast tracepoints to place.  It will look
   for symbols in the form of 'set_point\[0-9\]+' so each functions
   needs one, starting at 0.  */

static testcase_ftype testcases[] = {
#if (defined __x86_64__ || defined __i386__)
  can_relocate_call,
  can_relocate_jump
#elif (defined __aarch64__)
  can_relocate_b,
  can_relocate_bcond_true,
  can_relocate_cbz,
  can_relocate_cbnz,
  can_relocate_tbz,
  can_relocate_tbnz,
  can_relocate_adr_forward,
  can_relocate_adr_backward,
  can_relocate_adrp,
  can_relocate_ldr,
  can_relocate_bcond_false,
  can_relocate_bl,
#endif
};

static size_t n_testcases = (sizeof (testcases) / sizeof (testcase_ftype));

int
main ()
{
  int i = 0;

  for (i = 0; i < n_testcases; i++)
    testcases[i] ();

  return 0;
}