Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
/* mpn_mul -- Multiply two natural numbers.

   Contributed to the GNU project by Torbjorn Granlund.

Copyright 1991, 1993, 1994, 1996, 1997, 1999-2003, 2005-2007, 2009, 2010, 2012,
2014, 2019 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 2 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library.  If not,
see https://www.gnu.org/licenses/.  */

#include "gmp-impl.h"


#ifndef MUL_BASECASE_MAX_UN
#define MUL_BASECASE_MAX_UN 500
#endif

/* Areas where the different toom algorithms can be called (extracted
   from the t-toom*.c files, and ignoring small constant offsets):

   1/6  1/5 1/4 4/13 1/3 3/8 2/5 5/11 1/2 3/5 2/3 3/4 4/5   1 vn/un
                                        4/7              6/7
				       6/11
                                       |--------------------| toom22 (small)
                                                           || toom22 (large)
                                                       |xxxx| toom22 called
                      |-------------------------------------| toom32
                                         |xxxxxxxxxxxxxxxx| | toom32 called
                                               |------------| toom33
                                                          |x| toom33 called
             |---------------------------------|            | toom42
	              |xxxxxxxxxxxxxxxxxxxxxxxx|            | toom42 called
                                       |--------------------| toom43
                                               |xxxxxxxxxx|   toom43 called
         |-----------------------------|                      toom52 (unused)
                                                   |--------| toom44
						   |xxxxxxxx| toom44 called
                              |--------------------|        | toom53
                                        |xxxxxx|              toom53 called
    |-------------------------|                               toom62 (unused)
                                           |----------------| toom54 (unused)
                      |--------------------|                  toom63
	                      |xxxxxxxxx|                   | toom63 called
                          |---------------------------------| toom6h
						   |xxxxxxxx| toom6h called
                                  |-------------------------| toom8h (32 bit)
                 |------------------------------------------| toom8h (64 bit)
						   |xxxxxxxx| toom8h called
*/

#define TOOM33_OK(an,bn) (6 + 2 * an < 3 * bn)
#define TOOM44_OK(an,bn) (12 + 3 * an < 4 * bn)

/* Multiply the natural numbers u (pointed to by UP, with UN limbs) and v
   (pointed to by VP, with VN limbs), and store the result at PRODP.  The
   result is UN + VN limbs.  Return the most significant limb of the result.

   NOTE: The space pointed to by PRODP is overwritten before finished with U
   and V, so overlap is an error.

   Argument constraints:
   1. UN >= VN.
   2. PRODP != UP and PRODP != VP, i.e. the destination must be distinct from
      the multiplier and the multiplicand.  */

/*
  * The cutoff lines in the toomX2 and toomX3 code are now exactly between the
    ideal lines of the surrounding algorithms.  Is that optimal?

  * The toomX3 code now uses a structure similar to the one of toomX2, except
    that it loops longer in the unbalanced case.  The result is that the
    remaining area might have un < vn.  Should we fix the toomX2 code in a
    similar way?

  * The toomX3 code is used for the largest non-FFT unbalanced operands.  It
    therefore calls mpn_mul recursively for certain cases.

  * Allocate static temp space using THRESHOLD variables (except for toom44
    when !WANT_FFT).  That way, we can typically have no TMP_ALLOC at all.

  * We sort ToomX2 algorithms together, assuming the toom22, toom32, toom42
    have the same vn threshold.  This is not true, we should actually use
    mul_basecase for slightly larger operands for toom32 than for toom22, and
    even larger for toom42.

  * That problem is even more prevalent for toomX3.  We therefore use special
    THRESHOLD variables there.
*/

mp_limb_t
mpn_mul (mp_ptr prodp,
	 mp_srcptr up, mp_size_t un,
	 mp_srcptr vp, mp_size_t vn)
{
  ASSERT (un >= vn);
  ASSERT (vn >= 1);
  ASSERT (! MPN_OVERLAP_P (prodp, un+vn, up, un));
  ASSERT (! MPN_OVERLAP_P (prodp, un+vn, vp, vn));

  if (BELOW_THRESHOLD (un, MUL_TOOM22_THRESHOLD))
    {
      /* When un (and thus vn) is below the toom22 range, do mul_basecase.
	 Test un and not vn here not to thwart the un >> vn code below.
	 This special case is not necessary, but cuts the overhead for the
	 smallest operands. */
      mpn_mul_basecase (prodp, up, un, vp, vn);
    }
  else if (un == vn)
    {
      mpn_mul_n (prodp, up, vp, un);
    }
  else if (vn < MUL_TOOM22_THRESHOLD)
    { /* plain schoolbook multiplication */

      /* Unless un is very large, or else if have an applicable mpn_mul_N,
	 perform basecase multiply directly.  */
      if (un <= MUL_BASECASE_MAX_UN
#if HAVE_NATIVE_mpn_mul_2
	  || vn <= 2
#else
	  || vn == 1
#endif
	  )
	mpn_mul_basecase (prodp, up, un, vp, vn);
      else
	{
	  /* We have un >> MUL_BASECASE_MAX_UN > vn.  For better memory
	     locality, split up[] into MUL_BASECASE_MAX_UN pieces and multiply
	     these pieces with the vp[] operand.  After each such partial
	     multiplication (but the last) we copy the most significant vn
	     limbs into a temporary buffer since that part would otherwise be
	     overwritten by the next multiplication.  After the next
	     multiplication, we add it back.  This illustrates the situation:

                                                    -->vn<--
                                                      |  |<------- un ------->|
                                                         _____________________|
                                                        X                    /|
                                                      /XX__________________/  |
                                    _____________________                     |
                                   X                    /                     |
                                 /XX__________________/                       |
               _____________________                                          |
              /                    /                                          |
            /____________________/                                            |
	    ==================================================================

	    The parts marked with X are the parts whose sums are copied into
	    the temporary buffer.  */

	  mp_limb_t tp[MUL_TOOM22_THRESHOLD_LIMIT];
	  mp_limb_t cy;
	  ASSERT (MUL_TOOM22_THRESHOLD <= MUL_TOOM22_THRESHOLD_LIMIT);

	  mpn_mul_basecase (prodp, up, MUL_BASECASE_MAX_UN, vp, vn);
	  prodp += MUL_BASECASE_MAX_UN;
	  MPN_COPY (tp, prodp, vn);		/* preserve high triangle */
	  up += MUL_BASECASE_MAX_UN;
	  un -= MUL_BASECASE_MAX_UN;
	  while (un > MUL_BASECASE_MAX_UN)
	    {
	      mpn_mul_basecase (prodp, up, MUL_BASECASE_MAX_UN, vp, vn);
	      cy = mpn_add_n (prodp, prodp, tp, vn); /* add back preserved triangle */
	      mpn_incr_u (prodp + vn, cy);
	      prodp += MUL_BASECASE_MAX_UN;
	      MPN_COPY (tp, prodp, vn);		/* preserve high triangle */
	      up += MUL_BASECASE_MAX_UN;
	      un -= MUL_BASECASE_MAX_UN;
	    }
	  if (un > vn)
	    {
	      mpn_mul_basecase (prodp, up, un, vp, vn);
	    }
	  else
	    {
	      ASSERT (un > 0);
	      mpn_mul_basecase (prodp, vp, vn, up, un);
	    }
	  cy = mpn_add_n (prodp, prodp, tp, vn); /* add back preserved triangle */
	  mpn_incr_u (prodp + vn, cy);
	}
    }
  else if (BELOW_THRESHOLD (vn, MUL_TOOM33_THRESHOLD))
    {
      /* Use ToomX2 variants */
      mp_ptr scratch;
      TMP_SDECL; TMP_SMARK;

#define ITCH_TOOMX2 (9 * vn / 2 + GMP_NUMB_BITS * 2)
      scratch = TMP_SALLOC_LIMBS (ITCH_TOOMX2);
      ASSERT (mpn_toom22_mul_itch ((5*vn-1)/4, vn) <= ITCH_TOOMX2); /* 5vn/2+ */
      ASSERT (mpn_toom32_mul_itch ((7*vn-1)/4, vn) <= ITCH_TOOMX2); /* 7vn/6+ */
      ASSERT (mpn_toom42_mul_itch (3 * vn - 1, vn) <= ITCH_TOOMX2); /* 9vn/2+ */
#undef ITCH_TOOMX2

      /* FIXME: This condition (repeated in the loop below) leaves from a vn*vn
	 square to a (3vn-1)*vn rectangle.  Leaving such a rectangle is hardly
	 wise; we would get better balance by slightly moving the bound.  We
	 will sometimes end up with un < vn, like in the X3 arm below.  */
      if (un >= 3 * vn)
	{
	  mp_limb_t cy;
	  mp_ptr ws;

	  /* The maximum ws usage is for the mpn_mul result.  */
	  ws = TMP_SALLOC_LIMBS (4 * vn);

	  mpn_toom42_mul (prodp, up, 2 * vn, vp, vn, scratch);
	  un -= 2 * vn;
	  up += 2 * vn;
	  prodp += 2 * vn;

	  while (un >= 3 * vn)
	    {
	      mpn_toom42_mul (ws, up, 2 * vn, vp, vn, scratch);
	      un -= 2 * vn;
	      up += 2 * vn;
	      cy = mpn_add_n (prodp, prodp, ws, vn);
	      MPN_COPY (prodp + vn, ws + vn, 2 * vn);
	      mpn_incr_u (prodp + vn, cy);
	      prodp += 2 * vn;
	    }

	  /* vn <= un < 3vn */

	  if (4 * un < 5 * vn)
	    mpn_toom22_mul (ws, up, un, vp, vn, scratch);
	  else if (4 * un < 7 * vn)
	    mpn_toom32_mul (ws, up, un, vp, vn, scratch);
	  else
	    mpn_toom42_mul (ws, up, un, vp, vn, scratch);

	  cy = mpn_add_n (prodp, prodp, ws, vn);
	  MPN_COPY (prodp + vn, ws + vn, un);
	  mpn_incr_u (prodp + vn, cy);
	}
      else
	{
	  if (4 * un < 5 * vn)
	    mpn_toom22_mul (prodp, up, un, vp, vn, scratch);
	  else if (4 * un < 7 * vn)
	    mpn_toom32_mul (prodp, up, un, vp, vn, scratch);
	  else
	    mpn_toom42_mul (prodp, up, un, vp, vn, scratch);
	}
      TMP_SFREE;
    }
  else if (BELOW_THRESHOLD ((un + vn) >> 1, MUL_FFT_THRESHOLD) ||
	   BELOW_THRESHOLD (3 * vn, MUL_FFT_THRESHOLD))
    {
      /* Handle the largest operands that are not in the FFT range.  The 2nd
	 condition makes very unbalanced operands avoid the FFT code (except
	 perhaps as coefficient products of the Toom code.  */

      if (BELOW_THRESHOLD (vn, MUL_TOOM44_THRESHOLD) || !TOOM44_OK (un, vn))
	{
	  /* Use ToomX3 variants */
	  mp_ptr scratch;
	  TMP_DECL; TMP_MARK;

#define ITCH_TOOMX3 (4 * vn + GMP_NUMB_BITS)
	  scratch = TMP_ALLOC_LIMBS (ITCH_TOOMX3);
	  ASSERT (mpn_toom33_mul_itch ((7*vn-1)/6, vn) <= ITCH_TOOMX3); /* 7vn/2+ */
	  ASSERT (mpn_toom43_mul_itch ((3*vn-1)/2, vn) <= ITCH_TOOMX3); /* 9vn/4+ */
	  ASSERT (mpn_toom32_mul_itch ((7*vn-1)/4, vn) <= ITCH_TOOMX3); /* 7vn/6+ */
	  ASSERT (mpn_toom53_mul_itch ((11*vn-1)/6, vn) <= ITCH_TOOMX3); /* 11vn/3+ */
	  ASSERT (mpn_toom42_mul_itch ((5*vn-1)/2, vn) <= ITCH_TOOMX3); /* 15vn/4+ */
	  ASSERT (mpn_toom63_mul_itch ((5*vn-1)/2, vn) <= ITCH_TOOMX3); /* 15vn/4+ */
#undef ITCH_TOOMX3

	  if (2 * un >= 5 * vn)
	    {
	      mp_limb_t cy;
	      mp_ptr ws;

	      /* The maximum ws usage is for the mpn_mul result.  */
	      ws = TMP_ALLOC_LIMBS (7 * vn >> 1);

	      if (BELOW_THRESHOLD (vn, MUL_TOOM42_TO_TOOM63_THRESHOLD))
		mpn_toom42_mul (prodp, up, 2 * vn, vp, vn, scratch);
	      else
		mpn_toom63_mul (prodp, up, 2 * vn, vp, vn, scratch);
	      un -= 2 * vn;
	      up += 2 * vn;
	      prodp += 2 * vn;

	      while (2 * un >= 5 * vn)	/* un >= 2.5vn */
		{
		  if (BELOW_THRESHOLD (vn, MUL_TOOM42_TO_TOOM63_THRESHOLD))
		    mpn_toom42_mul (ws, up, 2 * vn, vp, vn, scratch);
		  else
		    mpn_toom63_mul (ws, up, 2 * vn, vp, vn, scratch);
		  un -= 2 * vn;
		  up += 2 * vn;
		  cy = mpn_add_n (prodp, prodp, ws, vn);
		  MPN_COPY (prodp + vn, ws + vn, 2 * vn);
		  mpn_incr_u (prodp + vn, cy);
		  prodp += 2 * vn;
		}

	      /* vn / 2 <= un < 2.5vn */

	      if (un < vn)
		mpn_mul (ws, vp, vn, up, un);
	      else
		mpn_mul (ws, up, un, vp, vn);

	      cy = mpn_add_n (prodp, prodp, ws, vn);
	      MPN_COPY (prodp + vn, ws + vn, un);
	      mpn_incr_u (prodp + vn, cy);
	    }
	  else
	    {
	      if (6 * un < 7 * vn)
		mpn_toom33_mul (prodp, up, un, vp, vn, scratch);
	      else if (2 * un < 3 * vn)
		{
		  if (BELOW_THRESHOLD (vn, MUL_TOOM32_TO_TOOM43_THRESHOLD))
		    mpn_toom32_mul (prodp, up, un, vp, vn, scratch);
		  else
		    mpn_toom43_mul (prodp, up, un, vp, vn, scratch);
		}
	      else if (6 * un < 11 * vn)
		{
		  if (4 * un < 7 * vn)
		    {
		      if (BELOW_THRESHOLD (vn, MUL_TOOM32_TO_TOOM53_THRESHOLD))
			mpn_toom32_mul (prodp, up, un, vp, vn, scratch);
		      else
			mpn_toom53_mul (prodp, up, un, vp, vn, scratch);
		    }
		  else
		    {
		      if (BELOW_THRESHOLD (vn, MUL_TOOM42_TO_TOOM53_THRESHOLD))
			mpn_toom42_mul (prodp, up, un, vp, vn, scratch);
		      else
			mpn_toom53_mul (prodp, up, un, vp, vn, scratch);
		    }
		}
	      else
		{
		  if (BELOW_THRESHOLD (vn, MUL_TOOM42_TO_TOOM63_THRESHOLD))
		    mpn_toom42_mul (prodp, up, un, vp, vn, scratch);
		  else
		    mpn_toom63_mul (prodp, up, un, vp, vn, scratch);
		}
	    }
	  TMP_FREE;
	}
      else
	{
	  mp_ptr scratch;
	  TMP_DECL; TMP_MARK;

	  if (BELOW_THRESHOLD (vn, MUL_TOOM6H_THRESHOLD))
	    {
	      scratch = TMP_SALLOC_LIMBS (mpn_toom44_mul_itch (un, vn));
	      mpn_toom44_mul (prodp, up, un, vp, vn, scratch);
	    }
	  else if (BELOW_THRESHOLD (vn, MUL_TOOM8H_THRESHOLD))
	    {
	      scratch = TMP_SALLOC_LIMBS (mpn_toom6h_mul_itch (un, vn));
	      mpn_toom6h_mul (prodp, up, un, vp, vn, scratch);
	    }
	  else
	    {
	      scratch = TMP_ALLOC_LIMBS (mpn_toom8h_mul_itch (un, vn));
	      mpn_toom8h_mul (prodp, up, un, vp, vn, scratch);
	    }
	  TMP_FREE;
	}
    }
  else
    {
      if (un >= 8 * vn)
	{
	  mp_limb_t cy;
	  mp_ptr ws;
	  TMP_DECL; TMP_MARK;

	  /* The maximum ws usage is for the mpn_mul result.  */
	  ws = TMP_BALLOC_LIMBS (9 * vn >> 1);

	  mpn_fft_mul (prodp, up, 3 * vn, vp, vn);
	  un -= 3 * vn;
	  up += 3 * vn;
	  prodp += 3 * vn;

	  while (2 * un >= 7 * vn)	/* un >= 3.5vn  */
	    {
	      mpn_fft_mul (ws, up, 3 * vn, vp, vn);
	      un -= 3 * vn;
	      up += 3 * vn;
	      cy = mpn_add_n (prodp, prodp, ws, vn);
	      MPN_COPY (prodp + vn, ws + vn, 3 * vn);
	      mpn_incr_u (prodp + vn, cy);
	      prodp += 3 * vn;
	    }

	  /* vn / 2 <= un < 3.5vn */

	  if (un < vn)
	    mpn_mul (ws, vp, vn, up, un);
	  else
	    mpn_mul (ws, up, un, vp, vn);

	  cy = mpn_add_n (prodp, prodp, ws, vn);
	  MPN_COPY (prodp + vn, ws + vn, un);
	  mpn_incr_u (prodp + vn, cy);

	  TMP_FREE;
	}
      else
	mpn_fft_mul (prodp, up, un, vp, vn);
    }

  return prodp[un + vn - 1];	/* historic */
}