Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/* primesieve (BIT_ARRAY, N) -- Fills the BIT_ARRAY with a mask for primes up to N.

Contributed to the GNU project by Marco Bodrato.

THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.
IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.
IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR
DISAPPEAR IN A FUTURE GNU MP RELEASE.

Copyright 2010-2012, 2015, 2016 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 2 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library.  If not,
see https://www.gnu.org/licenses/.  */

#include "gmp-impl.h"

#if 0
static mp_limb_t
bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; }
#endif

/* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/
static mp_limb_t
id_to_n  (mp_limb_t id)  { return id*3+1+(id&1); }

/* n_to_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */
static mp_limb_t
n_to_bit (mp_limb_t n) { return ((n-5)|1)/3U; }

#if 0
static mp_size_t
primesieve_size (mp_limb_t n) { return n_to_bit(n) / GMP_LIMB_BITS + 1; }
#endif

#if GMP_LIMB_BITS > 61
#define SIEVE_SEED CNST_LIMB(0x3294C9E069128480)
#if GMP_LIMB_BITS == 64
/* 110bits pre-sieved mask for primes 5, 11*/
#define SIEVE_MASK1 CNST_LIMB(0x81214a1204892058)
#define SIEVE_MASKT CNST_LIMB(0xc8130681244)
/* 182bits pre-sieved mask for primes 7, 13*/
#define SIEVE_2MSK1 CNST_LIMB(0x9402180c40230184)
#define SIEVE_2MSK2 CNST_LIMB(0x0285021088402120)
#define SIEVE_2MSKT CNST_LIMB(0xa41210084421)
#define SEED_LIMIT 210
#else
#define SEED_LIMIT 202
#endif
#else
#if GMP_LIMB_BITS > 30
#define SIEVE_SEED CNST_LIMB(0x69128480)
#if GMP_LIMB_BITS == 32
/* 70bits pre-sieved mask for primes 5, 7*/
#define SIEVE_MASK1 CNST_LIMB(0x12148960)
#define SIEVE_MASK2 CNST_LIMB(0x44a120cc)
#define SIEVE_MASKT CNST_LIMB(0x1a)
#define SEED_LIMIT 120
#else
#define SEED_LIMIT 114
#endif
#else
#if GMP_LIMB_BITS > 15
#define SIEVE_SEED CNST_LIMB(0x8480)
#define SEED_LIMIT 54
#else
#if GMP_LIMB_BITS > 7
#define SIEVE_SEED CNST_LIMB(0x80)
#define SEED_LIMIT 34
#else
#define SIEVE_SEED CNST_LIMB(0x0)
#define SEED_LIMIT 24
#endif /* 7 */
#endif /* 15 */
#endif /* 30 */
#endif /* 61 */

#define SET_OFF1(m1, m2, M1, M2, off, BITS)		\
  if (off) {						\
    if (off < GMP_LIMB_BITS) {				\
      m1 = (M1 >> off) | (M2 << (GMP_LIMB_BITS - off));	\
      if (off <= BITS - GMP_LIMB_BITS) {		\
	m2 = M1 << (BITS - GMP_LIMB_BITS - off)		\
	  | M2 >> off;					\
      } else {						\
	m1 |= M1 << (BITS - off);			\
	m2 = M1 >> (off + GMP_LIMB_BITS - BITS);	\
      }							\
    } else {						\
      m1 = M1 << (BITS - off)				\
	| M2 >> (off - GMP_LIMB_BITS);			\
      m2 = M2 << (BITS - off)				\
	| M1 >> (off + GMP_LIMB_BITS - BITS);		\
    }							\
  } else {						\
    m1 = M1; m2 = M2;					\
  }

#define SET_OFF2(m1, m2, m3, M1, M2, M3, off, BITS)	\
  if (off) {						\
    if (off <= GMP_LIMB_BITS) {				\
      m1 = M2 << (GMP_LIMB_BITS - off);			\
      m2 = M3 << (GMP_LIMB_BITS - off);			\
      if (off != GMP_LIMB_BITS) {			\
	m1 |= (M1 >> off);				\
	m2 |= (M2 >> off);				\
      }							\
      if (off <= BITS - 2 * GMP_LIMB_BITS) {		\
	m3 = M1 << (BITS - 2 * GMP_LIMB_BITS - off)	\
	  | M3 >> off;					\
      } else {						\
	m2 |= M1 << (BITS - GMP_LIMB_BITS - off);	\
	m3 = M1 >> (off + 2 * GMP_LIMB_BITS - BITS);	\
      }							\
    } else if (off < 2 *GMP_LIMB_BITS) {		\
      m1 = M2 >> (off - GMP_LIMB_BITS)			\
	| M3 << (2 * GMP_LIMB_BITS - off);		\
      if (off <= BITS - GMP_LIMB_BITS) {		\
	m2 = M3 >> (off - GMP_LIMB_BITS)		\
	  | M1 << (BITS - GMP_LIMB_BITS - off);		\
	m3 = M2 << (BITS - GMP_LIMB_BITS - off);	\
	if (off != BITS - GMP_LIMB_BITS) {		\
	  m3 |= M1 >> (off + 2 * GMP_LIMB_BITS - BITS);	\
	}						\
      } else {						\
	m1 |= M1 << (BITS - off);			\
	m2 = M2 << (BITS - off)				\
	  | M1 >> (GMP_LIMB_BITS - BITS + off);		\
	m3 = M2 >> (GMP_LIMB_BITS - BITS + off);	\
      }							\
    } else {						\
      m1 = M1 << (BITS - off)				\
	| M3 >> (off - 2 * GMP_LIMB_BITS);		\
      m2 = M2 << (BITS - off)				\
	| M1 >> (off + GMP_LIMB_BITS - BITS);		\
      m3 = M3 << (BITS - off)				\
	| M2 >> (off + GMP_LIMB_BITS - BITS);		\
    }							\
  } else {						\
    m1 = M1; m2 = M2; m3 = M3;				\
  }

#define ROTATE1(m1, m2, BITS)			\
  do {						\
    mp_limb_t __tmp;				\
    __tmp = m1 >> (2 * GMP_LIMB_BITS - BITS);	\
    m1 = (m1 << (BITS - GMP_LIMB_BITS)) | m2;	\
    m2 = __tmp;					\
  } while (0)

#define ROTATE2(m1, m2, m3, BITS)		\
  do {						\
    mp_limb_t __tmp;				\
    __tmp = m2 >> (3 * GMP_LIMB_BITS - BITS);	\
    m2 = m2 << (BITS - GMP_LIMB_BITS * 2)	\
      | m1 >> (3 * GMP_LIMB_BITS - BITS);	\
    m1 = m1 << (BITS - GMP_LIMB_BITS * 2) | m3;	\
    m3 = __tmp;					\
  } while (0)

static mp_limb_t
fill_bitpattern (mp_ptr bit_array, mp_size_t limbs, mp_limb_t offset)
{
#ifdef SIEVE_2MSK2
  mp_limb_t m11, m12, m21, m22, m23;

  if (offset == 0) { /* This branch is not needed. */
    m11 = SIEVE_MASK1;
    m12 = SIEVE_MASKT;
    m21 = SIEVE_2MSK1;
    m22 = SIEVE_2MSK2;
    m23 = SIEVE_2MSKT;
  } else { /* correctly handle offset == 0... */
    m21 = offset % 110;
    SET_OFF1 (m11, m12, SIEVE_MASK1, SIEVE_MASKT, m21, 110);
    offset %= 182;
    SET_OFF2 (m21, m22, m23, SIEVE_2MSK1, SIEVE_2MSK2, SIEVE_2MSKT, offset, 182);
  }
  /* THINK: Consider handling odd values of 'limbs' outside the loop,
     to have a single exit condition. */
  do {
    bit_array[0] = m11 | m21;
    if (--limbs == 0)
      break;
    ROTATE1 (m11, m12, 110);
    bit_array[1] = m11 | m22;
    bit_array += 2;
    ROTATE1 (m11, m12, 110);
    ROTATE2 (m21, m22, m23, 182);
  } while (--limbs != 0);
  return 4;
#else
#ifdef SIEVE_MASK2
  mp_limb_t mask, mask2, tail;

  if (offset == 0) { /* This branch is not needed. */
    mask = SIEVE_MASK1;
    mask2 = SIEVE_MASK2;
    tail = SIEVE_MASKT;
  } else { /* correctly handle offset == 0... */
    offset %= 70;
    SET_OFF2 (mask, mask2, tail, SIEVE_MASK1, SIEVE_MASK2, SIEVE_MASKT, offset, 70);
  }
  /* THINK: Consider handling odd values of 'limbs' outside the loop,
     to have a single exit condition. */
  do {
    bit_array[0] = mask;
    if (--limbs == 0)
      break;
    bit_array[1] = mask2;
    bit_array += 2;
    ROTATE2 (mask, mask2, tail, 70);
  } while (--limbs != 0);
  return 2;
#else
  MPN_FILL (bit_array, limbs, CNST_LIMB(0));
  return 0;
#endif
#endif
}

static void
first_block_primesieve (mp_ptr bit_array, mp_limb_t n)
{
  mp_size_t bits, limbs;
  mp_limb_t i;

  ASSERT (n > 4);

  bits  = n_to_bit(n);
  limbs = bits / GMP_LIMB_BITS;

  if (limbs != 0)
    i = fill_bitpattern (bit_array + 1, limbs, 0);
  bit_array[0] = SIEVE_SEED;

  if ((bits + 1) % GMP_LIMB_BITS != 0)
    bit_array[limbs] |= MP_LIMB_T_MAX << ((bits + 1) % GMP_LIMB_BITS);

  if (n > SEED_LIMIT) {
    mp_limb_t mask, index;

    ASSERT (i < GMP_LIMB_BITS);

    if (n_to_bit (SEED_LIMIT + 1) < GMP_LIMB_BITS)
      i = 0;
    mask = CNST_LIMB(1) << i;
    index = 0;
    do {
      ++i;
      if ((bit_array[index] & mask) == 0)
	{
	  mp_size_t step, lindex;
	  mp_limb_t lmask;
	  unsigned  maskrot;

	  step = id_to_n(i);
/*	  lindex = n_to_bit(id_to_n(i)*id_to_n(i)); */
	  lindex = i*(step+1)-1+(-(i&1)&(i+1));
/*	  lindex = i*(step+1+(i&1))-1+(i&1); */
	  if (lindex > bits)
	    break;

	  step <<= 1;
	  maskrot = step % GMP_LIMB_BITS;

	  lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);
	  do {
	    bit_array[lindex / GMP_LIMB_BITS] |= lmask;
	    lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);
	    lindex += step;
	  } while (lindex <= bits);

/*	  lindex = n_to_bit(id_to_n(i)*bit_to_n(i)); */
	  lindex = i*(i*3+6)+(i&1);

	  lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);
	  for ( ; lindex <= bits; lindex += step) {
	    bit_array[lindex / GMP_LIMB_BITS] |= lmask;
	    lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);
	  };
	}
      mask = mask << 1 | mask >> (GMP_LIMB_BITS-1);
      index += mask & 1;
    } while (1);
  }
}

static void
block_resieve (mp_ptr bit_array, mp_size_t limbs, mp_limb_t offset,
	       mp_srcptr sieve)
{
  mp_size_t bits, off = offset;
  mp_limb_t mask, index, i;

  ASSERT (limbs > 0);
  ASSERT (offset >= GMP_LIMB_BITS);

  bits = limbs * GMP_LIMB_BITS - 1;

  i = fill_bitpattern (bit_array, limbs, offset - GMP_LIMB_BITS);

  ASSERT (i < GMP_LIMB_BITS);

  mask = CNST_LIMB(1) << i;
  index = 0;
  do {
    ++i;
    if ((sieve[index] & mask) == 0)
      {
	mp_size_t step, lindex;
	mp_limb_t lmask;
	unsigned  maskrot;

	step = id_to_n(i);

/*	lindex = n_to_bit(id_to_n(i)*id_to_n(i)); */
	lindex = i*(step+1)-1+(-(i&1)&(i+1));
/*	lindex = i*(step+1+(i&1))-1+(i&1); */
	if (lindex > bits + off)
	  break;

	step <<= 1;
	maskrot = step % GMP_LIMB_BITS;

	if (lindex < off)
	  lindex += step * ((off - lindex - 1) / step + 1);

	lindex -= off;

	lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);
	for ( ; lindex <= bits; lindex += step) {
	  bit_array[lindex / GMP_LIMB_BITS] |= lmask;
	  lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);
	};

/*	lindex = n_to_bit(id_to_n(i)*bit_to_n(i)); */
	lindex = i*(i*3+6)+(i&1);

	if (lindex < off)
	  lindex += step * ((off - lindex - 1) / step + 1);

	lindex -= off;

	lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);
	for ( ; lindex <= bits; lindex += step) {
	  bit_array[lindex / GMP_LIMB_BITS] |= lmask;
	  lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);
	};
      }
      mask = mask << 1 | mask >> (GMP_LIMB_BITS-1);
      index += mask & 1;
  } while (1);
}

#define BLOCK_SIZE 2048

/* Fills bit_array with the characteristic function of composite
   numbers up to the parameter n. I.e. a bit set to "1" represent a
   composite, a "0" represent a prime.

   The primesieve_size(n) limbs pointed to by bit_array are
   overwritten. The returned value counts prime integers in the
   interval [4, n]. Note that n > 4.

   Even numbers and multiples of 3 are excluded "a priori", only
   numbers equivalent to +/- 1 mod 6 have their bit in the array.

   Once sieved, if the bit b is ZERO it represent a prime, the
   represented prime is bit_to_n(b), if the LSbit is bit 0, or
   id_to_n(b), if you call "1" the first bit.
 */

mp_limb_t
gmp_primesieve (mp_ptr bit_array, mp_limb_t n)
{
  mp_size_t size;
  mp_limb_t bits;

  ASSERT (n > 4);

  bits = n_to_bit(n);
  size = bits / GMP_LIMB_BITS + 1;

  if (size > BLOCK_SIZE * 2) {
    mp_size_t off;
    off = BLOCK_SIZE + (size % BLOCK_SIZE);
    first_block_primesieve (bit_array, id_to_n (off * GMP_LIMB_BITS));
    do {
      block_resieve (bit_array + off, BLOCK_SIZE, off * GMP_LIMB_BITS, bit_array);
    } while ((off += BLOCK_SIZE) < size);
  } else {
    first_block_primesieve (bit_array, n);
  }

  if ((bits + 1) % GMP_LIMB_BITS != 0)
    bit_array[size-1] |= MP_LIMB_T_MAX << ((bits + 1) % GMP_LIMB_BITS);

  return size * GMP_LIMB_BITS - mpn_popcount (bit_array, size);
}

#undef BLOCK_SIZE
#undef SEED_LIMIT
#undef SIEVE_SEED
#undef SIEVE_MASK1
#undef SIEVE_MASK2
#undef SIEVE_MASKT
#undef SIEVE_2MSK1
#undef SIEVE_2MSK2
#undef SIEVE_2MSKT
#undef SET_OFF1
#undef SET_OFF2
#undef ROTATE1
#undef ROTATE2