Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/* mpc_pow -- Raise a complex number to the power of another complex number.

Copyright (C) 2009, 2010, 2011, 2012, 2014, 2015, 2016, 2018, 2020, 2022 INRIA

This file is part of GNU MPC.

GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/

#include <stdio.h> /* for MPC_ASSERT */
#include "mpc-impl.h"

/* Return non-zero iff c+i*d is an exact square (a+i*b)^2,
   with a, b both of the form m*2^e with m, e integers.
   If so, returns in a+i*b the corresponding square root, with a >= 0.
   The variables a, b must not overlap with c, d.

   We have c = a^2 - b^2 and d = 2*a*b.

   If one of a, b is exact, then both are (see algorithms.tex).

   Case 1: a <> 0 and b <> 0.
   Let a = m*2^e and b = n*2^f with m, e, n, f integers, m and n odd
   (we will treat apart the case a = 0 or b = 0).
   Then 2*a*b = m*n*2^(e+f+1), thus necessarily e+f >= -1.
   Assume e < 0, then f >= 0, then a^2 - b^2 = m^2*2^(2e) - n^2*2^(2f) cannot
   be an integer, since n^2*2^(2f) is an integer, and m^2*2^(2e) is not.
   Similarly when f < 0 (and thus e >= 0).
   Thus we have e, f >= 0, and a, b are both integers.
   Let A = 2a^2, then eliminating b between c = a^2 - b^2 and d = 2*a*b
   gives A^2 - 2c*A - d^2 = 0, which has solutions c +/- sqrt(c^2+d^2).
   We thus need c^2+d^2 to be a square, and c + sqrt(c^2+d^2) --- the solution
   we are interested in --- to be two times a square. Then b = d/(2a) is
   necessarily an integer.

   Case 2: a = 0. Then d is necessarily zero, thus it suffices to check
   whether c = -b^2, i.e., if -c is a square.

   Case 3: b = 0. Then d is necessarily zero, thus it suffices to check
   whether c = a^2, i.e., if c is a square.
*/
static int
mpc_perfect_square_p (mpz_t a, mpz_t b, mpz_t c, mpz_t d)
{
  if (mpz_cmp_ui (d, 0) == 0) /* case a = 0 or b = 0 */
    {
      /* necessarily c < 0 here, since we have already considered the case
         where x is real non-negative and y is real */
      MPC_ASSERT (mpz_cmp_ui (c, 0) < 0);
      mpz_neg (b, c);
      if (mpz_perfect_square_p (b)) /* case 2 above */
        {
          mpz_sqrt (b, b);
          mpz_set_ui (a, 0);
          return 1; /* c + i*d = (0 + i*b)^2 */
        }
    }
  else /* both a and b are non-zero */
    {
      if (mpz_divisible_2exp_p (d, 1) == 0)
        return 0; /* d must be even */
      mpz_mul (a, c, c);
      mpz_addmul (a, d, d); /* c^2 + d^2 */
      if (mpz_perfect_square_p (a))
        {
          mpz_sqrt (a, a);
          mpz_add (a, c, a); /* c + sqrt(c^2+d^2) */
          if (mpz_divisible_2exp_p (a, 1))
            {
              mpz_tdiv_q_2exp (a, a, 1);
              if (mpz_perfect_square_p (a))
                {
                  mpz_sqrt (a, a);
                  mpz_tdiv_q_2exp (b, d, 1); /* d/2 */
                  mpz_divexact (b, b, a); /* d/(2a) */
                  return 1;
                }
            }
        }
    }
  return 0; /* not a square */
}

/* fix the sign of Re(z) or Im(z) in case it is zero,
   and Re(x) is zero.
   sign_eps is 0 if Re(x) = +0, 1 if Re(x) = -0
   sign_a is the sign bit of Im(x).
   Assume y is an integer (does nothing otherwise).
*/
static void
fix_sign (mpc_ptr z, int sign_eps, int sign_a, mpfr_srcptr y)
{
  int ymod4 = -1;
  mpfr_exp_t ey;
  mpz_t my;
  unsigned long int t;

  mpz_init (my);

  ey = mpfr_get_z_exp (my, y);
  /* normalize so that my is odd */
  t = mpz_scan1 (my, 0);
  ey += (mpfr_exp_t) t;
  mpz_tdiv_q_2exp (my, my, t);
  /* y = my*2^ey */

  /* compute y mod 4 (in case y is an integer) */
  if (ey >= 2)
    ymod4 = 0;
  else if (ey == 1)
    ymod4 = mpz_tstbit (my, 0) * 2; /* correct if my < 0 */
  else if (ey == 0)
    {
      ymod4 = mpz_tstbit (my, 1) * 2 + mpz_tstbit (my, 0);
      if (mpz_cmp_ui (my , 0) < 0)
        ymod4 = 4 - ymod4;
    }
  else /* y is not an integer */
    goto end;

  if (mpfr_zero_p (mpc_realref(z)))
    {
      /* we assume y is always integer in that case (FIXME: prove it):
         (eps+I*a)^y = +0 + I*a^y for y = 1 mod 4 and sign_eps = 0
         (eps+I*a)^y = -0 - I*a^y for y = 3 mod 4 and sign_eps = 0 */
      MPC_ASSERT (ymod4 == 1 || ymod4 == 3);
      if ((ymod4 == 3 && sign_eps == 0) ||
          (ymod4 == 1 && sign_eps == 1))
        mpfr_neg (mpc_realref(z), mpc_realref(z), MPFR_RNDZ);
    }
  else if (mpfr_zero_p (mpc_imagref(z)))
    {
      /* we assume y is always integer in that case (FIXME: prove it):
         (eps+I*a)^y =  a^y - 0*I for y = 0 mod 4 and sign_a = sign_eps
         (eps+I*a)^y =  -a^y +0*I for y = 2 mod 4 and sign_a = sign_eps */
      MPC_ASSERT (ymod4 == 0 || ymod4 == 2);
      if ((ymod4 == 0 && sign_a == sign_eps) ||
          (ymod4 == 2 && sign_a != sign_eps))
        mpfr_neg (mpc_imagref(z), mpc_imagref(z), MPFR_RNDZ);
    }

 end:
  mpz_clear (my);
}

/* If x^y is exactly representable (with maybe a larger precision than z),
   round it in z and return the (mpc) inexact flag in [0, 10].

   If x^y is not exactly representable, return -1.

   If intermediate computations lead to numbers of more than maxprec bits,
   then abort and return -2 (in that case, to avoid loops, mpc_pow_exact
   should be called again with a larger value of maxprec).

   Assume one of Re(x) or Im(x) is non-zero, and y is non-zero (y is real).

   Warning: z and x might be the same variable, same for Re(z) or Im(z) and y.

   In case -1 or -2 is returned, z is not modified.
*/
static int
mpc_pow_exact (mpc_ptr z, mpc_srcptr x, mpfr_srcptr y, mpc_rnd_t rnd,
               mpfr_prec_t maxprec)
{
  mpfr_exp_t ec, ed, ey;
  mpz_t my, a, b, c, d, u;
  unsigned long int t;
  int ret = -2;
  int sign_rex = mpfr_signbit (mpc_realref(x));
  int sign_imx = mpfr_signbit (mpc_imagref(x));
  int x_imag = mpfr_zero_p (mpc_realref(x));
  int z_is_y = 0;
  mpfr_t copy_of_y;
  int inex_im;

  if (mpc_realref (z) == y || mpc_imagref (z) == y)
    {
      z_is_y = 1;
      mpfr_init2 (copy_of_y, mpfr_get_prec (y));
      mpfr_set (copy_of_y, y, MPFR_RNDN);
    }

  mpz_init (my);
  mpz_init (a);
  mpz_init (b);
  mpz_init (c);
  mpz_init (d);
  mpz_init (u);

  ey = mpfr_get_z_exp (my, y);
  /* normalize so that my is odd */
  t = mpz_scan1 (my, 0);
  ey += (mpfr_exp_t) t;
  mpz_tdiv_q_2exp (my, my, t);
  /* y = my*2^ey with my odd */

  if (x_imag)
    {
      mpz_set_ui (c, 0);
      ec = 0;
    }
  else
    ec = mpfr_get_z_exp (c, mpc_realref(x));
  if (mpfr_zero_p (mpc_imagref(x)))
    {
      mpz_set_ui (d, 0);
      ed = ec;
    }
  else
    {
      ed = mpfr_get_z_exp (d, mpc_imagref(x));
      if (x_imag)
        ec = ed;
    }
  /* x = c*2^ec + I * d*2^ed */
  /* equalize the exponents of x */
  if (ec < ed)
    {
      mpz_mul_2exp (d, d, (unsigned long int) (ed - ec));
      if ((mpfr_prec_t) mpz_sizeinbase (d, 2) > maxprec)
        goto end;
    }
  else if (ed < ec)
    {
      mpz_mul_2exp (c, c, (unsigned long int) (ec - ed));
      if ((mpfr_prec_t) mpz_sizeinbase (c, 2) > maxprec)
        goto end;
      ec = ed;
    }
  /* now ec=ed and x = (c + I * d) * 2^ec */

  /* divide by two if possible */
  if (mpz_cmp_ui (c, 0) == 0)
    {
      t = mpz_scan1 (d, 0);
      mpz_tdiv_q_2exp (d, d, t);
      ec += (mpfr_exp_t) t;
    }
  else if (mpz_cmp_ui (d, 0) == 0)
    {
      t = mpz_scan1 (c, 0);
      mpz_tdiv_q_2exp (c, c, t);
      ec += (mpfr_exp_t) t;
    }
  else /* neither c nor d is zero */
    {
      unsigned long v;
      t = mpz_scan1 (c, 0);
      v = mpz_scan1 (d, 0);
      if (v < t)
        t = v;
      mpz_tdiv_q_2exp (c, c, t);
      mpz_tdiv_q_2exp (d, d, t);
      ec += (mpfr_exp_t) t;
    }

  /* now either one of c, d is odd */

  while (ey < 0)
    {
      /* check if x is a square */
      if (ec & 1)
        {
          mpz_mul_2exp (c, c, 1);
          mpz_mul_2exp (d, d, 1);
          ec --;
        }
      /* now ec is even */
      if (mpc_perfect_square_p (a, b, c, d) == 0)
        break;
      mpz_swap (a, c);
      mpz_swap (b, d);
      ec /= 2;
      ey ++;
    }

  if (ey < 0)
    {
      ret = -1; /* not representable */
      goto end;
    }

  /* Now ey >= 0, it thus suffices to check that x^my is representable.
     If my > 0, this is always true. If my < 0, we first try to invert
     (c+I*d)*2^ec.
  */
  if (mpz_cmp_ui (my, 0) < 0)
    {
      /* If my < 0, 1 / (c + I*d) = (c - I*d)/(c^2 + d^2), thus a sufficient
         condition is that c^2 + d^2 is a power of two, assuming |c| <> |d|.
         Assume a prime p <> 2 divides c^2 + d^2,
         then if p does not divide c or d, 1 / (c + I*d) cannot be exact.
         If p divides both c and d, then we can write c = p*c', d = p*d',
         and 1 / (c + I*d) = 1/p * 1/(c' + I*d'). This shows that if 1/(c+I*d)
         is exact, then 1/(c' + I*d') is exact too, and we are back to the
         previous case. In conclusion, a necessary and sufficient condition
         is that c^2 + d^2 is a power of two.
      */
      /* FIXME: we could first compute c^2+d^2 mod a limb for example */
      mpz_mul (a, c, c);
      mpz_addmul (a, d, d);
      t = mpz_scan1 (a, 0);
      if (mpz_sizeinbase (a, 2) != 1 + t) /* a is not a power of two */
        {
          ret = -1; /* not representable */
          goto end;
        }
      /* replace (c,d) by (c/(c^2+d^2), -d/(c^2+d^2)) */
      mpz_neg (d, d);
      ec = -ec - (mpfr_exp_t) t;
      mpz_neg (my, my);
    }

  /* now ey >= 0 and my >= 0, and we want to compute
     [(c + I * d) * 2^ec] ^ (my * 2^ey).

     We first compute [(c + I * d) * 2^ec]^my, then square ey times. */
  t = mpz_sizeinbase (my, 2) - 1;
  mpz_set (a, c);
  mpz_set (b, d);
  ed = ec;
  /* invariant: (a + I*b) * 2^ed = ((c + I*d) * 2^ec)^trunc(my/2^t) */
  while (t-- > 0)
    {
      unsigned long int v, w;
      /* square a + I*b */
      mpz_mul (u, a, b);
      mpz_mul (a, a, a);
      mpz_submul (a, b, b);
      mpz_mul_2exp (b, u, 1);
      ed *= 2;
      if (mpz_tstbit (my, t)) /* multiply by c + I*d */
        {
          mpz_mul (u, a, c);
          mpz_submul (u, b, d); /* ac-bd */
          mpz_mul (b, b, c);
          mpz_addmul (b, a, d); /* bc+ad */
          mpz_swap (a, u);
          ed += ec;
        }
      /* remove powers of two in (a,b) */
      if (mpz_cmp_ui (a, 0) == 0)
        {
          w = mpz_scan1 (b, 0);
          mpz_tdiv_q_2exp (b, b, w);
          ed += (mpfr_exp_t) w;
        }
      else if (mpz_cmp_ui (b, 0) == 0)
        {
          w = mpz_scan1 (a, 0);
          mpz_tdiv_q_2exp (a, a, w);
          ed += (mpfr_exp_t) w;
        }
      else
        {
          w = mpz_scan1 (a, 0);
          v = mpz_scan1 (b, 0);
          if (v < w)
            w = v;
          mpz_tdiv_q_2exp (a, a, w);
          mpz_tdiv_q_2exp (b, b, w);
          ed += (mpfr_exp_t) w;
        }
      if (   (mpfr_prec_t) mpz_sizeinbase (a, 2) > maxprec
          || (mpfr_prec_t) mpz_sizeinbase (b, 2) > maxprec)
        goto end;
    }
  /* now a+I*b = (c+I*d)^my */

  while (ey-- > 0)
    {
      unsigned long sa, sb;

      /* square a + I*b */
      mpz_mul (u, a, b);
      mpz_mul (a, a, a);
      mpz_submul (a, b, b);
      mpz_mul_2exp (b, u, 1);
      ed *= 2;

      /* divide by largest 2^n possible, to avoid many loops for e.g.,
         (2+2*I)^16777216 */
      sa = mpz_scan1 (a, 0);
      sb = mpz_scan1 (b, 0);
      sa = (sa <= sb) ? sa : sb;
      mpz_tdiv_q_2exp (a, a, sa);
      mpz_tdiv_q_2exp (b, b, sa);
      ed += (mpfr_exp_t) sa;

      if (   (mpfr_prec_t) mpz_sizeinbase (a, 2) > maxprec
          || (mpfr_prec_t) mpz_sizeinbase (b, 2) > maxprec)
        goto end;
    }

  ret = mpfr_set_z (mpc_realref(z), a, MPC_RND_RE(rnd));
  inex_im = mpfr_set_z (mpc_imagref(z), b, MPC_RND_IM(rnd));
  ret = MPC_INEX(ret, inex_im);
  mpfr_mul_2si (mpc_realref(z), mpc_realref(z), ed, MPC_RND_RE(rnd));
  mpfr_mul_2si (mpc_imagref(z), mpc_imagref(z), ed, MPC_RND_IM(rnd));

 end:
  mpz_clear (my);
  mpz_clear (a);
  mpz_clear (b);
  mpz_clear (c);
  mpz_clear (d);
  mpz_clear (u);

  if (ret >= 0 && x_imag)
    fix_sign (z, sign_rex, sign_imx, (z_is_y) ? copy_of_y : y);

  if (z_is_y)
    mpfr_clear (copy_of_y);

  return ret;
}

/* Return 1 if y*2^k is an odd integer, 0 otherwise.
   Adapted from MPFR, file pow.c.

   Examples: with k=0, check if y is an odd integer,
             with k=1, check if y is half-an-integer,
             with k=-1, check if y/2 is an odd integer.
*/
#define MPFR_LIMB_HIGHBIT ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1))
static int
is_odd (mpfr_srcptr y, mpfr_exp_t k)
{
  mpfr_exp_t expo;
  mpfr_prec_t prec;
  mp_size_t yn;
  mp_limb_t *yp;

  expo = mpfr_get_exp (y) + k;
  if (expo <= 0)
    return 0;  /* |y| < 1 and not 0 */

  prec = mpfr_get_prec (y);
  if ((mpfr_prec_t) expo > prec)
    return 0;  /* y is a multiple of 2^(expo-prec), thus not odd */

  /* 0 < expo <= prec:
     y = 1xxxxxxxxxt.zzzzzzzzzzzzzzzzzz[000]
          expo bits   (prec-expo) bits

     We have to check that:
     (a) the bit 't' is set
     (b) all the 'z' bits are zero
  */

  prec = ((prec - 1) / BITS_PER_MP_LIMB + 1) * BITS_PER_MP_LIMB - expo;
  /* number of z+0 bits */

  yn = prec / BITS_PER_MP_LIMB;
  /* yn is the index of limb containing the 't' bit */

  yp = y->_mpfr_d;
  /* if expo is a multiple of BITS_PER_MP_LIMB, t is bit 0 */
  if (expo % BITS_PER_MP_LIMB == 0 ? (yp[yn] & 1) == 0
      : yp[yn] << ((expo % BITS_PER_MP_LIMB) - 1) != MPFR_LIMB_HIGHBIT)
    return 0;
  while (--yn >= 0)
    if (yp[yn] != 0)
      return 0;
  return 1;
}

/* Put in z the value of x^y, rounded according to 'rnd'.
   Return the inexact flag in [0, 10]. */
int
mpc_pow (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
{
  int ret = -2, loop, x_real, x_imag, y_real, z_real = 0, z_imag = 0,
     ramified = 0;
  mpc_t t, u;
  mpfr_prec_t p, pr, pi, maxprec;
  int saved_underflow, saved_overflow;
  int inex_re, inex_im;
  mpfr_exp_t saved_emin, saved_emax;

  /* save the underflow or overflow flags from MPFR */
  saved_underflow = mpfr_underflow_p ();
  saved_overflow = mpfr_overflow_p ();

  x_real = mpfr_zero_p (mpc_imagref(x));
  y_real = mpfr_zero_p (mpc_imagref(y));

  if (y_real && mpfr_zero_p (mpc_realref(y))) /* case y zero */
    {
      if (x_real && mpfr_zero_p (mpc_realref(x)))
        {
          /* we define 0^0 to be (1, +0) since the real part is
             coherent with MPFR where 0^0 gives 1, and the sign of the
             imaginary part cannot be determined                       */
          mpc_set_ui_ui (z, 1, 0, MPC_RNDNN);
          return 0;
        }
      else /* x^0 = 1 +/- i*0 even for x=NaN see algorithms.tex for the
              sign of zero */
        {
          mpfr_t n;
          int inex, cx1;
          int sign_zi;
          /* cx1 < 0 if |x| < 1
             cx1 = 0 if |x| = 1
             cx1 > 0 if |x| > 1
          */
          mpfr_init (n);
          inex = mpc_norm (n, x, MPFR_RNDN);
          cx1 = mpfr_cmp_ui (n, 1);
          if (cx1 == 0 && inex != 0)
            cx1 = -inex;

          sign_zi = (cx1 < 0 && mpfr_signbit (mpc_imagref (y)) == 0)
            || (cx1 == 0
                && mpfr_signbit (mpc_imagref (x)) != mpfr_signbit (mpc_realref (y)))
            || (cx1 > 0 && mpfr_signbit (mpc_imagref (y)));

          /* warning: mpc_set_ui_ui does not set Im(z) to -0 if Im(rnd)=RNDD */
          ret = mpc_set_ui_ui (z, 1, 0, rnd);

          if (MPC_RND_IM (rnd) == MPFR_RNDD || sign_zi)
            mpc_conj (z, z, MPC_RNDNN);

          mpfr_clear (n);
          return ret;
        }
    }

  if (!mpc_fin_p (x) || !mpc_fin_p (y))
    {
      /* special values: exp(y*log(x)) */
      mpc_init2 (u, 2);
      mpc_log (u, x, MPC_RNDNN);
      mpc_mul (u, u, y, MPC_RNDNN);
      ret = mpc_exp (z, u, rnd);
      mpc_clear (u);
      goto end;
    }

  if (x_real) /* case x real */
    {
      if (mpfr_zero_p (mpc_realref(x))) /* x is zero */
        {
          /* special values: exp(y*log(x)) */
          mpc_init2 (u, 2);
          mpc_log (u, x, MPC_RNDNN);
          mpc_mul (u, u, y, MPC_RNDNN);
          ret = mpc_exp (z, u, rnd);
          mpc_clear (u);
          goto end;
        }

      /* Special case 1^y = 1 */
      if (mpfr_cmp_ui (mpc_realref(x), 1) == 0)
        {
          int s1, s2;
          s1 = mpfr_signbit (mpc_realref (y));
          s2 = mpfr_signbit (mpc_imagref (x));

          ret = mpc_set_ui (z, +1, rnd);
          /* the sign of the zero imaginary part is known in some cases (see
             algorithm.tex). In such cases we have
             (x +s*0i)^(y+/-0i) = x^y + s*sign(y)*0i
             where s = +/-1.  We extend here this rule to fix the sign of the
             zero part.

             Note that the sign must also be set explicitly when rnd=RNDD
             because mpfr_set_ui(z_i, 0, rnd) always sets z_i to +0.
          */
          if (MPC_RND_IM (rnd) == MPFR_RNDD || s1 != s2)
            mpc_conj (z, z, MPC_RNDNN);
          goto end;
        }

      /* x^y is real when:
         (a) x is real and y is integer
         (b) x is real non-negative and y is real */
      if (y_real && (mpfr_integer_p (mpc_realref(y)) ||
                     mpfr_cmp_ui (mpc_realref(x), 0) >= 0))
        {
          int s1, s2;
          s1 = mpfr_signbit (mpc_realref (y));
          s2 = mpfr_signbit (mpc_imagref (x));

          ret = mpfr_pow (mpc_realref(z), mpc_realref(x), mpc_realref(y), MPC_RND_RE(rnd));
          inex_im = mpfr_set_ui (mpc_imagref(z), 0, MPC_RND_IM(rnd));
          ret = MPC_INEX(ret, inex_im);

          /* the sign of the zero imaginary part is known in some cases
             (see algorithm.tex). In such cases we have (x +s*0i)^(y+/-0i)
             = x^y + s*sign(y)*0i where s = +/-1.
             We extend here this rule to fix the sign of the zero part.

             Note that the sign must also be set explicitly when rnd=RNDD
             because mpfr_set_ui(z_i, 0, rnd) always sets z_i to +0.
          */
          if (MPC_RND_IM(rnd) == MPFR_RNDD || s1 != s2)
            mpfr_neg (mpc_imagref(z), mpc_imagref(z), MPC_RND_IM(rnd));
          goto end;
        }

      /* (-1)^(n+I*t) is real for n integer and t real */
      if (mpfr_cmp_si (mpc_realref(x), -1) == 0 && mpfr_integer_p (mpc_realref(y)))
        z_real = 1;

      /* for x real, x^y is imaginary when:
         (a) x is negative and y is half-an-integer
         (b) x = -1 and Re(y) is half-an-integer
      */
      if ((mpfr_cmp_ui (mpc_realref(x), 0) < 0) && is_odd (mpc_realref(y), 1)
         && (y_real || mpfr_cmp_si (mpc_realref(x), -1) == 0))
        z_imag = 1;
    }
  else /* x non real */
    /* I^(t*I) and (-I)^(t*I) are real for t real,
       I^(n+t*I) and (-I)^(n+t*I) are real for n even and t real, and
       I^(n+t*I) and (-I)^(n+t*I) are imaginary for n odd and t real
       (s*I)^n is real for n even and imaginary for n odd */
    if ((mpc_cmp_si_si (x, 0, 1) == 0 || mpc_cmp_si_si (x, 0, -1) == 0 ||
         (mpfr_cmp_ui (mpc_realref(x), 0) == 0 && y_real)) &&
        mpfr_integer_p (mpc_realref(y)))
      { /* x is I or -I, and Re(y) is an integer */
        if (is_odd (mpc_realref(y), 0))
          z_imag = 1; /* Re(y) odd: z is imaginary */
        else
          z_real = 1; /* Re(y) even: z is real */
      }
    else /* (t+/-t*I)^(2n) is imaginary for n odd and real for n even */
      if (mpfr_cmpabs (mpc_realref(x), mpc_imagref(x)) == 0 && y_real &&
          mpfr_integer_p (mpc_realref(y)) && is_odd (mpc_realref(y), 0) == 0)
        {
          ramified = 1;
          if (is_odd (mpc_realref(y), -1)) /* y/2 is odd */
            z_imag = 1;
          else
            z_real = 1;
        }

  saved_emin = mpfr_get_emin ();
  saved_emax = mpfr_get_emax ();
  mpfr_set_emin (mpfr_get_emin_min ());
  mpfr_set_emax (mpfr_get_emax_max ());

  pr = mpfr_get_prec (mpc_realref(z));
  pi = mpfr_get_prec (mpc_imagref(z));
  p = (pr > pi) ? pr : pi;
  p += 12; /* experimentally, seems to give less than 10% of failures in
              Ziv's strategy; probably wrong now since q is not computed */
  if (p < 64)
    p = 64;
  mpc_init2 (u, p);
  mpc_init2 (t, p);
  pr += MPC_RND_RE(rnd) == MPFR_RNDN;
  pi += MPC_RND_IM(rnd) == MPFR_RNDN;
  maxprec = MPC_MAX_PREC (z);
  x_imag = mpfr_zero_p (mpc_realref(x));
  for (loop = 0;; loop++)
    {
      int ret_exp;
      mpfr_exp_t dr, di;
      mpfr_prec_t q;

      mpc_log (t, x, MPC_RNDNN);
      mpc_mul (t, t, y, MPC_RNDNN);

      /* Compute q such that |Re (y log x)|, |Im (y log x)| < 2^q.
         We recompute it at each loop since we might get different
         bounds if the precision is not enough. */
      q = mpfr_get_exp (mpc_realref(t)) > 0 ? mpfr_get_exp (mpc_realref(t)) : 0;
      if (mpfr_get_exp (mpc_imagref(t)) > (mpfr_exp_t) q)
        q = mpfr_get_exp (mpc_imagref(t));

      /* the signs of the real/imaginary parts of exp(t) are determined by the
         quadrant of exp(i*imag(t)), which depends on imag(t) mod (2pi).
         We ensure that p >= q + 64 to get enough precision, but this might
         be not enough in corner cases (FIXME). */
      if (p < q + 64)
        {
          p = q + 64;
          goto try_again;
        }

      mpfr_clear_overflow ();
      mpfr_clear_underflow ();
      ret_exp = mpc_exp (u, t, MPC_RNDNN);
      if (mpfr_underflow_p () || mpfr_overflow_p ()) {
         /* under- and overflow flags are set by mpc_exp */
         mpc_set (z, u, MPC_RNDNN);
         inex_re = MPC_INEX_RE(ret_exp);
         inex_im = MPC_INEX_IM(ret_exp);
         if (mpfr_inf_p (mpc_realref (z)))
           inex_re = mpc_fix_inf (mpc_realref (z), MPC_RND_RE(rnd));
         if (mpfr_inf_p (mpc_imagref (z)))
           {
             if (z_real)
               inex_im = mpfr_set_ui (mpc_imagref (z), 0, MPC_RND_IM(rnd));
             else
               inex_im = mpc_fix_inf (mpc_imagref (z), MPC_RND_IM(rnd));
           }
         ret = MPC_INEX(inex_re,inex_im);
         goto exact;
      }

      /* Since the error bound is global, we have to take into account the
         exponent difference between the real and imaginary parts. We assume
         either the real or the imaginary part of u is not zero.
      */
      dr = mpfr_zero_p (mpc_realref(u)) ? mpfr_get_exp (mpc_imagref(u))
        : mpfr_get_exp (mpc_realref(u));
      di = mpfr_zero_p (mpc_imagref(u)) ? dr : mpfr_get_exp (mpc_imagref(u));
      if (dr > di)
        {
          di = dr - di;
          dr = 0;
        }
      else
        {
          dr = di - dr;
          di = 0;
        }
      /* the term -3 takes into account the factor 4 in the complex error
         (see algorithms.tex) plus one due to the exponent difference: if
         z = a + I*b, where the relative error on z is at most 2^(-p), and
         EXP(a) = EXP(b) + k, the relative error on b is at most 2^(k-p) */
      if ((z_imag || (p > q + 3 + dr && mpfr_can_round (mpc_realref(u), p - q - 3 - dr, MPFR_RNDN, MPFR_RNDZ, pr))) &&
          (z_real || (p > q + 3 + di && mpfr_can_round (mpc_imagref(u), p - q - 3 - di, MPFR_RNDN, MPFR_RNDZ, pi))))
        break;

      /* if Re(u) is not known to be zero, assume it is a normal number, i.e.,
         neither zero, Inf or NaN, otherwise we might enter an infinite loop */
      MPC_ASSERT (z_imag || mpfr_number_p (mpc_realref(u)));
      /* idem for Im(u) */
      MPC_ASSERT (z_real || mpfr_number_p (mpc_imagref(u)));

      if (ret == -2) /* we did not yet call mpc_pow_exact, or it aborted
                        because intermediate computations had > maxprec bits */
        {
          /* check exact cases (see algorithms.tex) */
          if (y_real)
            {
              maxprec *= 2;
              ret = mpc_pow_exact (z, x, mpc_realref(y), rnd, maxprec);
              if (ret != -1 && ret != -2)
                goto exact;
            }
          p += dr + di + 64;
        }
      else
        p += p / 2;
    try_again:
      mpc_set_prec (t, p);
      mpc_set_prec (u, p);
    }

  if (z_real)
    {
      /* When the result is real (see algorithm.tex for details) and
         x=x1 * (1 \pm i), y a positive integer divisible by 4, then
         Im(x^y) = 0i with a sign that cannot be determined (and is thus
         chosen as _1). Otherwise,
         Im(x^y) =
         + sign(imag(y))*0i,               if |x| > 1
         + sign(imag(x))*sign(real(y))*0i, if |x| = 1
         - sign(imag(y))*0i,               if |x| < 1
      */
      if (ramified)
         ret = MPC_INEX (
            mpfr_set (mpc_realref(z), mpc_realref(u), MPC_RND_RE(rnd)),
            mpfr_set_ui (mpc_imagref (z), 0, MPFR_RNDN));
      else {
         mpfr_t n;
         int inex, cx1;
         int sign_zi, sign_rex, sign_imx;
         /* cx1 < 0 if |x| < 1
            cx1 = 0 if |x| = 1
            cx1 > 0 if |x| > 1
         */

         sign_rex = mpfr_signbit (mpc_realref (x));
         sign_imx = mpfr_signbit (mpc_imagref (x));
         mpfr_init (n);
         inex = mpc_norm (n, x, MPFR_RNDN);
         cx1 = mpfr_cmp_ui (n, 1);
         if (cx1 == 0 && inex != 0)
           cx1 = -inex;

         sign_zi = (cx1 < 0 && mpfr_signbit (mpc_imagref (y)) == 0)
           || (cx1 == 0 && sign_imx != mpfr_signbit (mpc_realref (y)))
           || (cx1 > 0 && mpfr_signbit (mpc_imagref (y)));

         /* copy RE(y) to n since if z==y we will destroy Re(y) below */
         mpfr_set_prec (n, mpfr_get_prec (mpc_realref (y)));
         mpfr_set (n, mpc_realref (y), MPFR_RNDN);
         ret = mpfr_set (mpc_realref(z), mpc_realref(u), MPC_RND_RE(rnd));
         if (y_real && (x_real || x_imag))
           {
             /* FIXME: with y_real we assume Im(y) is really 0, which is the case
                for example when y comes from pow_fr, but in case Im(y) is +0 or
                -0, we might get different results */
             mpfr_set_ui (mpc_imagref (z), 0, MPC_RND_IM (rnd));
             fix_sign (z, sign_rex, sign_imx, n);
             ret = MPC_INEX(ret, 0); /* imaginary part is exact */
           }
         else
           {
             inex_im = mpfr_set_ui (mpc_imagref (z), 0, MPC_RND_IM (rnd));
             ret = MPC_INEX (ret, inex_im);
             /* warning: mpfr_set_ui does not set Im(z) to -0 if Im(rnd) = RNDD */
             if (MPC_RND_IM (rnd) == MPFR_RNDD || sign_zi)
               mpc_conj (z, z, MPC_RNDNN);
           }

         mpfr_clear (n);
      }
    }
  else if (z_imag)
    {
      if (ramified)
         ret = MPC_INEX (
            mpfr_set_ui (mpc_realref (z), 0, MPFR_RNDN),
            mpfr_set (mpc_imagref(z), mpc_imagref(u), MPC_RND_IM(rnd)));
      else
      {
         ret = mpfr_set (mpc_imagref(z), mpc_imagref(u), MPC_RND_IM(rnd));
         /* if z is imaginary and y real, then x cannot be real */
         if (y_real && x_imag)
           {
             int sign_rex = mpfr_signbit (mpc_realref (x));

             /* If z overlaps with y we set Re(z) before checking Re(y) below,
                but in that case y=0, which was dealt with above. */
             mpfr_set_ui (mpc_realref (z), 0, MPC_RND_RE (rnd));
             /* Note: fix_sign only does something when y is an integer,
                then necessarily y = 1 or 3 (mod 4), and in that case the
                sign of Im(x) is irrelevant. */
             fix_sign (z, sign_rex, 0, mpc_realref (y));
             ret = MPC_INEX(0, ret);
           }
         else
           {
             inex_re = mpfr_set_ui (mpc_realref(z), 0, MPC_RND_RE(rnd));
             ret = MPC_INEX(inex_re, ret);
           }
      }
    }
  else
    ret = mpc_set (z, u, rnd);
 exact:
  mpc_clear (t);
  mpc_clear (u);

  /* restore underflow and overflow flags from MPFR */
  if (saved_underflow)
    mpfr_set_underflow ();
  if (saved_overflow)
    mpfr_set_overflow ();

  /* restore the exponent range, and check the range of results */
  mpfr_set_emin (saved_emin);
  mpfr_set_emax (saved_emax);
  inex_re = mpfr_check_range (mpc_realref (z), MPC_INEX_RE(ret),
                              MPC_RND_RE (rnd));
  inex_im = mpfr_check_range (mpc_imagref (z), MPC_INEX_IM(ret),
                              MPC_RND_IM (rnd));
  ret = MPC_INEX(inex_re, inex_im);

 end:
  return ret;
}