Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

# Data file for mpc_add.
#
# Copyright (C) 2008 INRIA
#
# This file is part of GNU MPC.
#
# GNU MPC is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
#o ption) any later version.
#
# GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
# more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/ .
#
# The line format respects the parameter order in function prototype as
# follow:
#
# INEX_RE INEX_IM PREC_ROP_RE  ROP_RE  PREC_ROP_IM  ROP_IM  PREC_OP1_RE  OP1_RE  PREC_OP1_IM  OP1_IM  PREC_OP2_RE  OP2_RE  PREC_OP2_IM  OP2_IM  RND_RE  RND_IM
#
# where op1 = op1_re + i * op1_im, op2 = op2_re + i * op2_im, rop = rop_re + i * rop_im,
# The data are read from the file and stored in variables op1, op2, rop using
# rounding to nearest when needed, for instance: rop_re is ROP_RE rounded to
# nearest to the precision of PREC_ROP_RE.
# ROP_RE is checked against Re(op1 + op2) rounded to the precision PREC_ROP_RE
#   in the direction RND_RE
# ROP_IM is checked against Im(op1 + op2) rounded to the precision PREC_ROP_IM
#   in the direction RND_IM
# INEX_RE is the ternary value for the real part with the following notation:
# "?" ternary value not checked
# "+" if ROP_RE is greater than the exact mathematical result
# "0" if ROP_RE is exactly the mathematical result
# "-" if ROP_RE is less than the exact mathematical result
# (m.m. INEX_IM)
# rounding modes notation:
# "N" is rounding to nearest
# "Z" is rounding towards zero
# "U" is rounding towards plus infinity
# "D" is rounding towards minus infinity
# Use prefixes "0b" for values in base two, "0x" for values in base sixteen,
#   no prefix for value in base ten.
# In all bases, "nan" is NaN, "inf" is infinity;
# The sign of the result is checked with "+inf", "-inf", "-0", or "+0".

# special values (following ISO C99 standard)
0 0 53 -inf 53 -inf    53 -inf 53 -inf 53 -inf 53 -inf N Z
0 0 53 -inf 53  nan    53 -inf 53 +inf 53   +1 53 -inf Z U
0 0 53 +inf 53 -inf    53 +inf 53 -inf 53 +inf 53   +0 U D
0 0 53 +inf 53 +inf    53 +inf 53 +inf 53   -0 53   -1 D N
0 0 53 -inf 53 -inf    53 -inf 53 -inf 53   -0 53   -1 N U
0 0 53  nan 53  nan    53 -inf 53 +inf 53 +inf 53  nan Z D # check this is true in ISO C99
0 0 53  nan 53 -inf    53 +inf 53 -inf 53  nan 53   -1 U N
0 0 53 +inf 53  nan    53 +inf 53 +inf 53   -0 53  nan D Z
0 0 53  nan 53  nan    53 -inf 53 -inf 53  nan 53  nan N D

0 0 53 +inf 53 -inf    53   -1 53 -inf 53 +inf 53   -1 N D
0 0 53  nan 53   +1    53 -inf 53   +1 53 +inf 53   -0 Z N
0 0 53   +1 53 -inf    53   +1 53 -inf 53   -0 53   +1 U Z
0 0 53 +inf 53   +1    53 +inf 53   +1 53   -0 53   -0 D U
0 0 53 +inf 53  nan    53   -1 53 -inf 53 +inf 53  nan N N
0 0 53  nan 53   +2    53 -inf 53   +1 53  nan 53   +1 Z Z
0 0 53   +1 53  nan    53   +1 53 -inf 53   -0 53  nan U U # check this
0 0 53  nan 53  nan    53 +inf 53   +1 53  nan 53  nan D D

0 0 53   -0 53  nan    53   -0 53 -inf 53   +0 53 +inf D D
0 0 53 -inf 53   +0    53 -inf 53   +0 53   +1 53   -0 N Z
0 0 53   +0 53 -inf    53   +0 53 -inf 53   -0 53   -0 Z U
0 0 53  nan 53  nan    53 +inf 53   +0 53 -inf 53  nan U D # check
0 0 53  nan 53 -inf    53   -0 53 -inf 53  nan 53   -1 D N
0 0 53 -inf 53  nan    53 -inf 53   +0 53   +0 53  nan N U
0 0 53  nan 53  nan    53   +0 53 -inf 53  nan 53  nan Z D

0 0 53   +0 53   -0    53   +0 53   +1 53   -0 53   -1 Z D
0 0 53   -1 53   -0    53   -1 53   -0 53   +0 53   -0 U N
0 0 53  nan 53 +inf    53   -0 53   +1 53  nan 53 +inf D Z
0 0 53   +0 53  nan    53   +1 53   -0 53   -1 53  nan N D
0 0 53  nan 53   +1    53   +0 53   +1 53  nan 53   -0 Z N
0 0 53  nan 53  nan    53   -1 53   -0 53  nan 53  nan U Z

0 0 53   +0 53   +0    53   -0 53   +0 53   +0 53   -0 U Z
0 0 53  nan 53 -inf    53   +0 53   -0 53  nan 53 -inf D U
0 0 53   -1 53  nan    53   +0 53   +0 53   -1 53  nan N N
0 0 53  nan 53   -0    53   -0 53   -0 53  nan 53   -0 Z Z
0 0 53  nan 53  nan    53   -0 53   +0 53  nan 53  nan U U

0 0 53  nan 53  nan    53  nan 53 -inf 53  nan 53 +inf U U # check
0 0 53 +inf 53  nan    53 +inf 53  nan 53   -1 53  nan D D
0 0 53  nan 53 -inf    53  nan 53 -inf 53  nan 53   -0 N Z
0 0 53  nan 53  nan    53 -inf 53  nan 53  nan 53  nan Z U # check

0 0 53  nan 53  nan    53   +1 53  nan 53  nan 53   -1 Z U
0 0 53  nan 53  nan    53  nan 53   +1 53   -0 53  nan U D
0 0 53  nan 53  nan    53   -1 53  nan 53  nan 53  nan D N

0 0 53  nan 53  nan    53  nan 53   +0 53   +0 53  nan D N
0 0 53  nan 53  nan    53   +0 53  nan 53  nan 53  nan N U

0 0 53  nan 53  nan    53  nan 53  nan 53  nan 53  nan N U

# pure real argument
+ 0 53  0x10000000000001p-52  53 -0    53 +1 53 -0 53 0x10000000000001p-105 53 -0 N N
- 0 53  0x10000000000000p-52  53 -0    53 +1 53 -0 53 0x10000000000001p-105 53 -0 Z Z
+ 0 53  0x10000000000001p-52  53 -0    53 +1 53 -0 53 0x10000000000001p-105 53 -0 U U
- 0 53  0x10000000000000p-52  53 -0    53 +1 53 -0 53 0x10000000000001p-105 53 -0 D D

# pure imaginary argument
0 + 53 -0 53  0x10000000000001p-52     53 -0 53 0x10000000000001p-105 53 -0 53 +1 N N
0 - 53 +0 53  0x10000000000000p-52     53 +0 53 0x10000000000001p-105 53 -0 53 +1 Z Z
0 + 53 +0 53  0x10000000000001p-52     53 +0 53 0x10000000000001p-105 53 -0 53 +1 U U
0 - 53 -0 53  0x10000000000000p-52     53 -0 53 0x10000000000001p-105 53 -0 53 +1 D D