/* mpfr_cos -- cosine of a floating-point number
Copyright 2001-2023 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
static int
mpfr_cos_fast (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int inex;
inex = mpfr_sincos_fast (NULL, y, x, rnd_mode);
inex = inex >> 2; /* 0: exact, 1: rounded up, 2: rounded down */
return (inex == 2) ? -1 : inex;
}
/* f <- 1 - r/2! + r^2/4! + ... + (-1)^l r^l/(2l)! + ...
Assumes |r| < 1/2, and f, r have the same precision.
Returns e such that the error on f is bounded by 2^e ulps.
*/
static int
mpfr_cos2_aux (mpfr_ptr f, mpfr_srcptr r)
{
mpz_t x, t, s;
mpfr_exp_t ex, l, m;
mpfr_prec_t p, q;
unsigned long i, maxi, imax;
MPFR_ASSERTD(mpfr_get_exp (r) <= -1);
/* compute minimal i such that i*(i+1) does not fit in an unsigned long,
assuming that there are no padding bits. */
maxi = 1UL << (sizeof(unsigned long) * CHAR_BIT / 2);
if (maxi * (maxi / 2) == 0) /* test checked at compile time */
{
/* can occur only when there are padding bits. */
/* maxi * (maxi-1) is representable iff maxi * (maxi / 2) != 0 */
do
maxi /= 2;
while (maxi * (maxi / 2) == 0);
}
mpz_init (x);
mpz_init (s);
mpz_init (t);
ex = mpfr_get_z_2exp (x, r); /* r = x*2^ex */
/* Remove trailing zeroes.
Since x comes from a regular MPFR number, due to the constraints on the
exponent and the precision, there can be no integer overflow below. */
l = mpz_scan1 (x, 0);
ex += l;
mpz_fdiv_q_2exp (x, x, l);
/* since |r| < 1, r = x*2^ex, and x is an integer, necessarily ex < 0 */
p = mpfr_get_prec (f); /* same as r */
/* bound for number of iterations */
imax = p / (-mpfr_get_exp (r));
imax += (imax == 0);
q = 2 * MPFR_INT_CEIL_LOG2(imax) + 4; /* bound for (3l)^2 */
mpz_set_ui (s, 1); /* initialize sum with 1 */
mpz_mul_2exp (s, s, p + q); /* scale all values by 2^(p+q) */
mpz_set (t, s); /* invariant: t is previous term */
for (i = 1; (m = mpz_sizeinbase (t, 2)) >= q; i += 2)
{
/* adjust precision of x to that of t */
l = mpz_sizeinbase (x, 2);
if (l > m)
{
l -= m;
mpz_fdiv_q_2exp (x, x, l);
ex += l;
}
/* multiply t by r */
mpz_mul (t, t, x);
mpz_fdiv_q_2exp (t, t, -ex);
/* divide t by i*(i+1) */
if (i < maxi)
mpz_fdiv_q_ui (t, t, i * (i + 1));
else
{
mpz_fdiv_q_ui (t, t, i);
mpz_fdiv_q_ui (t, t, i + 1);
}
/* if m is the (current) number of bits of t, we can consider that
all operations on t so far had precision >= m, so we can prove
by induction that the relative error on t is of the form
(1+u)^(3l)-1, where |u| <= 2^(-m), and l=(i+1)/2 is the # of loops.
Since |(1+x^2)^(1/x) - 1| <= 4x/3 for |x| <= 1/2,
for |u| <= 1/(3l)^2, the absolute error is bounded by
4/3*(3l)*2^(-m)*t <= 4*l since |t| < 2^m.
Therefore the error on s is bounded by 2*l*(l+1). */
/* add or subtract to s */
if (i % 4 == 1)
mpz_sub (s, s, t);
else
mpz_add (s, s, t);
}
mpfr_set_z (f, s, MPFR_RNDN);
mpfr_div_2ui (f, f, p + q, MPFR_RNDN);
mpz_clear (x);
mpz_clear (s);
mpz_clear (t);
l = (i - 1) / 2; /* number of iterations */
return 2 * MPFR_INT_CEIL_LOG2 (l + 1) + 1; /* bound is 2l(l+1) */
}
int
mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t K0, K, precy, m, k, l;
int inexact, reduce = 0;
mpfr_t r, s, xr, c;
mpfr_exp_t exps, cancel = 0, expx;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL (group);
MPFR_LOG_FUNC (
("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y,
inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
return mpfr_set_ui (y, 1, rnd_mode);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* cos(x) = 1-x^2/2 + ..., so error < 2^(2*EXP(x)-1) */
expx = MPFR_GET_EXP (x);
MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, -2 * expx,
1, 0, rnd_mode, expo, {});
/* Compute initial precision */
precy = MPFR_PREC (y);
if (precy >= MPFR_SINCOS_THRESHOLD)
{
inexact = mpfr_cos_fast (y, x, rnd_mode);
goto end;
}
K0 = __gmpfr_isqrt (precy / 3);
m = precy + 2 * MPFR_INT_CEIL_LOG2 (precy) + 2 * K0 + 4;
if (expx >= 3)
{
reduce = 1;
/* As expx + m - 1 will silently be converted into mpfr_prec_t
in the mpfr_init2 call, the assert below may be useful to
avoid undefined behavior. */
MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX);
mpfr_init2 (c, expx + m - 1);
mpfr_init2 (xr, m);
}
MPFR_GROUP_INIT_2 (group, m, r, s);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
/* If |x| >= 4, first reduce x cmod (2*Pi) into xr, using mpfr_remainder:
let e = EXP(x) >= 3, and m the target precision:
(1) c <- 2*Pi [precision e+m-1, nearest]
(2) xr <- remainder (x, c) [precision m, nearest]
We have |c - 2*Pi| <= 1/2ulp(c) = 2^(3-e-m)
|xr - x - k c| <= 1/2ulp(xr) <= 2^(1-m)
|k| <= |x|/(2*Pi) <= 2^(e-2)
Thus |xr - x - 2kPi| <= |k| |c - 2Pi| + 2^(1-m) <= 2^(2-m).
It follows |cos(xr) - cos(x)| <= 2^(2-m). */
if (reduce)
{
mpfr_const_pi (c, MPFR_RNDN);
mpfr_mul_2ui (c, c, 1, MPFR_RNDN); /* 2Pi */
mpfr_remainder (xr, x, c, MPFR_RNDN);
if (MPFR_IS_ZERO(xr))
goto ziv_next;
/* now |xr| <= 4, thus r <= 16 below */
mpfr_sqr (r, xr, MPFR_RNDU); /* err <= 1 ulp */
}
else
mpfr_sqr (r, x, MPFR_RNDU); /* err <= 1 ulp */
/* now |x| < 4 (or xr if reduce = 1), thus |r| <= 16 */
/* we need |r| < 1/2 for mpfr_cos2_aux, i.e., EXP(r) - 2K <= -1 */
K = K0 + 1 + MAX(0, MPFR_GET_EXP(r)) / 2;
/* since K0 >= 0, if EXP(r) < 0, then K >= 1, thus EXP(r) - 2K <= -3;
otherwise if EXP(r) >= 0, then K >= 1/2 + EXP(r)/2, thus
EXP(r) - 2K <= -1 */
MPFR_SET_EXP (r, MPFR_GET_EXP (r) - 2 * K); /* Can't overflow! */
/* s <- 1 - r/2! + ... + (-1)^l r^l/(2l)! */
l = mpfr_cos2_aux (s, r);
/* l is the error bound in ulps on s */
MPFR_SET_ONE (r);
for (k = 0; k < K; k++)
{
mpfr_sqr (s, s, MPFR_RNDU); /* err <= 2*olderr */
MPFR_SET_EXP (s, MPFR_GET_EXP (s) + 1); /* Can't overflow */
mpfr_sub (s, s, r, MPFR_RNDN); /* err <= 4*olderr */
if (MPFR_IS_ZERO(s))
goto ziv_next;
MPFR_ASSERTD (MPFR_GET_EXP (s) <= 1);
}
/* The absolute error on s is bounded by (2l+1/3)*2^(2K-m)
2l+1/3 <= 2l+1.
If |x| >= 4, we need to add 2^(2-m) for the argument reduction
by 2Pi: if K = 0, this amounts to add 4 to 2l+1/3, i.e., to add
2 to l; if K >= 1, this amounts to add 1 to 2*l+1/3. */
l = 2 * l + 1;
if (reduce)
l += (K == 0) ? 4 : 1;
k = MPFR_INT_CEIL_LOG2 (l) + 2 * K;
/* now the error is bounded by 2^(k-m) = 2^(EXP(s)-err) */
exps = MPFR_GET_EXP (s);
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, exps + m - k, precy, rnd_mode)))
break;
if (MPFR_UNLIKELY (exps == 1))
/* s = 1 or -1, and except x=0 which was already checked above,
cos(x) cannot be 1 or -1, so we can round if the error is less
than 2^(-precy) for directed rounding, or 2^(-precy-1) for rounding
to nearest. */
{
if (m > k && (m - k >= precy + (rnd_mode == MPFR_RNDN)))
{
/* If round to nearest or away, result is s = 1 or -1,
otherwise it is round(nexttoward (s, 0)). However, in order
to have the inexact flag correctly set below, we set |s| to
1 - 2^(-m) in all cases. */
mpfr_nexttozero (s);
break;
}
}
if (exps < cancel)
{
m += cancel - exps;
cancel = exps;
}
ziv_next:
MPFR_ZIV_NEXT (loop, m);
MPFR_GROUP_REPREC_2 (group, m, r, s);
if (reduce)
{
mpfr_set_prec (xr, m);
mpfr_set_prec (c, expx + m - 1);
}
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
MPFR_GROUP_CLEAR (group);
if (reduce)
{
mpfr_clear (xr);
mpfr_clear (c);
}
end:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}