Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
/* mpfr_div -- divide two floating-point numbers

Copyright 1999, 2001-2023 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

/* References:
   [1] Short Division of Long Integers, David Harvey and Paul Zimmermann,
       Proceedings of the 20th Symposium on Computer Arithmetic (ARITH-20),
       July 25-27, 2011, pages 7-14.
   [2] Improved Division by Invariant Integers, Niels Möller and Torbjörn Granlund,
       IEEE Transactions on Computers, volume 60, number 2, pages 165-175, 2011.
*/

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

#if !defined(MPFR_GENERIC_ABI)

#if GMP_NUMB_BITS == 64

#include "invert_limb.h"

/* Given u = u1*B+u0 < v = v1*B+v0 with v normalized (high bit of v1 set),
   put in q = Q1*B+Q0 an approximation of floor(u*B^2/v), with:
   B = 2^GMP_NUMB_BITS and q <= floor(u*B^2/v) <= q + 21.
   Note: this function requires __gmpfr_invert_limb_approx (from invert_limb.h)
   which is only provided so far for 64-bit limb.
   Note: __gmpfr_invert_limb_approx can be replaced by __gmpfr_invert_limb,
   in that case the bound 21 reduces to 16. */
static void
mpfr_div2_approx (mpfr_limb_ptr Q1, mpfr_limb_ptr Q0,
                  mp_limb_t u1, mp_limb_t u0,
                  mp_limb_t v1, mp_limb_t v0)
{
  mp_limb_t inv, q1, q0, r1, r0, cy, xx, yy;

  /* first compute an approximation of q1, using a lower approximation of
     B^2/(v1+1) - B */
  if (MPFR_UNLIKELY(v1 == MPFR_LIMB_MAX))
    inv = MPFR_LIMB_ZERO;
  else
    __gmpfr_invert_limb_approx (inv, v1 + 1);
  /* now inv <= B^2/(v1+1) - B */
  umul_ppmm (q1, q0, u1, inv);
  q1 += u1;
  /* now q1 <= u1*B/(v1+1) < (u1*B+u0)*B/(v1*B+v0) */

  /* compute q1*(v1*B+v0) into r1:r0:yy and subtract from u1:u0:0 */
  umul_ppmm (r1, r0, q1, v1);
  umul_ppmm (xx, yy, q1, v0);

  ADD_LIMB (r0, xx, cy);
  r1 += cy;

  /* we ignore yy below, but first increment r0, to ensure we get a lower
     approximation of the remainder */
  r0 += yy != 0;
  r1 += r0 == 0 && yy != 0;
  r0 = u0 - r0;
  r1 = u1 - r1 - (r0 > u0);

  /* r1:r0 should be non-negative */
  MPFR_ASSERTD((r1 & MPFR_LIMB_HIGHBIT) == 0);

  /* the second quotient limb is approximated by (r1*B^2+r0*B) / v1,
     and since (B+inv)/B approximates B/v1, this is in turn approximated
     by (r1*B+r0)*(B+inv)/B = r1*B*r1*inv+r0+(r0*inv/B) */

  q0 = r0;
  q1 += r1;
  /* add floor(r0*inv/B) to q0 */
  umul_ppmm (xx, yy, r0, inv);
  ADD_LIMB (q0, xx, cy);
  q1 += cy;
  MPFR_ASSERTD (r1 <= 4);
  /* TODO: use value coverage on r1 to check that the 5 cases are tested. */
  while (r1) /* the number of loops is at most 4 */
    {
      /* add inv to q0 */
      ADD_LIMB (q0, inv, cy);
      q1 += cy;
      r1 --;
    }

  *Q1 = q1;
  *Q0 = q0;
}

#endif /* GMP_NUMB_BITS == 64 */

/* Special code for PREC(q) = PREC(u) = PREC(v) = p < GMP_NUMB_BITS */
static int
mpfr_div_1 (mpfr_ptr q, mpfr_srcptr u, mpfr_srcptr v, mpfr_rnd_t rnd_mode)
{
  mpfr_prec_t p = MPFR_GET_PREC(q);
  mpfr_limb_ptr qp = MPFR_MANT(q);
  mpfr_exp_t qx = MPFR_GET_EXP(u) - MPFR_GET_EXP(v);
  mpfr_prec_t sh = GMP_NUMB_BITS - p;
  mp_limb_t u0 = MPFR_MANT(u)[0];
  mp_limb_t v0 = MPFR_MANT(v)[0];
  mp_limb_t q0, rb, sb, mask = MPFR_LIMB_MASK(sh);
  int extra;

  if ((extra = (u0 >= v0)))
    u0 -= v0;

#if GMP_NUMB_BITS == 64 /* __gmpfr_invert_limb_approx only exists for 64-bit */
  /* First try with an approximate quotient.
     FIXME: for p<=62 we have sh-1<2 and will never be able to round correctly.
     Even for p=61 we have sh-1=2 and we can round correctly only when the two
     last bist of q0 are 01, which happens with probability 25% only. */
  {
    mp_limb_t inv;
    __gmpfr_invert_limb_approx (inv, v0);
    umul_ppmm (rb, sb, u0, inv);
  }
  rb += u0;
  q0 = rb >> extra;
  /* rb does not exceed the true quotient floor(u0*2^GMP_NUMB_BITS/v0),
     with error at most 2, which means the rational quotient q satisfies
     rb <= q < rb + 3. We can round correctly except when the last sh-1 bits
     of q0 are 000..000 or 111..111 or 111..110. */
  if (MPFR_LIKELY(((q0 + 2) & (mask >> 1)) > 2))
    {
      rb = q0 & (MPFR_LIMB_ONE << (sh - 1));
      sb = 1; /* result cannot be exact in this case */
    }
  else /* the true quotient is rb, rb+1 or rb+2 */
    {
      mp_limb_t h, l;
      q0 = rb;
      umul_ppmm (h, l, q0, v0);
      MPFR_ASSERTD(h < u0 || (h == u0 && l == MPFR_LIMB_ZERO));
      /* subtract {h,l} from {u0,0} */
      sub_ddmmss (h, l, u0, 0, h, l);
      /* the remainder {h, l} should be < v0 */
      /* This while loop is executed at most two times, but does not seem
         slower than two consecutive identical if-statements. */
      while (h || l >= v0)
        {
          q0 ++;
          h -= (l < v0);
          l -= v0;
        }
      MPFR_ASSERTD(h == 0 && l < v0);
      sb = l | (q0 & extra);
      q0 >>= extra;
      rb = q0 & (MPFR_LIMB_ONE << (sh - 1));
      sb |= q0 & (mask >> 1);
    }
#else
  udiv_qrnnd (q0, sb, u0, 0, v0);
  sb |= q0 & extra;
  q0 >>= extra;
  rb = q0 & (MPFR_LIMB_ONE << (sh - 1));
  sb |= q0 & (mask >> 1);
#endif

  qp[0] = (MPFR_LIMB_HIGHBIT | q0) & ~mask;
  qx += extra;
  MPFR_SIGN(q) = MPFR_MULT_SIGN (MPFR_SIGN (u), MPFR_SIGN (v));

  /* rounding */
  if (MPFR_UNLIKELY(qx > __gmpfr_emax))
    return mpfr_overflow (q, rnd_mode, MPFR_SIGN(q));

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when q > 0.111...111*2^(emin-1), or when rounding to nearest and
     q >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(qx < __gmpfr_emin))
    {
      /* Note: the case 0.111...111*2^(emin-1) < q < 2^(emin-1) is not possible
         here since (up to exponent) this would imply 1 - 2^(-p) < u/v < 1,
         thus v - 2^(-p)*v < u < v, and since we can assume 1/2 <= v < 1, it
         would imply v - 2^(-p) = v - ulp(v) < u < v, which has no solution. */

      /* For RNDN, mpfr_underflow always rounds away, thus for |q|<=2^(emin-2)
         we have to change to RNDZ. This corresponds to:
         (a) either qx < emin - 1
         (b) or qx = emin - 1 and qp[0] = 1000....000 and rb = sb = 0.
         Note: in case (b), it suffices to check whether sb = 0, since rb = 1
         and sb = 0 is not possible (the exact quotient would have p+1 bits,
         thus u would need at least p+1 bits). */
      if (rnd_mode == MPFR_RNDN &&
          (qx < __gmpfr_emin - 1 || (qp[0] == MPFR_LIMB_HIGHBIT && sb == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (q, rnd_mode, MPFR_SIGN(q));
    }

  MPFR_EXP (q) = qx; /* Don't use MPFR_SET_EXP since qx might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(qx >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* It is not possible to have rb <> 0 and sb = 0 here, since it would
         mean a n-bit by n-bit division gives an exact (n+1)-bit number.
         And since the case rb = sb = 0 was already dealt with, we cannot
         have sb = 0. Thus we cannot be in the middle of two numbers. */
      MPFR_ASSERTD(sb != 0);
      if (rb == 0)
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(q)))
    {
    truncate:
      MPFR_ASSERTD(qx >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN(q));
    }
  else /* round away from zero */
    {
    add_one_ulp:
      qp[0] += MPFR_LIMB_ONE << sh;
      MPFR_ASSERTD(qp[0] != 0);
      /* It is not possible to have an overflow in the addition above.
         Proof: if p is the precision of the inputs, it would mean we have two
         integers n and d with 2^(p-1) <= n, d < 2^p, such that the binary
         expansion of n/d starts with p '1', and has at least one '1' later.
         We distinguish two cases:
         (1) if n/d < 1, it would mean 1-2^(-p) < n/d < 1
         (2) if n/d >= 1, it would mean 2-2^(1-p) < n/d < 1
         In case (1), multiplying by d we get 1-d/2^p < n < d,
         which has no integer solution since d/2^p < 1.
         In case (2), multiplying by d we get 2d-2d/2^p < n < 2d:
         (2a) if d=2^(p-1), we get 2^p-1 < n < 2^p which has no solution;
              if d>=2^(p-1)+1, then 2d-2d/2^p >= 2^p+2-2 = 2^p, thus there is
              solution n < 2^p either. */
      MPFR_RET(MPFR_SIGN(q));
    }
}

/* Special code for PREC(q) = GMP_NUMB_BITS,
   with PREC(u), PREC(v) <= GMP_NUMB_BITS. */
static int
mpfr_div_1n (mpfr_ptr q, mpfr_srcptr u, mpfr_srcptr v, mpfr_rnd_t rnd_mode)
{
  mpfr_limb_ptr qp = MPFR_MANT(q);
  mpfr_exp_t qx = MPFR_GET_EXP(u) - MPFR_GET_EXP(v);
  mp_limb_t u0 = MPFR_MANT(u)[0];
  mp_limb_t v0 = MPFR_MANT(v)[0];
  mp_limb_t q0, rb, sb, l;
  int extra;

  MPFR_ASSERTD(MPFR_PREC(q) == GMP_NUMB_BITS);
  MPFR_ASSERTD(MPFR_PREC(u) <= GMP_NUMB_BITS);
  MPFR_ASSERTD(MPFR_PREC(v) <= GMP_NUMB_BITS);

  if ((extra = (u0 >= v0)))
    u0 -= v0;

#if GMP_NUMB_BITS == 64 /* __gmpfr_invert_limb_approx only exists for 64-bit */
  {
    mp_limb_t inv, h;

    /* First compute an approximate quotient. */
    __gmpfr_invert_limb_approx (inv, v0);
    umul_ppmm (rb, sb, u0, inv);
    q0 = u0 + rb;
    /* rb does not exceed the true quotient floor(u0*2^GMP_NUMB_BITS/v0),
       with error at most 2, which means the rational quotient q satisfies
       rb <= q < rb + 3, thus the true quotient is rb, rb+1 or rb+2 */
    umul_ppmm (h, l, q0, v0);
    MPFR_ASSERTD(h < u0 || (h == u0 && l == MPFR_LIMB_ZERO));
    /* subtract {h,l} from {u0,0} */
    sub_ddmmss (h, l, u0, 0, h, l);
    /* the remainder {h, l} should be < v0 */
    /* This while loop is executed at most two times, but does not seem
       slower than two consecutive identical if-statements. */
    while (h || l >= v0)
      {
        q0 ++;
        h -= (l < v0);
        l -= v0;
      }
    MPFR_ASSERTD(h == 0 && l < v0);
  }
#else
  udiv_qrnnd (q0, l, u0, 0, v0);
#endif

  /* now (u0 - extra*v0) * 2^GMP_NUMB_BITS = q0*v0 + l with 0 <= l < v0 */

  /* If extra=0, the quotient is q0, the round bit is 1 if l >= v0/2,
     and sb are the remaining bits from l.
     If extra=1, the quotient is MPFR_LIMB_HIGHBIT + (q0 >> 1), the round bit
     is the least significant bit of q0, and sb is l. */

  if (extra == 0)
    {
      qp[0] = q0;
      /* If "l + l < l", then there is a carry in l + l, thus 2*l > v0.
         Otherwise if there is no carry, we check whether 2*l >= v0. */
      rb = (l + l < l) || (l + l >= v0);
      sb = (rb) ? l + l - v0 : l;
    }
  else
    {
      qp[0] = MPFR_LIMB_HIGHBIT | (q0 >> 1);
      rb = q0 & MPFR_LIMB_ONE;
      sb = l;
      qx ++;
    }

  MPFR_SIGN(q) = MPFR_MULT_SIGN (MPFR_SIGN (u), MPFR_SIGN (v));

  /* rounding */
  if (MPFR_UNLIKELY(qx > __gmpfr_emax))
    return mpfr_overflow (q, rnd_mode, MPFR_SIGN(q));

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when q > 0.111...111*2^(emin-1), or when rounding to nearest and
     q >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(qx < __gmpfr_emin))
    {
      /* Note: the case 0.111...111*2^(emin-1) < q < 2^(emin-1) is not possible
         here since (up to exponent) this would imply 1 - 2^(-p) < u/v < 1,
         thus v - 2^(-p)*v < u < v, and since we can assume 1/2 <= v < 1, it
         would imply v - 2^(-p) = v - ulp(v) < u < v, which has no solution. */

      /* For RNDN, mpfr_underflow always rounds away, thus for |q|<=2^(emin-2)
         we have to change to RNDZ. This corresponds to:
         (a) either qx < emin - 1
         (b) or qx = emin - 1 and qp[0] = 1000....000 and rb = sb = 0.
         Note: in case (b), it suffices to check whether sb = 0, since rb = 1
         and sb = 0 is not possible (the exact quotient would have p+1 bits,
         thus u would need at least p+1 bits). */
      if (rnd_mode == MPFR_RNDN &&
          (qx < __gmpfr_emin - 1 || (qp[0] == MPFR_LIMB_HIGHBIT && sb == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (q, rnd_mode, MPFR_SIGN(q));
    }

  MPFR_EXP (q) = qx; /* Don't use MPFR_SET_EXP since qx might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(qx >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* It is not possible to have rb <> 0 and sb = 0 here, since it would
         mean a n-bit by n-bit division gives an exact (n+1)-bit number.
         And since the case rb = sb = 0 was already dealt with, we cannot
         have sb = 0. Thus we cannot be in the middle of two numbers. */
      MPFR_ASSERTD(sb != 0);
      if (rb == 0)
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(q)))
    {
    truncate:
      MPFR_ASSERTD(qx >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN(q));
    }
  else /* round away from zero */
    {
    add_one_ulp:
      qp[0] += MPFR_LIMB_ONE;
      /* there can be no overflow in the addition above,
         see the analysis of mpfr_div_1 */
      MPFR_ASSERTD(qp[0] != 0);
      MPFR_RET(MPFR_SIGN(q));
    }
}

/* Special code for GMP_NUMB_BITS < PREC(q) < 2*GMP_NUMB_BITS and
   PREC(u) = PREC(v) = PREC(q) */
static int
mpfr_div_2 (mpfr_ptr q, mpfr_srcptr u, mpfr_srcptr v, mpfr_rnd_t rnd_mode)
{
  mpfr_prec_t p = MPFR_GET_PREC(q);
  mpfr_limb_ptr qp = MPFR_MANT(q);
  mpfr_exp_t qx = MPFR_GET_EXP(u) - MPFR_GET_EXP(v);
  mpfr_prec_t sh = 2*GMP_NUMB_BITS - p;
  mp_limb_t h, rb, sb, mask = MPFR_LIMB_MASK(sh);
  mp_limb_t v1 = MPFR_MANT(v)[1], v0 = MPFR_MANT(v)[0];
  mp_limb_t q1, q0, r3, r2, r1, r0, l, t;
  int extra;

  r3 = MPFR_MANT(u)[1];
  r2 = MPFR_MANT(u)[0];
  extra = r3 > v1 || (r3 == v1 && r2 >= v0);
  if (extra)
    sub_ddmmss (r3, r2, r3, r2, v1, v0);

  MPFR_ASSERTD(r3 < v1 || (r3 == v1 && r2 < v0));

#if GMP_NUMB_BITS == 64
  mpfr_div2_approx (&q1, &q0, r3, r2, v1, v0);
  /* we know q1*B+q0 is smaller or equal to the exact quotient, with
     difference at most 21 */
  if (MPFR_LIKELY(((q0 + 21) & (mask >> 1)) > 21))
    sb = 1; /* result is not exact when we can round with an approximation */
  else
    {
      /* we know q1:q0 is a good-enough approximation, use it! */
      mp_limb_t s0, s1, s2, h, l;

      /* Since we know the difference should be at most 21*(v1:v0) after the
         subtraction below, thus at most 21*2^128, it suffices to compute the
         lower 3 limbs of (q1:q0) * (v1:v0). */
      umul_ppmm (s1, s0, q0, v0);
      umul_ppmm (s2, l, q0, v1);
      s1 += l;
      s2 += (s1 < l);
      umul_ppmm (h, l, q1, v0);
      s1 += l;
      s2 += h + (s1 < l);
      s2 += q1 * v1;
      /* Subtract s2:s1:s0 from r2:0:0, with result in s2:s1:s0. */
      s2 = r2 - s2;
      /* now negate s1:s0 */
      s0 = -s0;
      s1 = -s1 - (s0 != 0);
      /* there is a borrow in s2 when s0 and s1 are not both zero */
      s2 -= (s1 != 0 || s0 != 0);
      while (s2 > 0 || (s1 > v1) || (s1 == v1 && s0 >= v0))
        {
          /* add 1 to q1:q0 */
          q0 ++;
          q1 += (q0 == 0);
          /* subtract v1:v0 to s2:s1:s0 */
          s2 -= (s1 < v1) || (s1 == v1 && s0 < v0);
          sub_ddmmss (s1, s0, s1, s0, v1, v0);
        }
      sb = s1 | s0;
    }
  goto round_div2;
#endif

  /* now r3:r2 < v1:v0 */
  if (MPFR_UNLIKELY(r3 == v1)) /* can occur in some rare cases */
    {
      /* This can only occur in case extra=0, since otherwise we would have
         u_old >= u_new + v >= B^2/2 + B^2/2 = B^2. In this case we have
         r3 = u1 and r2 = u0, thus the remainder u*B-q1*v is
         v1*B^2+u0*B-(B-1)*(v1*B+v0) = (u0-v0+v1)*B+v0.
         Warning: in this case q1 = B-1 can be too large, for example with
         u = B^2/2 and v = B^2/2 + B - 1, then u*B-(B-1)*u = -1/2*B^2+2*B-1. */
      MPFR_ASSERTD(extra == 0);
      q1 = MPFR_LIMB_MAX;
      r1 = v0;
      t = v0 - r2; /* t > 0 since r3:r2 < v1:v0 */
      r2 = v1 - t;
      if (t > v1) /* q1 = B-1 is too large, we need q1 = B-2, which is ok
                        since u*B - q1*v >= v1*B^2-(B-2)*(v1*B+B-1) =
                        -B^2 + 2*B*v1 + 3*B - 2 >= 0 since v1>=B/2 and B>=2 */
        {
          q1 --;
          /* add v to r2:r1 */
          r1 += v0;
          r2 += v1 + (r1 < v0);
        }
    }
  else
    {
      /* divide r3:r2 by v1: requires r3 < v1 */
      udiv_qrnnd (q1, r2, r3, r2, v1);
      /* u-extra*v = q1 * v1 + r2 */

      /* now subtract q1*v0 to r2:0 */
      umul_ppmm (h, l, q1, v0);
      t = r2; /* save old value of r2 */
      r1 = -l;
      r2 -= h + (l != 0);
      /* Note: h + (l != 0) < 2^GMP_NUMB_BITS. */

      /* we have r2:r1 = oldr2:0 - q1*v0 mod 2^(2*GMP_NUMB_BITS)
         thus (u-extra*v)*B = q1 * v + r2:r1 mod 2^(2*GMP_NUMB_BITS) */

      /* this while loop should be run at most twice */
      while (r2 > t) /* borrow when subtracting h + (l != 0), q1 too large */
        {
          q1 --;
          /* add v1:v0 to r2:r1 */
          t = r2;
          r1 += v0;
          r2 += v1 + (r1 < v0);
          /* note: since 2^(GMP_NUMB_BITS-1) <= v1 + (r1 < v0)
             <= 2^GMP_NUMB_BITS, it suffices to check if r2 <= t to see
             if there was a carry or not. */
        }
    }

  /* now (u-extra*v)*B = q1 * v + r2:r1 with 0 <= r2:r1 < v */

  MPFR_ASSERTD(r2 < v1 || (r2 == v1 && r1 < v0));

  if (MPFR_UNLIKELY(r2 == v1))
    {
      q0 = MPFR_LIMB_MAX;
      /* r2:r1:0 - q0*(v1:v0) = v1:r1:0 - (B-1)*(v1:v0)
         = r1:0 - v0:0 + v1:v0 */
      r0 = v0;
      t = v0 - r1; /* t > 0 since r2:r1 < v1:v0 */
      r1 = v1 - t;
      if (t > v1)
        {
          q0 --;
          /* add v to r1:r0 */
          r0 += v0;
          r1 += v1 + (r0 < v0);
        }
    }
  else
    {
      /* divide r2:r1 by v1: requires r2 < v1 */
      udiv_qrnnd (q0, r1, r2, r1, v1);

      /* r2:r1 = q0*v1 + r1 */

      /* subtract q0*v0 to r1:0 */
      umul_ppmm (h, l, q0, v0);
      t = r1;
      r0 = -l;
      r1 -= h + (l != 0);

      /* this while loop should be run at most twice */
      while (r1 > t) /* borrow when subtracting h + (l != 0),
                        q0 was too large */
        {
          q0 --;
          /* add v1:v0 to r1:r0 */
          t = r1;
          r0 += v0;
          r1 += v1 + (r0 < v0);
          /* note: since 2^(GMP_NUMB_BITS-1) <= v1 + (r0 < v0)
             <= 2^GMP_NUMB_BITS, it suffices to check if r1 <= t to see
             if there was a carry or not. */
        }
    }

  MPFR_ASSERTD(r1 < v1 || (r1 == v1 && r0 < v0));

  /* now (u-extra*v)*B^2 = (q1:q0) * v + r1:r0 */

  sb = r1 | r0;

  /* here, q1:q0 should be an approximation of the quotient (or the exact
     quotient), and sb the sticky bit */

#if GMP_NUMB_BITS == 64
 round_div2:
#endif
  if (extra)
    {
      qx ++;
      sb |= q0 & 1;
      q0 = (q1 << (GMP_NUMB_BITS - 1)) | (q0 >> 1);
      q1 = MPFR_LIMB_HIGHBIT | (q1 >> 1);
    }
  rb = q0 & (MPFR_LIMB_ONE << (sh - 1));
  sb |= (q0 & mask) ^ rb;
  qp[1] = q1;
  qp[0] = q0 & ~mask;

  MPFR_SIGN(q) = MPFR_MULT_SIGN (MPFR_SIGN (u), MPFR_SIGN (v));

  /* rounding */
  if (qx > __gmpfr_emax)
    return mpfr_overflow (q, rnd_mode, MPFR_SIGN(q));

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when q > 0.111...111*2^(emin-1), or when rounding to nearest and
     q >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (qx < __gmpfr_emin)
    {
      /* Note: the case 0.111...111*2^(emin-1) < q < 2^(emin-1) is not possible
         here since (up to exponent) this would imply 1 - 2^(-p) < u/v < 1,
         thus v - 2^(-p)*v < u < v, and since we can assume 1/2 <= v < 1, it
         would imply v - 2^(-p) = v - ulp(v) < u < v, which has no solution. */

      /* For RNDN, mpfr_underflow always rounds away, thus for |q|<=2^(emin-2)
         we have to change to RNDZ. This corresponds to:
         (a) either qx < emin - 1
         (b) or qx = emin - 1 and qp[1] = 100....000, qp[0] = 0 and rb = sb = 0.
         Note: in case (b), it suffices to check whether sb = 0, since rb = 1
         and sb = 0 is not possible (the exact quotient would have p+1 bits, thus
         u would need at least p+1 bits). */
      if (rnd_mode == MPFR_RNDN &&
          (qx < __gmpfr_emin - 1 ||
           (qp[1] == MPFR_LIMB_HIGHBIT && qp[0] == MPFR_LIMB_ZERO && sb == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (q, rnd_mode, MPFR_SIGN(q));
    }

  MPFR_EXP (q) = qx; /* Don't use MPFR_SET_EXP since qx might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(qx >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* See the comment in mpfr_div_1. */
      MPFR_ASSERTD(sb != 0);
      if (rb == 0)
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(q)))
    {
    truncate:
      MPFR_ASSERTD(qx >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN(q));
    }
  else /* round away from zero */
    {
    add_one_ulp:
      qp[0] += MPFR_LIMB_ONE << sh;
      qp[1] += qp[0] == 0;
      /* there can be no overflow in the addition above,
         see the analysis of mpfr_div_1 */
      MPFR_ASSERTD(qp[1] != 0);
      MPFR_RET(MPFR_SIGN(q));
    }
}

#endif /* !defined(MPFR_GENERIC_ABI) */

/* check if {ap, an} is zero */
static int
mpfr_mpn_cmpzero (mpfr_limb_ptr ap, mp_size_t an)
{
  MPFR_ASSERTD (an >= 0);
  while (an > 0)
    if (MPFR_LIKELY(ap[--an] != MPFR_LIMB_ZERO))
      return 1;
  return 0;
}

/* compare {ap, an} and {bp, bn} >> extra,
   aligned by the more significant limbs.
   Takes into account bp[0] for extra=1.
*/
static int
mpfr_mpn_cmp_aux (mpfr_limb_ptr ap, mp_size_t an,
                  mpfr_limb_ptr bp, mp_size_t bn, int extra)
{
  int cmp = 0;
  mp_size_t k;
  mp_limb_t bb;

  MPFR_ASSERTD (an >= 0);
  MPFR_ASSERTD (bn >= 0);
  MPFR_ASSERTD (extra == 0 || extra == 1);

  if (an >= bn)
    {
      k = an - bn;
      while (cmp == 0 && bn > 0)
        {
          bn --;
          bb = (extra) ? ((bp[bn+1] << (GMP_NUMB_BITS - 1)) | (bp[bn] >> 1))
            : bp[bn];
          cmp = (ap[k + bn] > bb) ? 1 : ((ap[k + bn] < bb) ? -1 : 0);
        }
      bb = (extra) ? bp[0] << (GMP_NUMB_BITS - 1) : MPFR_LIMB_ZERO;
      while (cmp == 0 && k > 0)
        {
          k--;
          cmp = (ap[k] > bb) ? 1 : ((ap[k] < bb) ? -1 : 0);
          bb = MPFR_LIMB_ZERO; /* ensure we consider only once bp[0] & 1 */
        }
      if (cmp == 0 && bb != MPFR_LIMB_ZERO)
        cmp = -1;
    }
  else /* an < bn */
    {
      k = bn - an;
      while (cmp == 0 && an > 0)
        {
          an --;
          bb = (extra) ? ((bp[k+an+1] << (GMP_NUMB_BITS - 1)) | (bp[k+an] >> 1))
            : bp[k+an];
          if (ap[an] > bb)
            cmp = 1;
          else if (ap[an] < bb)
            cmp = -1;
        }
      while (cmp == 0 && k > 0)
        {
          k--;
          bb = (extra) ? ((bp[k+1] << (GMP_NUMB_BITS - 1)) | (bp[k] >> 1))
            : bp[k];
          cmp = (bb != MPFR_LIMB_ZERO) ? -1 : 0;
        }
      if (cmp == 0 && extra && (bp[0] & MPFR_LIMB_ONE))
        cmp = -1;
    }
  return cmp;
}

/* {ap, n} <- {ap, n} - {bp, n} >> extra - cy, with cy = 0 or 1.
   Return borrow out.
*/
static mp_limb_t
mpfr_mpn_sub_aux (mpfr_limb_ptr ap, mpfr_limb_ptr bp, mp_size_t n,
                  mp_limb_t cy, int extra)
{
  mp_limb_t bb, rp;

  MPFR_ASSERTD (cy <= 1);
  MPFR_ASSERTD (n >= 0);

  while (n--)
    {
      bb = (extra) ? (MPFR_LIMB_LSHIFT(bp[1],GMP_NUMB_BITS-1) | (bp[0] >> 1)) : bp[0];
      rp = ap[0] - bb - cy;
      cy = (ap[0] < bb) || (cy && rp == MPFR_LIMB_MAX) ?
        MPFR_LIMB_ONE : MPFR_LIMB_ZERO;
      ap[0] = rp;
      ap ++;
      bp ++;
    }
  MPFR_ASSERTD (cy <= 1);
  return cy;
}

MPFR_HOT_FUNCTION_ATTR int
mpfr_div (mpfr_ptr q, mpfr_srcptr u, mpfr_srcptr v, mpfr_rnd_t rnd_mode)
{
  mp_size_t q0size, usize, vsize;
  mp_size_t qsize; /* number of limbs wanted for the computed quotient */
  mp_size_t qqsize;
  mp_size_t k;
  mpfr_limb_ptr q0p, qp;
  mpfr_limb_ptr up, vp;
  mpfr_limb_ptr ap;
  mpfr_limb_ptr bp;
  mp_limb_t qh;
  mp_limb_t sticky_u, sticky_v;
  mp_limb_t low_u;
  mp_limb_t sticky;
  mp_limb_t sticky3;
  mp_limb_t round_bit;
  mpfr_exp_t qexp;
  int sign_quotient;
  int extra_bit;
  int sh, sh2;
  int inex;
  int like_rndz;
  MPFR_TMP_DECL(marker);

  MPFR_LOG_FUNC (
    ("u[%Pu]=%.*Rg v[%Pu]=%.*Rg rnd=%d",
     mpfr_get_prec(u), mpfr_log_prec, u,
     mpfr_get_prec (v),mpfr_log_prec, v, rnd_mode),
    ("q[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(q), mpfr_log_prec, q, inex));

  /**************************************************************************
   *                                                                        *
   *              This part of the code deals with special cases            *
   *                                                                        *
   **************************************************************************/

  if (MPFR_UNLIKELY(MPFR_ARE_SINGULAR(u,v)))
    {
      if (MPFR_IS_NAN(u) || MPFR_IS_NAN(v))
        {
          MPFR_SET_NAN(q);
          MPFR_RET_NAN;
        }
      sign_quotient = MPFR_MULT_SIGN(MPFR_SIGN(u), MPFR_SIGN(v));
      MPFR_SET_SIGN(q, sign_quotient);
      if (MPFR_IS_INF(u))
        {
          if (MPFR_IS_INF(v))
            {
              MPFR_SET_NAN(q);
              MPFR_RET_NAN;
            }
          else
            {
              MPFR_SET_INF(q);
              MPFR_RET(0);
            }
        }
      else if (MPFR_IS_INF(v))
        {
          MPFR_SET_ZERO (q);
          MPFR_RET (0);
        }
      else if (MPFR_IS_ZERO (v))
        {
          if (MPFR_IS_ZERO (u))
            {
              MPFR_SET_NAN(q);
              MPFR_RET_NAN;
            }
          else
            {
              MPFR_ASSERTD (! MPFR_IS_INF (u));
              MPFR_SET_INF(q);
              MPFR_SET_DIVBY0 ();
              MPFR_RET(0);
            }
        }
      else
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (u));
          MPFR_SET_ZERO (q);
          MPFR_RET (0);
        }
    }

  /* When MPFR_GENERIC_ABI is defined, we don't use special code. */
#if !defined(MPFR_GENERIC_ABI)
  if (MPFR_GET_PREC(u) == MPFR_GET_PREC(q) &&
      MPFR_GET_PREC(v) == MPFR_GET_PREC(q))
    {
      if (MPFR_GET_PREC(q) < GMP_NUMB_BITS)
        return mpfr_div_1 (q, u, v, rnd_mode);

      if (GMP_NUMB_BITS < MPFR_GET_PREC(q) &&
          MPFR_GET_PREC(q) < 2 * GMP_NUMB_BITS)
        return mpfr_div_2 (q, u, v, rnd_mode);

      if (MPFR_GET_PREC(q) == GMP_NUMB_BITS)
        return mpfr_div_1n (q, u, v, rnd_mode);
    }
#endif /* !defined(MPFR_GENERIC_ABI) */

  usize = MPFR_LIMB_SIZE(u);
  vsize = MPFR_LIMB_SIZE(v);
  q0size = MPFR_LIMB_SIZE(q); /* number of limbs of destination */
  q0p = MPFR_MANT(q);
  up = MPFR_MANT(u);
  vp = MPFR_MANT(v);
  sticky_u = MPFR_LIMB_ZERO;
  sticky_v = MPFR_LIMB_ZERO;
  round_bit = MPFR_LIMB_ZERO;

  /**************************************************************************
   *                                                                        *
   *              End of the part concerning special values.                *
   *                                                                        *
   **************************************************************************/

  /* When the divisor has one limb and MPFR_LONG_WITHIN_LIMB is defined,
     we can use mpfr_div_ui, which should be faster, assuming there is no
     intermediate overflow or underflow.
     The divisor interpreted as an integer satisfies
     2^(GMP_NUMB_BITS-1) <= vm < 2^GMP_NUMB_BITS, thus the quotient
     satisfies 2^(EXP(u)-1-GMP_NUMB_BITS) < u/vm < 2^(EXP(u)-GMP_NUMB_BITS+1)
     and its exponent is either EXP(u)-GMP_NUMB_BITS or one more. */
#ifdef MPFR_LONG_WITHIN_LIMB
  if (vsize <= 1 && __gmpfr_emin <= MPFR_EXP(u) - GMP_NUMB_BITS
      && MPFR_EXP(u) - GMP_NUMB_BITS + 1 <= __gmpfr_emax
      && vp[0] <= ULONG_MAX)
    {
      mpfr_exp_t exp_v = MPFR_EXP(v); /* save it in case q=v */
      if (MPFR_IS_POS (v))
        inex = mpfr_div_ui (q, u, vp[0], rnd_mode);
      else
        {
          inex = -mpfr_div_ui (q, u, vp[0], MPFR_INVERT_RND(rnd_mode));
          MPFR_CHANGE_SIGN(q);
        }
      /* q did not under/overflow */
      MPFR_EXP(q) -= exp_v;
      /* The following test is needed, otherwise the next addition
         on the exponent may overflow, e.g. when dividing the
         largest finite MPFR number by the smallest positive one. */
      if (MPFR_UNLIKELY (MPFR_EXP(q) > __gmpfr_emax - GMP_NUMB_BITS))
        return mpfr_overflow (q, rnd_mode, MPFR_SIGN(q));
      MPFR_EXP(q) += GMP_NUMB_BITS;
      return mpfr_check_range (q, inex, rnd_mode);
    }
#endif

  MPFR_TMP_MARK(marker);

  /* set sign */
  sign_quotient = MPFR_MULT_SIGN(MPFR_SIGN(u), MPFR_SIGN(v));
  MPFR_SET_SIGN(q, sign_quotient);

  /* determine if an extra bit comes from the division, i.e. if the
     significand of u (as a fraction in [1/2, 1[) is larger than that
     of v */
  if (MPFR_LIKELY(up[usize - 1] != vp[vsize - 1]))
    extra_bit = (up[usize - 1] > vp[vsize - 1]) ? 1 : 0;
  else /* most significant limbs are equal, must look at further limbs */
    {
      mp_size_t l;

      k = usize - 1;
      l = vsize - 1;
      while (k != 0 && l != 0 && up[--k] == vp[--l]);
      /* now k=0 or l=0 or up[k] != vp[l] */
      if (up[k] != vp[l])
        extra_bit = (up[k] > vp[l]);
      /* now up[k] = vp[l], thus either k=0 or l=0 */
      else if (l == 0) /* no more divisor limb */
        extra_bit = 1;
      else /* k=0: no more dividend limb */
        extra_bit = mpfr_mpn_cmpzero (vp, l) == 0;
    }

  /* set exponent */
  qexp = MPFR_GET_EXP (u) - MPFR_GET_EXP (v) + extra_bit;

  /* sh is the number of zero bits in the low limb of the quotient */
  MPFR_UNSIGNED_MINUS_MODULO(sh, MPFR_PREC(q));

  like_rndz = rnd_mode == MPFR_RNDZ ||
    rnd_mode == (sign_quotient < 0 ? MPFR_RNDU : MPFR_RNDD);

  /**************************************************************************
   *                                                                        *
   *       We first try Mulders' short division (for large operands)        *
   *                                                                        *
   **************************************************************************/

  if (MPFR_UNLIKELY(q0size >= MPFR_DIV_THRESHOLD &&
                    vsize >= MPFR_DIV_THRESHOLD))
    {
      mp_size_t n = q0size + 1; /* we will perform a short (2n)/n division */
      mpfr_limb_ptr ap, bp, qp;
      mpfr_prec_t p;

      /* since Mulders' short division clobbers the dividend, we have to
         copy it */
      ap = MPFR_TMP_LIMBS_ALLOC (n + n);
      if (usize >= n + n) /* truncate the dividend */
        MPN_COPY(ap, up + usize - (n + n), n + n);
      else                /* zero-pad the dividend */
        {
          MPN_COPY(ap + (n + n) - usize, up, usize);
          MPN_ZERO(ap, (n + n) - usize);
        }

      if (vsize >= n) /* truncate the divisor */
        bp = vp + vsize - n;
      else            /* zero-pad the divisor */
        {
          bp = MPFR_TMP_LIMBS_ALLOC (n);
          MPN_COPY(bp + n - vsize, vp, vsize);
          MPN_ZERO(bp, n - vsize);
        }

      qp = MPFR_TMP_LIMBS_ALLOC (n);
      /* since n = q0size + 1, we have n >= 2 here */
      qh = mpfr_divhigh_n (qp, ap, bp, n);
      MPFR_ASSERTD (qh == 0 || qh == 1);
      /* in all cases, the error is at most (2n+2) ulps on qh*B^n+{qp,n},
         cf algorithms.tex */

      p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (2 * n + 2);
      /* If rnd=RNDN, we need to be able to round with a directed rounding
         and one more bit. */
      if (qh == 1)
        {
          mpn_rshift (qp, qp, n, 1);
          qp[n - 1] |= MPFR_LIMB_HIGHBIT;
        }
      if (MPFR_LIKELY (mpfr_round_p (qp, n, p,
                                     MPFR_PREC(q) + (rnd_mode == MPFR_RNDN))))
        {
          /* we can round correctly whatever the rounding mode */
          MPN_COPY (q0p, qp + 1, q0size);
          q0p[0] &= ~MPFR_LIMB_MASK(sh); /* put to zero low sh bits */

          if (rnd_mode == MPFR_RNDN) /* round to nearest */
            {
              /* we know we can round, thus we are never in the even rule case:
                 if the round bit is 0, we truncate
                 if the round bit is 1, we add 1 */
              if (sh > 0)
                round_bit = (qp[1] >> (sh - 1)) & 1;
              else
                round_bit = qp[0] >> (GMP_NUMB_BITS - 1);
              /* TODO: add value coverage tests in tdiv to check that
                 we reach this part with different values of qh and
                 round_bit (4 cases). */
              if (round_bit == 0)
                {
                  inex = -1;
                  goto truncate;
                }
              else /* round_bit = 1 */
                goto add_one_ulp;
            }
          else if (! like_rndz) /* round away */
            goto add_one_ulp;
          else /* round to zero: nothing to do */
            {
              inex = -1;
              goto truncate;
            }
        }
    }

  /**************************************************************************
   *                                                                        *
   *     Mulders' short division failed: we revert to integer division      *
   *                                                                        *
   **************************************************************************/

  if (MPFR_UNLIKELY(rnd_mode == MPFR_RNDN && sh == 0))
    { /* we compute the quotient with one more limb, in order to get
         the round bit in the quotient, and the remainder only contains
         sticky bits */
      qsize = q0size + 1;
      /* need to allocate memory for the quotient */
      qp = MPFR_TMP_LIMBS_ALLOC (qsize);
    }
  else
    {
      qsize = q0size;
      qp = q0p; /* directly put the quotient in the destination */
    }
  qqsize = qsize + qsize;

  /* prepare the dividend */
  ap = MPFR_TMP_LIMBS_ALLOC (qqsize);
  if (MPFR_LIKELY(qqsize > usize)) /* use the full dividend */
    {
      k = qqsize - usize; /* k > 0 */
      MPN_ZERO(ap, k);
      if (extra_bit)
        ap[k - 1] = mpn_rshift (ap + k, up, usize, 1);
      else
        MPN_COPY(ap + k, up, usize);
    }
  else /* truncate the dividend */
    {
      k = usize - qqsize;
      if (extra_bit)
        sticky_u = mpn_rshift (ap, up + k, qqsize, 1);
      else
        MPN_COPY(ap, up + k, qqsize);
      sticky_u = sticky_u || mpfr_mpn_cmpzero (up, k);
    }
  low_u = sticky_u;

  /* now sticky_u is non-zero iff the truncated part of u is non-zero */

  /* prepare the divisor */
  if (MPFR_LIKELY(vsize >= qsize))
    {
      k = vsize - qsize;
      if (qp != vp)
        bp = vp + k; /* avoid copying the divisor */
      else /* need to copy, since mpn_divrem doesn't allow overlap
              between quotient and divisor, necessarily k = 0
              since quotient and divisor are the same mpfr variable */
        {
          bp = MPFR_TMP_LIMBS_ALLOC (qsize);
          MPN_COPY(bp, vp, vsize);
        }
      sticky_v = sticky_v || mpfr_mpn_cmpzero (vp, k);
      k = 0;
    }
  else /* vsize < qsize: small divisor case */
    {
      bp = vp;
      k = qsize - vsize;
    }

  /**************************************************************************
   *                                                                        *
   *  Here we perform the real division of {ap+k,qqsize-k} by {bp,qsize-k}  *
   *                                                                        *
   **************************************************************************/

  /* In the general case (usize > 2*qsize and vsize > qsize), we have:
       ______________________________________
      |                          |           |   u1 has 2*qsize limbs
      |             u1           |     u0    |   u0 has usize-2*qsize limbs
      |__________________________|___________|

                      ____________________
                     |           |        |      v1 has qsize limbs
                     |    v1     |    v0  |      v0 has vsize-qsize limbs
                     |___________|________|

      We divide u1 by v1, with quotient in qh + {qp, qsize} and
      remainder (denoted r below) stored in place of the low qsize limbs of u1.
  */

  /* if Mulders' short division failed, we revert to division with remainder */
  qh = mpn_divrem (qp, 0, ap + k, qqsize - k, bp, qsize - k);
  /* let u1 be the upper part of u, and v1 the upper part of v (with sticky_u
     and sticky_v representing the lower parts), then the quotient of u1 by v1
     is now in {qp, qsize}, with possible carry in qh, and the remainder in
     {ap + k, qsize - k} */
  /* warning: qh may be 1 if u1 == v1, but u < v */

  k = qsize;
  sticky_u = sticky_u || mpfr_mpn_cmpzero (ap, k);

  sticky = sticky_u | sticky_v;

  /* now sticky is non-zero iff one of the following holds:
     (a) the truncated part of u is non-zero
     (b) the truncated part of v is non-zero
     (c) the remainder from division is non-zero */

  if (MPFR_LIKELY(qsize == q0size))
    {
      sticky3 = qp[0] & MPFR_LIMB_MASK(sh); /* does nothing when sh=0 */
      sh2 = sh;
    }
  else /* qsize = q0size + 1: only happens when rnd_mode=MPFR_RNDN and sh=0 */
    {
      MPN_COPY (q0p, qp + 1, q0size);
      sticky3 = qp[0];
      sh2 = GMP_NUMB_BITS;
    }
  qp[0] ^= sticky3;
  /* sticky3 contains the truncated bits from the quotient,
     including the round bit, and 1 <= sh2 <= GMP_NUMB_BITS
     is the number of bits in sticky3 */
  inex = (sticky != MPFR_LIMB_ZERO) || (sticky3 != MPFR_LIMB_ZERO);

  /* to round, we distinguish two cases:
     (a) vsize <= qsize: we used the full divisor
     (b) vsize > qsize: the divisor was truncated
  */

  if (MPFR_LIKELY(vsize <= qsize)) /* use the full divisor */
    {
      if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
        {
          round_bit = sticky3 & (MPFR_LIMB_ONE << (sh2 - 1));
          sticky = (sticky3 ^ round_bit) | sticky_u;
        }
      else if (like_rndz || inex == 0)
        sticky = (inex == 0) ? MPFR_LIMB_ZERO : MPFR_LIMB_ONE;
      else  /* round away from zero */
        sticky = MPFR_LIMB_ONE;
      goto case_1;
    }
  else /* vsize > qsize: need to truncate the divisor */
    {
      if (inex == 0)
        goto truncate;
      else
        {
          /* We know the estimated quotient is an upper bound of the exact
             quotient (with rounding toward zero), with a difference of at
             most 2 in qp[0].
             Thus we can round except when sticky3 is 000...000 or 000...001
             for directed rounding, and 100...000 or 100...001 for rounding
             to nearest. (For rounding to nearest, we cannot determine the
             inexact flag for 000...000 or 000...001.)
          */
          mp_limb_t sticky3orig = sticky3;
          if (rnd_mode == MPFR_RNDN)
            {
              round_bit = sticky3 & (MPFR_LIMB_ONE << (sh2 - 1));
              sticky3   = sticky3 ^ round_bit;
            }
          if (sticky3 != MPFR_LIMB_ZERO && sticky3 != MPFR_LIMB_ONE)
            {
              sticky = sticky3;
              goto case_1;
            }
          else /* hard case: we have to compare q1 * v0 and r + u0,
                 where q1 * v0 has qsize + (vsize-qsize) = vsize limbs, and
                 r + u0 has qsize + (usize-2*qsize) = usize-qsize limbs */
            {
              mp_size_t l;
              mpfr_limb_ptr sp;
              int cmp_s_r;
              mp_limb_t qh2;

              sp = MPFR_TMP_LIMBS_ALLOC (vsize);
              k = vsize - qsize;
              /* sp <- {qp, qsize} * {vp, vsize-qsize} */
              qp[0] ^= sticky3orig; /* restore original quotient */
              if (qsize >= k)
                mpn_mul (sp, qp, qsize, vp, k);
              else
                mpn_mul (sp, vp, k, qp, qsize);
              if (qh)
                qh2 = mpn_add_n (sp + qsize, sp + qsize, vp, k);
              else
                qh2 = MPFR_LIMB_ZERO;
              qp[0] ^= sticky3orig; /* restore truncated quotient */

              /* compare qh2 + {sp, k + qsize} to {ap, qsize} + u0 */
              cmp_s_r = (qh2 != 0) ? 1 : mpn_cmp (sp + k, ap, qsize);
              if (cmp_s_r == 0) /* compare {sp, k} and u0 */
                {
                  cmp_s_r = (usize >= qqsize) ?
                    mpfr_mpn_cmp_aux (sp, k, up, usize - qqsize, extra_bit) :
                    mpfr_mpn_cmpzero (sp, k);
                }
              /* now cmp_s_r > 0 if {sp, vsize} > {ap, qsize} + u0
                     cmp_s_r = 0 if {sp, vsize} = {ap, qsize} + u0
                     cmp_s_r < 0 if {sp, vsize} < {ap, qsize} + u0 */
              if (cmp_s_r <= 0) /* quotient is in [q1, q1+1) */
                {
                  sticky = (cmp_s_r == 0) ? sticky3 : MPFR_LIMB_ONE;
                  goto case_1;
                }
              else /* cmp_s_r > 0, quotient is < q1: to determine if it is
                      in [q1-2,q1-1] or in [q1-1,q1], we need to subtract
                      the low part u0 of the dividend from q*v0 */
                {
                  mp_limb_t cy = MPFR_LIMB_ZERO;

                  /* subtract u0 >> extra_bit if non-zero */
                  if (qh2 != 0) /* whatever the value of {up, m + k}, it
                                   will be smaller than qh2 + {sp, k} */
                    cmp_s_r = 1;
                  else
                    {
                      if (low_u != MPFR_LIMB_ZERO)
                        {
                          mp_size_t m;
                          l = usize - qqsize; /* number of limbs in u0 */
                          m = (l > k) ? l - k : 0;
                          cy = (extra_bit) ?
                            (up[m] & MPFR_LIMB_ONE) : MPFR_LIMB_ZERO;
                          if (l >= k) /* u0 has at least as many limbs than s:
                                         first look if {up, m} is not zero,
                                         and compare {sp, k} and {up + m, k} */
                            {
                              cy = cy || mpfr_mpn_cmpzero (up, m);
                              low_u = cy;
                              cy = mpfr_mpn_sub_aux (sp, up + m, k,
                                                     cy, extra_bit);
                            }
                          else /* l < k: s has more limbs than u0 */
                            {
                              low_u = MPFR_LIMB_ZERO;
                              if (cy != MPFR_LIMB_ZERO)
                                cy = mpn_sub_1 (sp + k - l - 1, sp + k - l - 1,
                                                1, MPFR_LIMB_HIGHBIT);
                              cy = mpfr_mpn_sub_aux (sp + k - l, up, l,
                                                     cy, extra_bit);
                            }
                        }
                      MPFR_ASSERTD (cy <= 1);
                      cy = mpn_sub_1 (sp + k, sp + k, qsize, cy);
                      /* subtract r */
                      cy += mpn_sub_n (sp + k, sp + k, ap, qsize);
                      MPFR_ASSERTD (cy <= 1);
                      /* now compare {sp, ssize} to v */
                      cmp_s_r = mpn_cmp (sp, vp, vsize);
                      if (cmp_s_r == 0 && low_u != MPFR_LIMB_ZERO)
                        cmp_s_r = 1; /* since in fact we subtracted
                                        less than 1 */
                    }
                  if (cmp_s_r <= 0) /* q1-1 <= u/v < q1 */
                    {
                      if (sticky3 == MPFR_LIMB_ONE)
                        { /* q1-1 is either representable (directed rounding),
                             or the middle of two numbers (nearest) */
                          sticky = (cmp_s_r) ? MPFR_LIMB_ONE : MPFR_LIMB_ZERO;
                          goto case_1;
                        }
                      /* now necessarily sticky3=0 */
                      else if (round_bit == MPFR_LIMB_ZERO)
                        { /* round_bit=0, sticky3=0: q1-1 is exact only
                             when sh=0 */
                          inex = (cmp_s_r || sh) ? -1 : 0;
                          if (rnd_mode == MPFR_RNDN ||
                              (! like_rndz && inex != 0))
                            {
                              inex = 1;
                              goto truncate_check_qh;
                            }
                          else /* round down */
                            goto sub_one_ulp;
                        }
                      else /* sticky3=0, round_bit=1 ==> rounding to nearest */
                        {
                          inex = cmp_s_r;
                          goto truncate;
                        }
                    }
                  else /* q1-2 < u/v < q1-1 */
                    {
                      /* if rnd=MPFR_RNDN, the result is q1 when
                         q1-2 >= q1-2^(sh-1), i.e. sh >= 2,
                         otherwise (sh=1) it is q1-2 */
                      if (rnd_mode == MPFR_RNDN) /* sh > 0 */
                        {
                          /* Case sh=1: sb=0 always, and q1-rb is exactly
                             representable, like q1-rb-2.
                             rb action
                             0  subtract two ulps, inex=-1
                             1  truncate, inex=1

                             Case sh>1: one ulp is 2^(sh-1) >= 2
                             rb sb action
                             0  0  truncate, inex=1
                             0  1  truncate, inex=1
                             1  x  truncate, inex=-1
                           */
                          if (sh == 1)
                            {
                              if (round_bit == MPFR_LIMB_ZERO)
                                {
                                  inex = -1;
                                  sh = 0;
                                  goto sub_two_ulp;
                                }
                              else
                                {
                                  inex = 1;
                                  goto truncate_check_qh;
                                }
                            }
                          else /* sh > 1 */
                            {
                              inex = (round_bit == MPFR_LIMB_ZERO) ? 1 : -1;
                              goto truncate_check_qh;
                            }
                        }
                      else if (like_rndz)
                        {
                          /* the result is down(q1-2), i.e. subtract one
                             ulp if sh > 0, and two ulps if sh=0 */
                          inex = -1;
                          if (sh > 0)
                            goto sub_one_ulp;
                          else
                            goto sub_two_ulp;
                        }
                      /* if round away from zero, the result is up(q1-1),
                         which is q1 unless sh = 0, where it is q1-1 */
                      else
                        {
                          inex = 1;
                          if (sh > 0)
                            goto truncate_check_qh;
                          else /* sh = 0 */
                            goto sub_one_ulp;
                        }
                    }
                }
            }
        }
    }

 case_1: /* quotient is in [q1, q1+1),
            round_bit is the round_bit (0 for directed rounding),
            sticky the sticky bit */
  if (like_rndz || (round_bit == MPFR_LIMB_ZERO && sticky == MPFR_LIMB_ZERO))
    {
      inex = round_bit == MPFR_LIMB_ZERO && sticky == MPFR_LIMB_ZERO ? 0 : -1;
      goto truncate;
    }
  else if (rnd_mode == MPFR_RNDN) /* sticky <> 0 or round <> 0 */
    {
      if (round_bit == MPFR_LIMB_ZERO) /* necessarily sticky <> 0 */
        {
          inex = -1;
          goto truncate;
        }
      /* round_bit = 1 */
      else if (sticky != MPFR_LIMB_ZERO)
        goto add_one_ulp; /* inex=1 */
      else /* round_bit=1, sticky=0 */
        goto even_rule;
    }
  else /* round away from zero, sticky <> 0 */
    goto add_one_ulp; /* with inex=1 */

 sub_two_ulp:
  /* we cannot subtract MPFR_LIMB_MPFR_LIMB_ONE << (sh+1) since this is
     undefined for sh = GMP_NUMB_BITS */
  qh -= mpn_sub_1 (q0p, q0p, q0size, MPFR_LIMB_ONE << sh);
  /* go through */

 sub_one_ulp:
  qh -= mpn_sub_1 (q0p, q0p, q0size, MPFR_LIMB_ONE << sh);
  /* go through truncate_check_qh */

 truncate_check_qh:
  if (qh)
    {
      if (MPFR_LIKELY (qexp < MPFR_EXP_MAX))
        qexp ++;
      /* else qexp is now incorrect, but one will still get an overflow */
      q0p[q0size - 1] = MPFR_LIMB_HIGHBIT;
    }
  goto truncate;

 even_rule: /* has to set inex */
  inex = (q0p[0] & (MPFR_LIMB_ONE << sh)) ? 1 : -1;
  if (inex < 0)
    goto truncate;
  /* else go through add_one_ulp */

 add_one_ulp:
  inex = 1; /* always here */
  if (mpn_add_1 (q0p, q0p, q0size, MPFR_LIMB_ONE << sh))
    {
      if (MPFR_LIKELY (qexp < MPFR_EXP_MAX))
        qexp ++;
      /* else qexp is now incorrect, but one will still get an overflow */
      q0p[q0size - 1] = MPFR_LIMB_HIGHBIT;
    }

 truncate: /* inex already set */

  MPFR_TMP_FREE(marker);

  /* check for underflow/overflow */
  if (MPFR_UNLIKELY(qexp > __gmpfr_emax))
    return mpfr_overflow (q, rnd_mode, sign_quotient);
  else if (MPFR_UNLIKELY(qexp < __gmpfr_emin))
    {
      if (rnd_mode == MPFR_RNDN && ((qexp < __gmpfr_emin - 1) ||
                                   (inex >= 0 && mpfr_powerof2_raw (q))))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (q, rnd_mode, sign_quotient);
    }
  MPFR_SET_EXP(q, qexp);

  inex *= sign_quotient;
  MPFR_RET (inex);
}