Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/* mpfr_round_near_x -- Round a floating point number nears another one.

Copyright 2005-2023 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#include "mpfr-impl.h"

/* Use MPFR_FAST_COMPUTE_IF_SMALL_INPUT instead (a simple wrapper) */

/* int mpfr_round_near_x (mpfr_ptr y, mpfr_srcptr v, mpfr_uexp_t err, int dir,
                          mpfr_rnd_t rnd)

   TODO: fix this description.
   Assuming y = o(f(x)) = o(x + g(x)) with |g(x)| < 2^(EXP(v)-error)
   If x is small enough, y ~= v. This function checks and does this.

   It assumes that f(x) is not representable exactly as a FP number.
   v must not be a singular value (NAN, INF or ZERO), usual values are
   v=1 or v=x.

   y is the destination (a mpfr_t), v the value to set (a mpfr_t),
   err the error term (a mpfr_uexp_t) such that |g(x)| < 2^(EXP(x)-err),
   dir (an int) is the direction of the error (if dir = 0,
   it rounds toward 0, if dir=1, it rounds away from 0),
   rnd the rounding mode.

   It returns 0 if it can't round.
   Otherwise it returns the ternary flag (It can't return an exact value).
*/

/* What "small enough" means?

   We work with the positive values.
   Assuming err > Prec (y)+1

   i = [ y = o(x)]   // i = inexact flag
   If i == 0
       Setting x in y is exact. We have:
       y = [XXXXXXXXX[...]]0[...] + error where [..] are optional zeros
      if dirError = ToInf,
        x < f(x) < x + 2^(EXP(x)-err)
        since x=y, and ulp (y)/2 > 2^(EXP(x)-err), we have:
        y < f(x) < y+ulp(y) and |y-f(x)| < ulp(y)/2
       if rnd = RNDN, nothing
       if rnd = RNDZ, nothing
       if rnd = RNDA, addoneulp
      elif dirError = ToZero
        x -2^(EXP(x)-err) < f(x) < x
        since x=y, and ulp (y)/2 > 2^(EXP(x)-err), we have:
        y-ulp(y) < f(x) < y and |y-f(x)| < ulp(y)/2
       if rnd = RNDN, nothing
       if rnd = RNDZ, nexttozero
       if rnd = RNDA, nothing
     NOTE: err > prec (y)+1 is needed only for RNDN.
   elif i > 0 and i = EVEN_ROUNDING
      So rnd = RNDN and we have y = x + ulp(y)/2
       if dirError = ToZero,
         we have x -2^(EXP(x)-err) < f(x) < x
         so y - ulp(y)/2 - 2^(EXP(x)-err) < f(x) < y-ulp(y)/2
         so y -ulp(y) < f(x) < y-ulp(y)/2
         => nexttozero(y)
       elif dirError = ToInf
         we have x < f(x) < x + 2^(EXP(x)-err)
         so y - ulp(y)/2 < f(x) < y+ulp(y)/2-ulp(y)/2
         so y - ulp(y)/2 < f(x) < y
         => do nothing
   elif i < 0 and i = -EVEN_ROUNDING
      So rnd = RNDN and we have y = x - ulp(y)/2
      if dirError = ToZero,
        y < f(x) < y + ulp(y)/2 => do nothing
      if dirError = ToInf
        y + ulp(y)/2 < f(x) < y + ulp(y) => AddOneUlp
   elif i > 0
     we can't have rnd = RNDZ, and prec(x) > prec(y), so ulp(x) < ulp(y)
     we have y - ulp (y) < x < y
     or more exactly y - ulp(y) + ulp(x)/2 <= x <= y - ulp(x)/2
     if rnd = RNDA,
      if dirError = ToInf,
       we have x < f(x) < x + 2^(EXP(x)-err)
       if err > prec (x),
         we have 2^(EXP(x)-err) < ulp(x), so 2^(EXP(x)-err) <= ulp(x)/2
         so f(x) <= y - ulp(x)/2+ulp(x)/2 <= y
         and y - ulp(y) < x < f(x)
         so we have y - ulp(y) < f(x) < y
         so do nothing.
       elif we can round, ie y - ulp(y) < x + 2^(EXP(x)-err) < y
         we have y - ulp(y) < x <  f(x) < x + 2^(EXP(x)-err) < y
         so do nothing
       otherwise
         Wrong. Example X=[0.11101]111111110000
                         +             1111111111111111111....
      elif dirError = ToZero
       we have x - 2^(EXP(x)-err) < f(x) < x
       so f(x) < x < y
       if err > prec (x)
         x-2^(EXP(x)-err) >= x-ulp(x)/2 >= y - ulp(y) + ulp(x)/2-ulp(x)/2
         so y - ulp(y) < f(x) < y
         so do nothing
       elif we can round, ie y - ulp(y) < x - 2^(EXP(x)-err) < y
         y - ulp(y) < x - 2^(EXP(x)-err) < f(x) < y
         so do nothing
       otherwise
        Wrong. Example: X=[1.111010]00000010
                         -             10000001000000000000100....
     elif rnd = RNDN,
      y - ulp(y)/2 < x < y and we can't have x = y-ulp(y)/2:
      so we have:
       y - ulp(y)/2 + ulp(x)/2 <= x <= y - ulp(x)/2
      if dirError = ToInf
        we have x < f(x) < x+2^(EXP(x)-err) and ulp(y) > 2^(EXP(x)-err)
        so y - ulp(y)/2 + ulp (x)/2 < f(x) < y + ulp (y)/2 - ulp (x)/2
        we can round but we can't compute inexact flag.
        if err > prec (x)
          y - ulp(y)/2 + ulp (x)/2 < f(x) < y + ulp(x)/2 - ulp(x)/2
          so y - ulp(y)/2 + ulp (x)/2 < f(x) < y
          we can round and compute inexact flag. do nothing
        elif we can round, ie y - ulp(y)/2 < x + 2^(EXP(x)-err) < y
          we have  y - ulp(y)/2 + ulp (x)/2 < f(x) < y
          so do nothing
        otherwise
          Wrong
      elif dirError = ToZero
        we have x -2^(EXP(x)-err) < f(x) < x and ulp(y)/2 > 2^(EXP(x)-err)
        so y-ulp(y)+ulp(x)/2 < f(x) < y - ulp(x)/2
        if err > prec (x)
           x- ulp(x)/2 < f(x) < x
           so y - ulp(y)/2+ulp(x)/2 - ulp(x)/2 < f(x) < x <= y - ulp(x)/2 < y
           do nothing
        elif we can round, ie y-ulp(y)/2 < x-2^(EXP(x)-err) < y
           we have y-ulp(y)/2 < x-2^(EXP(x)-err) < f(x) < x < y
           do nothing
        otherwise
          Wrong
   elif i < 0
     same thing?
 */

int
mpfr_round_near_x (mpfr_ptr y, mpfr_srcptr v, mpfr_uexp_t err, int dir,
                   mpfr_rnd_t rnd)
{
  int inexact, sign;
  mpfr_flags_t old_flags = __gmpfr_flags;

  if (rnd == MPFR_RNDF)
    rnd = MPFR_RNDZ;

  MPFR_ASSERTD (!MPFR_IS_SINGULAR (v));
  MPFR_ASSERTD (dir == 0 || dir == 1);

  /* First check if we can round. The test is more restrictive than
     necessary. Note that if err is not representable in an mpfr_exp_t,
     then err > MPFR_PREC (v) and the conversion to mpfr_exp_t will not
     occur. */
  if (!(err > MPFR_PREC (y) + 1
        && (err > MPFR_PREC (v)
            || mpfr_round_p (MPFR_MANT (v), MPFR_LIMB_SIZE (v),
                             (mpfr_exp_t) err,
                             MPFR_PREC (y) + (rnd == MPFR_RNDN)))))
    /* If we assume we can not round, return 0, and y is not modified */
    return 0;

  /* First round v in y */
  sign = MPFR_SIGN (v);
  MPFR_SET_EXP (y, MPFR_GET_EXP (v));
  MPFR_SET_SIGN (y, sign);
  MPFR_RNDRAW_GEN (inexact, y, MPFR_MANT (v), MPFR_PREC (v), rnd, sign,
                   if (dir == 0)
                     {
                       inexact = -sign;
                       goto trunc_doit;
                     }
                   else
                     goto addoneulp;
                   , if (MPFR_UNLIKELY (++MPFR_EXP (y) > __gmpfr_emax))
                       mpfr_overflow (y, rnd, sign)
                  );

  /* Fix it in some cases */
  MPFR_ASSERTD (!MPFR_IS_NAN (y) && !MPFR_IS_ZERO (y));
  /* If inexact == 0, setting y from v is exact but we haven't
     take into account yet the error term */
  if (inexact == 0)
    {
      if (dir == 0) /* The error term is negative for v positive */
        {
          inexact = sign;
          if (MPFR_IS_LIKE_RNDZ (rnd, MPFR_IS_NEG_SIGN (sign)))
            {
              /* case nexttozero */
              /* The underflow flag should be set if the result is zero */
              __gmpfr_flags = old_flags;
              inexact = -sign;
              mpfr_nexttozero (y);
              if (MPFR_UNLIKELY (MPFR_IS_ZERO (y)))
                MPFR_SET_UNDERFLOW ();
            }
        }
      else /* The error term is positive for v positive */
        {
          inexact = -sign;
          /* Round Away */
            if (MPFR_IS_LIKE_RNDA (rnd, MPFR_IS_NEG_SIGN(sign)))
            {
              /* case nexttoinf */
              /* The overflow flag should be set if the result is infinity */
              inexact = sign;
              mpfr_nexttoinf (y);
              if (MPFR_UNLIKELY (MPFR_IS_INF (y)))
                MPFR_SET_OVERFLOW ();
            }
        }
    }

  /* the inexact flag cannot be 0, since this would mean an exact value,
     and in this case we cannot round correctly */
  MPFR_ASSERTD(inexact != 0);
  MPFR_RET (inexact);
}