/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "task.h"
#include "uv.h"
#define IPC_PIPE_NAME TEST_PIPENAME
#define NUM_CONNECTS (250 * 1000)
union stream_handle {
uv_pipe_t pipe;
uv_tcp_t tcp;
};
/* Use as (uv_stream_t *) &handle_storage -- it's kind of clunky but it
* avoids aliasing warnings.
*/
typedef unsigned char handle_storage_t[sizeof(union stream_handle)];
/* Used for passing around the listen handle, not part of the benchmark proper.
* We have an overabundance of server types here. It works like this:
*
* 1. The main thread starts an IPC pipe server.
* 2. The worker threads connect to the IPC server and obtain a listen handle.
* 3. The worker threads start accepting requests on the listen handle.
* 4. The main thread starts connecting repeatedly.
*
* Step #4 should perhaps be farmed out over several threads.
*/
struct ipc_server_ctx {
handle_storage_t server_handle;
unsigned int num_connects;
uv_pipe_t ipc_pipe;
};
struct ipc_peer_ctx {
handle_storage_t peer_handle;
uv_write_t write_req;
};
struct ipc_client_ctx {
uv_connect_t connect_req;
uv_stream_t* server_handle;
uv_pipe_t ipc_pipe;
char scratch[16];
};
/* Used in the actual benchmark. */
struct server_ctx {
handle_storage_t server_handle;
unsigned int num_connects;
uv_async_t async_handle;
uv_thread_t thread_id;
uv_sem_t semaphore;
};
struct client_ctx {
handle_storage_t client_handle;
unsigned int num_connects;
uv_connect_t connect_req;
uv_idle_t idle_handle;
};
static void ipc_connection_cb(uv_stream_t* ipc_pipe, int status);
static void ipc_write_cb(uv_write_t* req, int status);
static void ipc_close_cb(uv_handle_t* handle);
static void ipc_connect_cb(uv_connect_t* req, int status);
static void ipc_read_cb(uv_stream_t* handle,
ssize_t nread,
const uv_buf_t* buf);
static void ipc_alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf);
static void sv_async_cb(uv_async_t* handle);
static void sv_connection_cb(uv_stream_t* server_handle, int status);
static void sv_read_cb(uv_stream_t* handle, ssize_t nread, const uv_buf_t* buf);
static void sv_alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf);
static void cl_connect_cb(uv_connect_t* req, int status);
static void cl_idle_cb(uv_idle_t* handle);
static void cl_close_cb(uv_handle_t* handle);
static struct sockaddr_in listen_addr;
static void ipc_connection_cb(uv_stream_t* ipc_pipe, int status) {
struct ipc_server_ctx* sc;
struct ipc_peer_ctx* pc;
uv_loop_t* loop;
uv_buf_t buf;
loop = ipc_pipe->loop;
buf = uv_buf_init("PING", 4);
sc = container_of(ipc_pipe, struct ipc_server_ctx, ipc_pipe);
pc = calloc(1, sizeof(*pc));
ASSERT_NOT_NULL(pc);
if (ipc_pipe->type == UV_TCP)
ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) &pc->peer_handle));
else if (ipc_pipe->type == UV_NAMED_PIPE)
ASSERT(0 == uv_pipe_init(loop, (uv_pipe_t*) &pc->peer_handle, 1));
else
ASSERT(0);
ASSERT(0 == uv_accept(ipc_pipe, (uv_stream_t*) &pc->peer_handle));
ASSERT(0 == uv_write2(&pc->write_req,
(uv_stream_t*) &pc->peer_handle,
&buf,
1,
(uv_stream_t*) &sc->server_handle,
ipc_write_cb));
if (--sc->num_connects == 0)
uv_close((uv_handle_t*) ipc_pipe, NULL);
}
static void ipc_write_cb(uv_write_t* req, int status) {
struct ipc_peer_ctx* ctx;
ctx = container_of(req, struct ipc_peer_ctx, write_req);
uv_close((uv_handle_t*) &ctx->peer_handle, ipc_close_cb);
}
static void ipc_close_cb(uv_handle_t* handle) {
struct ipc_peer_ctx* ctx;
ctx = container_of(handle, struct ipc_peer_ctx, peer_handle);
free(ctx);
}
static void ipc_connect_cb(uv_connect_t* req, int status) {
struct ipc_client_ctx* ctx;
ctx = container_of(req, struct ipc_client_ctx, connect_req);
ASSERT(0 == status);
ASSERT(0 == uv_read_start((uv_stream_t*) &ctx->ipc_pipe,
ipc_alloc_cb,
ipc_read_cb));
}
static void ipc_alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf) {
struct ipc_client_ctx* ctx;
ctx = container_of(handle, struct ipc_client_ctx, ipc_pipe);
buf->base = ctx->scratch;
buf->len = sizeof(ctx->scratch);
}
static void ipc_read_cb(uv_stream_t* handle,
ssize_t nread,
const uv_buf_t* buf) {
struct ipc_client_ctx* ctx;
uv_loop_t* loop;
uv_handle_type type;
uv_pipe_t* ipc_pipe;
ipc_pipe = (uv_pipe_t*) handle;
ctx = container_of(ipc_pipe, struct ipc_client_ctx, ipc_pipe);
loop = ipc_pipe->loop;
ASSERT(1 == uv_pipe_pending_count(ipc_pipe));
type = uv_pipe_pending_type(ipc_pipe);
if (type == UV_TCP)
ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) ctx->server_handle));
else if (type == UV_NAMED_PIPE)
ASSERT(0 == uv_pipe_init(loop, (uv_pipe_t*) ctx->server_handle, 0));
else
ASSERT(0);
ASSERT(0 == uv_accept(handle, ctx->server_handle));
uv_close((uv_handle_t*) &ctx->ipc_pipe, NULL);
}
/* Set up an IPC pipe server that hands out listen sockets to the worker
* threads. It's kind of cumbersome for such a simple operation, maybe we
* should revive uv_import() and uv_export().
*/
static void send_listen_handles(uv_handle_type type,
unsigned int num_servers,
struct server_ctx* servers) {
struct ipc_server_ctx ctx;
uv_loop_t* loop;
unsigned int i;
loop = uv_default_loop();
ctx.num_connects = num_servers;
if (type == UV_TCP) {
ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) &ctx.server_handle));
ASSERT(0 == uv_tcp_bind((uv_tcp_t*) &ctx.server_handle,
(const struct sockaddr*) &listen_addr,
0));
}
else
ASSERT(0);
/* We need to initialize this pipe with ipc=0 - this is not a uv_pipe we'll
* be sending handles over, it's just for listening for new connections.
* If we accept a connection then the connected pipe must be initialized
* with ipc=1.
*/
ASSERT(0 == uv_pipe_init(loop, &ctx.ipc_pipe, 0));
ASSERT(0 == uv_pipe_bind(&ctx.ipc_pipe, IPC_PIPE_NAME));
ASSERT(0 == uv_listen((uv_stream_t*) &ctx.ipc_pipe, 128, ipc_connection_cb));
for (i = 0; i < num_servers; i++)
uv_sem_post(&servers[i].semaphore);
ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
uv_close((uv_handle_t*) &ctx.server_handle, NULL);
ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
for (i = 0; i < num_servers; i++)
uv_sem_wait(&servers[i].semaphore);
}
static void get_listen_handle(uv_loop_t* loop, uv_stream_t* server_handle) {
struct ipc_client_ctx ctx;
ctx.server_handle = server_handle;
ctx.server_handle->data = "server handle";
ASSERT(0 == uv_pipe_init(loop, &ctx.ipc_pipe, 1));
uv_pipe_connect(&ctx.connect_req,
&ctx.ipc_pipe,
IPC_PIPE_NAME,
ipc_connect_cb);
ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
}
static void server_cb(void *arg) {
struct server_ctx *ctx;
uv_loop_t loop;
ctx = arg;
ASSERT(0 == uv_loop_init(&loop));
ASSERT(0 == uv_async_init(&loop, &ctx->async_handle, sv_async_cb));
uv_unref((uv_handle_t*) &ctx->async_handle);
/* Wait until the main thread is ready. */
uv_sem_wait(&ctx->semaphore);
get_listen_handle(&loop, (uv_stream_t*) &ctx->server_handle);
uv_sem_post(&ctx->semaphore);
/* Now start the actual benchmark. */
ASSERT(0 == uv_listen((uv_stream_t*) &ctx->server_handle,
128,
sv_connection_cb));
ASSERT(0 == uv_run(&loop, UV_RUN_DEFAULT));
uv_loop_close(&loop);
}
static void sv_async_cb(uv_async_t* handle) {
struct server_ctx* ctx;
ctx = container_of(handle, struct server_ctx, async_handle);
uv_close((uv_handle_t*) &ctx->server_handle, NULL);
uv_close((uv_handle_t*) &ctx->async_handle, NULL);
}
static void sv_connection_cb(uv_stream_t* server_handle, int status) {
handle_storage_t* storage;
struct server_ctx* ctx;
ctx = container_of(server_handle, struct server_ctx, server_handle);
ASSERT(status == 0);
storage = malloc(sizeof(*storage));
ASSERT_NOT_NULL(storage);
if (server_handle->type == UV_TCP)
ASSERT(0 == uv_tcp_init(server_handle->loop, (uv_tcp_t*) storage));
else if (server_handle->type == UV_NAMED_PIPE)
ASSERT(0 == uv_pipe_init(server_handle->loop, (uv_pipe_t*) storage, 0));
else
ASSERT(0);
ASSERT(0 == uv_accept(server_handle, (uv_stream_t*) storage));
ASSERT(0 == uv_read_start((uv_stream_t*) storage, sv_alloc_cb, sv_read_cb));
ctx->num_connects++;
}
static void sv_alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf) {
static char slab[32];
buf->base = slab;
buf->len = sizeof(slab);
}
static void sv_read_cb(uv_stream_t* handle,
ssize_t nread,
const uv_buf_t* buf) {
ASSERT(nread == UV_EOF);
uv_close((uv_handle_t*) handle, (uv_close_cb) free);
}
static void cl_connect_cb(uv_connect_t* req, int status) {
struct client_ctx* ctx = container_of(req, struct client_ctx, connect_req);
uv_idle_start(&ctx->idle_handle, cl_idle_cb);
ASSERT(0 == status);
}
static void cl_idle_cb(uv_idle_t* handle) {
struct client_ctx* ctx = container_of(handle, struct client_ctx, idle_handle);
uv_close((uv_handle_t*) &ctx->client_handle, cl_close_cb);
uv_idle_stop(&ctx->idle_handle);
}
static void cl_close_cb(uv_handle_t* handle) {
struct client_ctx* ctx;
ctx = container_of(handle, struct client_ctx, client_handle);
if (--ctx->num_connects == 0) {
uv_close((uv_handle_t*) &ctx->idle_handle, NULL);
return;
}
ASSERT(0 == uv_tcp_init(handle->loop, (uv_tcp_t*) &ctx->client_handle));
ASSERT(0 == uv_tcp_connect(&ctx->connect_req,
(uv_tcp_t*) &ctx->client_handle,
(const struct sockaddr*) &listen_addr,
cl_connect_cb));
}
static int test_tcp(unsigned int num_servers, unsigned int num_clients) {
struct server_ctx* servers;
struct client_ctx* clients;
uv_loop_t* loop;
uv_tcp_t* handle;
unsigned int i;
double time;
ASSERT(0 == uv_ip4_addr("127.0.0.1", TEST_PORT, &listen_addr));
loop = uv_default_loop();
servers = calloc(num_servers, sizeof(servers[0]));
clients = calloc(num_clients, sizeof(clients[0]));
ASSERT_NOT_NULL(servers);
ASSERT_NOT_NULL(clients);
/* We're making the assumption here that from the perspective of the
* OS scheduler, threads are functionally equivalent to and interchangeable
* with full-blown processes.
*/
for (i = 0; i < num_servers; i++) {
struct server_ctx* ctx = servers + i;
ASSERT(0 == uv_sem_init(&ctx->semaphore, 0));
ASSERT(0 == uv_thread_create(&ctx->thread_id, server_cb, ctx));
}
send_listen_handles(UV_TCP, num_servers, servers);
for (i = 0; i < num_clients; i++) {
struct client_ctx* ctx = clients + i;
ctx->num_connects = NUM_CONNECTS / num_clients;
handle = (uv_tcp_t*) &ctx->client_handle;
handle->data = "client handle";
ASSERT(0 == uv_tcp_init(loop, handle));
ASSERT(0 == uv_tcp_connect(&ctx->connect_req,
handle,
(const struct sockaddr*) &listen_addr,
cl_connect_cb));
ASSERT(0 == uv_idle_init(loop, &ctx->idle_handle));
}
{
uint64_t t = uv_hrtime();
ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
t = uv_hrtime() - t;
time = t / 1e9;
}
for (i = 0; i < num_servers; i++) {
struct server_ctx* ctx = servers + i;
uv_async_send(&ctx->async_handle);
ASSERT(0 == uv_thread_join(&ctx->thread_id));
uv_sem_destroy(&ctx->semaphore);
}
printf("accept%u: %.0f accepts/sec (%u total)\n",
num_servers,
NUM_CONNECTS / time,
NUM_CONNECTS);
for (i = 0; i < num_servers; i++) {
struct server_ctx* ctx = servers + i;
printf(" thread #%u: %.0f accepts/sec (%u total, %.1f%%)\n",
i,
ctx->num_connects / time,
ctx->num_connects,
ctx->num_connects * 100.0 / NUM_CONNECTS);
}
free(clients);
free(servers);
MAKE_VALGRIND_HAPPY();
return 0;
}
BENCHMARK_IMPL(tcp_multi_accept2) {
return test_tcp(2, 40);
}
BENCHMARK_IMPL(tcp_multi_accept4) {
return test_tcp(4, 40);
}
BENCHMARK_IMPL(tcp_multi_accept8) {
return test_tcp(8, 40);
}