Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "task.h"
#include "uv.h"

#define IPC_PIPE_NAME TEST_PIPENAME
#define NUM_CONNECTS  (250 * 1000)

union stream_handle {
  uv_pipe_t pipe;
  uv_tcp_t tcp;
};

/* Use as (uv_stream_t *) &handle_storage -- it's kind of clunky but it
 * avoids aliasing warnings.
 */
typedef unsigned char handle_storage_t[sizeof(union stream_handle)];

/* Used for passing around the listen handle, not part of the benchmark proper.
 * We have an overabundance of server types here. It works like this:
 *
 *  1. The main thread starts an IPC pipe server.
 *  2. The worker threads connect to the IPC server and obtain a listen handle.
 *  3. The worker threads start accepting requests on the listen handle.
 *  4. The main thread starts connecting repeatedly.
 *
 * Step #4 should perhaps be farmed out over several threads.
 */
struct ipc_server_ctx {
  handle_storage_t server_handle;
  unsigned int num_connects;
  uv_pipe_t ipc_pipe;
};

struct ipc_peer_ctx {
  handle_storage_t peer_handle;
  uv_write_t write_req;
};

struct ipc_client_ctx {
  uv_connect_t connect_req;
  uv_stream_t* server_handle;
  uv_pipe_t ipc_pipe;
  char scratch[16];
};

/* Used in the actual benchmark. */
struct server_ctx {
  handle_storage_t server_handle;
  unsigned int num_connects;
  uv_async_t async_handle;
  uv_thread_t thread_id;
  uv_sem_t semaphore;
};

struct client_ctx {
  handle_storage_t client_handle;
  unsigned int num_connects;
  uv_connect_t connect_req;
  uv_idle_t idle_handle;
};

static void ipc_connection_cb(uv_stream_t* ipc_pipe, int status);
static void ipc_write_cb(uv_write_t* req, int status);
static void ipc_close_cb(uv_handle_t* handle);
static void ipc_connect_cb(uv_connect_t* req, int status);
static void ipc_read_cb(uv_stream_t* handle,
                        ssize_t nread,
                        const uv_buf_t* buf);
static void ipc_alloc_cb(uv_handle_t* handle,
                         size_t suggested_size,
                         uv_buf_t* buf);

static void sv_async_cb(uv_async_t* handle);
static void sv_connection_cb(uv_stream_t* server_handle, int status);
static void sv_read_cb(uv_stream_t* handle, ssize_t nread, const uv_buf_t* buf);
static void sv_alloc_cb(uv_handle_t* handle,
                        size_t suggested_size,
                        uv_buf_t* buf);

static void cl_connect_cb(uv_connect_t* req, int status);
static void cl_idle_cb(uv_idle_t* handle);
static void cl_close_cb(uv_handle_t* handle);

static struct sockaddr_in listen_addr;


static void ipc_connection_cb(uv_stream_t* ipc_pipe, int status) {
  struct ipc_server_ctx* sc;
  struct ipc_peer_ctx* pc;
  uv_loop_t* loop;
  uv_buf_t buf;

  loop = ipc_pipe->loop;
  buf = uv_buf_init("PING", 4);
  sc = container_of(ipc_pipe, struct ipc_server_ctx, ipc_pipe);
  pc = calloc(1, sizeof(*pc));
  ASSERT_NOT_NULL(pc);

  if (ipc_pipe->type == UV_TCP)
    ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) &pc->peer_handle));
  else if (ipc_pipe->type == UV_NAMED_PIPE)
    ASSERT(0 == uv_pipe_init(loop, (uv_pipe_t*) &pc->peer_handle, 1));
  else
    ASSERT(0);

  ASSERT(0 == uv_accept(ipc_pipe, (uv_stream_t*) &pc->peer_handle));
  ASSERT(0 == uv_write2(&pc->write_req,
                        (uv_stream_t*) &pc->peer_handle,
                        &buf,
                        1,
                        (uv_stream_t*) &sc->server_handle,
                        ipc_write_cb));

  if (--sc->num_connects == 0)
    uv_close((uv_handle_t*) ipc_pipe, NULL);
}


static void ipc_write_cb(uv_write_t* req, int status) {
  struct ipc_peer_ctx* ctx;
  ctx = container_of(req, struct ipc_peer_ctx, write_req);
  uv_close((uv_handle_t*) &ctx->peer_handle, ipc_close_cb);
}


static void ipc_close_cb(uv_handle_t* handle) {
  struct ipc_peer_ctx* ctx;
  ctx = container_of(handle, struct ipc_peer_ctx, peer_handle);
  free(ctx);
}


static void ipc_connect_cb(uv_connect_t* req, int status) {
  struct ipc_client_ctx* ctx;
  ctx = container_of(req, struct ipc_client_ctx, connect_req);
  ASSERT(0 == status);
  ASSERT(0 == uv_read_start((uv_stream_t*) &ctx->ipc_pipe,
                            ipc_alloc_cb,
                            ipc_read_cb));
}


static void ipc_alloc_cb(uv_handle_t* handle,
                         size_t suggested_size,
                         uv_buf_t* buf) {
  struct ipc_client_ctx* ctx;
  ctx = container_of(handle, struct ipc_client_ctx, ipc_pipe);
  buf->base = ctx->scratch;
  buf->len = sizeof(ctx->scratch);
}


static void ipc_read_cb(uv_stream_t* handle,
                        ssize_t nread,
                        const uv_buf_t* buf) {
  struct ipc_client_ctx* ctx;
  uv_loop_t* loop;
  uv_handle_type type;
  uv_pipe_t* ipc_pipe;

  ipc_pipe = (uv_pipe_t*) handle;
  ctx = container_of(ipc_pipe, struct ipc_client_ctx, ipc_pipe);
  loop = ipc_pipe->loop;

  ASSERT(1 == uv_pipe_pending_count(ipc_pipe));
  type = uv_pipe_pending_type(ipc_pipe);
  if (type == UV_TCP)
    ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) ctx->server_handle));
  else if (type == UV_NAMED_PIPE)
    ASSERT(0 == uv_pipe_init(loop, (uv_pipe_t*) ctx->server_handle, 0));
  else
    ASSERT(0);

  ASSERT(0 == uv_accept(handle, ctx->server_handle));
  uv_close((uv_handle_t*) &ctx->ipc_pipe, NULL);
}


/* Set up an IPC pipe server that hands out listen sockets to the worker
 * threads. It's kind of cumbersome for such a simple operation, maybe we
 * should revive uv_import() and uv_export().
 */
static void send_listen_handles(uv_handle_type type,
                                unsigned int num_servers,
                                struct server_ctx* servers) {
  struct ipc_server_ctx ctx;
  uv_loop_t* loop;
  unsigned int i;

  loop = uv_default_loop();
  ctx.num_connects = num_servers;

  if (type == UV_TCP) {
    ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) &ctx.server_handle));
    ASSERT(0 == uv_tcp_bind((uv_tcp_t*) &ctx.server_handle,
                            (const struct sockaddr*) &listen_addr,
                            0));
  }
  else
    ASSERT(0);
  /* We need to initialize this pipe with ipc=0 - this is not a uv_pipe we'll
   * be sending handles over, it's just for listening for new connections.
   * If we accept a connection then the connected pipe must be initialized
   * with ipc=1.
   */
  ASSERT(0 == uv_pipe_init(loop, &ctx.ipc_pipe, 0));
  ASSERT(0 == uv_pipe_bind(&ctx.ipc_pipe, IPC_PIPE_NAME));
  ASSERT(0 == uv_listen((uv_stream_t*) &ctx.ipc_pipe, 128, ipc_connection_cb));

  for (i = 0; i < num_servers; i++)
    uv_sem_post(&servers[i].semaphore);

  ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
  uv_close((uv_handle_t*) &ctx.server_handle, NULL);
  ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));

  for (i = 0; i < num_servers; i++)
    uv_sem_wait(&servers[i].semaphore);
}


static void get_listen_handle(uv_loop_t* loop, uv_stream_t* server_handle) {
  struct ipc_client_ctx ctx;

  ctx.server_handle = server_handle;
  ctx.server_handle->data = "server handle";

  ASSERT(0 == uv_pipe_init(loop, &ctx.ipc_pipe, 1));
  uv_pipe_connect(&ctx.connect_req,
                  &ctx.ipc_pipe,
                  IPC_PIPE_NAME,
                  ipc_connect_cb);
  ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
}


static void server_cb(void *arg) {
  struct server_ctx *ctx;
  uv_loop_t loop;

  ctx = arg;
  ASSERT(0 == uv_loop_init(&loop));

  ASSERT(0 == uv_async_init(&loop, &ctx->async_handle, sv_async_cb));
  uv_unref((uv_handle_t*) &ctx->async_handle);

  /* Wait until the main thread is ready. */
  uv_sem_wait(&ctx->semaphore);
  get_listen_handle(&loop, (uv_stream_t*) &ctx->server_handle);
  uv_sem_post(&ctx->semaphore);

  /* Now start the actual benchmark. */
  ASSERT(0 == uv_listen((uv_stream_t*) &ctx->server_handle,
                        128,
                        sv_connection_cb));
  ASSERT(0 == uv_run(&loop, UV_RUN_DEFAULT));

  uv_loop_close(&loop);
}


static void sv_async_cb(uv_async_t* handle) {
  struct server_ctx* ctx;
  ctx = container_of(handle, struct server_ctx, async_handle);
  uv_close((uv_handle_t*) &ctx->server_handle, NULL);
  uv_close((uv_handle_t*) &ctx->async_handle, NULL);
}


static void sv_connection_cb(uv_stream_t* server_handle, int status) {
  handle_storage_t* storage;
  struct server_ctx* ctx;

  ctx = container_of(server_handle, struct server_ctx, server_handle);
  ASSERT(status == 0);

  storage = malloc(sizeof(*storage));
  ASSERT_NOT_NULL(storage);

  if (server_handle->type == UV_TCP)
    ASSERT(0 == uv_tcp_init(server_handle->loop, (uv_tcp_t*) storage));
  else if (server_handle->type == UV_NAMED_PIPE)
    ASSERT(0 == uv_pipe_init(server_handle->loop, (uv_pipe_t*) storage, 0));
  else
    ASSERT(0);

  ASSERT(0 == uv_accept(server_handle, (uv_stream_t*) storage));
  ASSERT(0 == uv_read_start((uv_stream_t*) storage, sv_alloc_cb, sv_read_cb));
  ctx->num_connects++;
}


static void sv_alloc_cb(uv_handle_t* handle,
                        size_t suggested_size,
                        uv_buf_t* buf) {
  static char slab[32];
  buf->base = slab;
  buf->len = sizeof(slab);
}


static void sv_read_cb(uv_stream_t* handle,
                       ssize_t nread,
                       const uv_buf_t* buf) {
  ASSERT(nread == UV_EOF);
  uv_close((uv_handle_t*) handle, (uv_close_cb) free);
}


static void cl_connect_cb(uv_connect_t* req, int status) {
  struct client_ctx* ctx = container_of(req, struct client_ctx, connect_req);
  uv_idle_start(&ctx->idle_handle, cl_idle_cb);
  ASSERT(0 == status);
}


static void cl_idle_cb(uv_idle_t* handle) {
  struct client_ctx* ctx = container_of(handle, struct client_ctx, idle_handle);
  uv_close((uv_handle_t*) &ctx->client_handle, cl_close_cb);
  uv_idle_stop(&ctx->idle_handle);
}


static void cl_close_cb(uv_handle_t* handle) {
  struct client_ctx* ctx;

  ctx = container_of(handle, struct client_ctx, client_handle);

  if (--ctx->num_connects == 0) {
    uv_close((uv_handle_t*) &ctx->idle_handle, NULL);
    return;
  }

  ASSERT(0 == uv_tcp_init(handle->loop, (uv_tcp_t*) &ctx->client_handle));
  ASSERT(0 == uv_tcp_connect(&ctx->connect_req,
                             (uv_tcp_t*) &ctx->client_handle,
                             (const struct sockaddr*) &listen_addr,
                             cl_connect_cb));
}


static int test_tcp(unsigned int num_servers, unsigned int num_clients) {
  struct server_ctx* servers;
  struct client_ctx* clients;
  uv_loop_t* loop;
  uv_tcp_t* handle;
  unsigned int i;
  double time;

  ASSERT(0 == uv_ip4_addr("127.0.0.1", TEST_PORT, &listen_addr));
  loop = uv_default_loop();

  servers = calloc(num_servers, sizeof(servers[0]));
  clients = calloc(num_clients, sizeof(clients[0]));
  ASSERT_NOT_NULL(servers);
  ASSERT_NOT_NULL(clients);

  /* We're making the assumption here that from the perspective of the
   * OS scheduler, threads are functionally equivalent to and interchangeable
   * with full-blown processes.
   */
  for (i = 0; i < num_servers; i++) {
    struct server_ctx* ctx = servers + i;
    ASSERT(0 == uv_sem_init(&ctx->semaphore, 0));
    ASSERT(0 == uv_thread_create(&ctx->thread_id, server_cb, ctx));
  }

  send_listen_handles(UV_TCP, num_servers, servers);

  for (i = 0; i < num_clients; i++) {
    struct client_ctx* ctx = clients + i;
    ctx->num_connects = NUM_CONNECTS / num_clients;
    handle = (uv_tcp_t*) &ctx->client_handle;
    handle->data = "client handle";
    ASSERT(0 == uv_tcp_init(loop, handle));
    ASSERT(0 == uv_tcp_connect(&ctx->connect_req,
                               handle,
                               (const struct sockaddr*) &listen_addr,
                               cl_connect_cb));
    ASSERT(0 == uv_idle_init(loop, &ctx->idle_handle));
  }

  {
    uint64_t t = uv_hrtime();
    ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
    t = uv_hrtime() - t;
    time = t / 1e9;
  }

  for (i = 0; i < num_servers; i++) {
    struct server_ctx* ctx = servers + i;
    uv_async_send(&ctx->async_handle);
    ASSERT(0 == uv_thread_join(&ctx->thread_id));
    uv_sem_destroy(&ctx->semaphore);
  }

  printf("accept%u: %.0f accepts/sec (%u total)\n",
         num_servers,
         NUM_CONNECTS / time,
         NUM_CONNECTS);

  for (i = 0; i < num_servers; i++) {
    struct server_ctx* ctx = servers + i;
    printf("  thread #%u: %.0f accepts/sec (%u total, %.1f%%)\n",
           i,
           ctx->num_connects / time,
           ctx->num_connects,
           ctx->num_connects * 100.0 / NUM_CONNECTS);
  }

  free(clients);
  free(servers);

  MAKE_VALGRIND_HAPPY();
  return 0;
}


BENCHMARK_IMPL(tcp_multi_accept2) {
  return test_tcp(2, 40);
}


BENCHMARK_IMPL(tcp_multi_accept4) {
  return test_tcp(4, 40);
}


BENCHMARK_IMPL(tcp_multi_accept8) {
  return test_tcp(8, 40);
}